;; ARM VFP instruction patterns ;; Copyright (C) 2003-2013 Free Software Foundation, Inc. ;; Written by CodeSourcery. ;; ;; This file is part of GCC. ;; ;; GCC is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; GCC is distributed in the hope that it will be useful, but ;; WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;; General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with GCC; see the file COPYING3. If not see ;; http://www.gnu.org/licenses/. */

;; The VFP “type” attributes differ from those used in the FPA model. ;; fcpys Single precision cpy. ;; ffariths Single precision abs, neg. ;; ffarithd Double precision abs, neg, cpy. ;; fadds Single precision add/sub. ;; faddd Double precision add/sub. ;; fconsts Single precision load immediate. ;; fconstd Double precision load immediate. ;; fcmps Single precision comparison. ;; fcmpd Double precision comparison. ;; fmuls Single precision multiply. ;; fmuld Double precision multiply. ;; fmacs Single precision multiply-accumulate. ;; fmacd Double precision multiply-accumulate. ;; ffmas Single precision fused multiply-accumulate. ;; ffmad Double precision fused multiply-accumulate. ;; fdivs Single precision sqrt or division. ;; fdivd Double precision sqrt or division. ;; f_flag fmstat operation ;; f_load[sd] Floating point load from memory. ;; f_store[sd] Floating point store to memory. ;; f_2_r Transfer vfp to arm reg. ;; r_2_f Transfer arm to vfp reg. ;; f_cvt Convert floating<->integral

;; SImode moves ;; ??? For now do not allow loading constants into vfp regs. This causes ;; problems because small constants get converted into adds. (define_insn “*arm_movsi_vfp” [(set (match_operand:SI 0 “nonimmediate_operand” “=rk,r,r,r,rk,m ,*t,r,*t,*t, *Uv”) (match_operand:SI 1 “general_operand” “rk, I,K,j,mi,rk,r,*t,*t,*Uvi,*t”))] “TARGET_ARM && TARGET_VFP && TARGET_HARD_FLOAT && ( s_register_operand (operands[0], SImode) || s_register_operand (operands[1], SImode))” "* switch (which_alternative) { case 0: case 1: return "mov%?\t%0, %1"; case 2: return "mvn%?\t%0, #%B1"; case 3: return "movw%?\t%0, %1"; case 4: return "ldr%?\t%0, %1"; case 5: return "str%?\t%1, %0"; case 6: return "fmsr%?\t%0, %1\t%@ int"; case 7: return "fmrs%?\t%0, %1\t%@ int"; case 8: return "fcpys%?\t%0, %1\t%@ int"; case 9: case 10: return output_move_vfp (operands); default: gcc_unreachable (); } " [(set_attr “predicable” “yes”) (set_attr “type” “,,simple_alu_imm,simple_alu_imm,load1,store1,r_2_f,f_2_r,fcpys,f_loads,f_stores”) (set_attr “neon_type” “,,,,,,neon_mcr,neon_mrc,neon_vmov,,”) (set_attr “insn” “mov,mov,mvn,mov,,,,,,,*”) (set_attr “pool_range” “,,,,4096,,,,,1020,*”) (set_attr “neg_pool_range” “,,,,4084,,,,,1008,*”)] )

;; See thumb2.md:thumb2_movsi_insn for an explanation of the split ;; high/low register alternatives for loads and stores here. (define_insn “*thumb2_movsi_vfp” [(set (match_operand:SI 0 “nonimmediate_operand” “=rk,r,r,r, l,*hk,m, *m,*t, r,*t,*t, *Uv”) (match_operand:SI 1 “general_operand” “rk, I,K,j,mi,*mi,l,*hk, r,*t,*t,*Uvi,*t”))] “TARGET_THUMB2 && TARGET_VFP && TARGET_HARD_FLOAT && ( s_register_operand (operands[0], SImode) || s_register_operand (operands[1], SImode))” "* switch (which_alternative) { case 0: case 1: return "mov%?\t%0, %1"; case 2: return "mvn%?\t%0, #%B1"; case 3: return "movw%?\t%0, %1"; case 4: case 5: return "ldr%?\t%0, %1"; case 6: case 7: return "str%?\t%1, %0"; case 8: return "fmsr%?\t%0, %1\t%@ int"; case 9: return "fmrs%?\t%0, %1\t%@ int"; case 10: return "fcpys%?\t%0, %1\t%@ int"; case 11: case 12: return output_move_vfp (operands); default: gcc_unreachable (); } " [(set_attr “predicable” “yes”) (set_attr “type” “,,,,load1,load1,store1,store1,r_2_f,f_2_r,fcpys,f_loads,f_stores”) (set_attr “neon_type” “,,,,,,,,neon_mcr,neon_mrc,neon_vmov,,”) (set_attr “insn” “mov,mov,mvn,mov,,,,,,,,,*”) (set_attr “pool_range” “,,,,1018,4094,,,,,,1018,”) (set_attr “neg_pool_range” “,,,, 0, 0,,,,,,1008,”)] )

;; DImode moves

(define_insn “*movdi_vfp” [(set (match_operand:DI 0 “nonimmediate_di_operand” “=r,r,r,r,r,r,m,w,r,w,w, Uv”) (match_operand:DI 1 “di_operand” “r,rDa,Db,Dc,mi,mi,r,r,w,w,Uvi,w”))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP && arm_tune != cortexa8 && ( register_operand (operands[0], DImode) || register_operand (operands[1], DImode)) && !(TARGET_NEON && CONST_INT_P (operands[1]) && neon_immediate_valid_for_move (operands[1], DImode, NULL, NULL))” "* switch (which_alternative) { case 0: case 1: case 2: case 3: return "#"; case 4: case 5: case 6: return output_move_double (operands, true, NULL); case 7: return "fmdrr%?\t%P0, %Q1, %R1\t%@ int"; case 8: return "fmrrd%?\t%Q0, %R0, %P1\t%@ int"; case 9: if (TARGET_VFP_SINGLE) return "fcpys%?\t%0, %1\t%@ int;fcpys%?\t%p0, %p1\t%@ int"; else return "fcpyd%?\t%P0, %P1\t%@ int"; case 10: case 11: return output_move_vfp (operands); default: gcc_unreachable (); } " [(set_attr “type” “,,,,load2,load2,store2,r_2_f,f_2_r,ffarithd,f_loadd,f_stored”) (set_attr “neon_type” “,,,,,,,neon_mcr_2_mcrr,neon_mrrc,neon_vmov,,*”) (set (attr “length”) (cond [(eq_attr “alternative” “1,4,5,6”) (const_int 8) (eq_attr “alternative” “2”) (const_int 12) (eq_attr “alternative” “3”) (const_int 16) (eq_attr “alternative” “9”) (if_then_else (match_test “TARGET_VFP_SINGLE”) (const_int 8) (const_int 4))] (const_int 4))) (set_attr “arm_pool_range” “,,,,1020,4096,,,,,1020,*”) (set_attr “thumb2_pool_range” “,,,,1018,4094,,,,,1018,*”) (set_attr “neg_pool_range” “,,,,1004,0,,,,,1004,*”) (set_attr “arch” “t2,any,any,any,a,t2,any,any,any,any,any,any”)] )

(define_insn “*movdi_vfp_cortexa8” [(set (match_operand:DI 0 “nonimmediate_di_operand” “=r,r,r,r,r,r,m,w,!r,w,w, Uv”) (match_operand:DI 1 “di_operand” “r,rDa,Db,Dc,mi,mi,r,r,w,w,Uvi,w”))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP && arm_tune == cortexa8 && ( register_operand (operands[0], DImode) || register_operand (operands[1], DImode)) && !(TARGET_NEON && CONST_INT_P (operands[1]) && neon_immediate_valid_for_move (operands[1], DImode, NULL, NULL))” "* switch (which_alternative) { case 0: case 1: case 2: case 3: return "#"; case 4: case 5: case 6: return output_move_double (operands, true, NULL); case 7: return "fmdrr%?\t%P0, %Q1, %R1\t%@ int"; case 8: return "fmrrd%?\t%Q0, %R0, %P1\t%@ int"; case 9: return "fcpyd%?\t%P0, %P1\t%@ int"; case 10: case 11: return output_move_vfp (operands); default: gcc_unreachable (); } " [(set_attr “type” “,,,,load2,load2,store2,r_2_f,f_2_r,ffarithd,f_loadd,f_stored”) (set_attr “neon_type” “,,,,,,,neon_mcr_2_mcrr,neon_mrrc,neon_vmov,,*”) (set (attr “length”) (cond [(eq_attr “alternative” “1”) (const_int 8) (eq_attr “alternative” “2”) (const_int 12) (eq_attr “alternative” “3”) (const_int 16) (eq_attr “alternative” “4,5,6”) (symbol_ref “arm_count_output_move_double_insns (operands)
* 4”)] (const_int 4))) (set_attr “predicable” “yes”) (set_attr “arm_pool_range” “,,,,1018,4094,,,,,1018,*”) (set_attr “thumb2_pool_range” “,,,,1018,4094,,,,,1018,*”) (set_attr “neg_pool_range” “,,,,1004,0,,,,,1004,*”) (set (attr “ce_count”) (symbol_ref “get_attr_length (insn) / 4”)) (set_attr “arch” “t2,any,any,any,a,t2,any,any,any,any,any,any”)] )

;; HFmode moves (define_insn “*movhf_vfp_neon” [(set (match_operand:HF 0 “nonimmediate_operand” “= t,Um,r,m,t,r,t,r,r”) (match_operand:HF 1 “general_operand” " Um, t,m,r,t,r,r,t,F"))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_NEON_FP16 && ( s_register_operand (operands[0], HFmode) || s_register_operand (operands[1], HFmode))” "* switch (which_alternative) { case 0: /* S register from memory / return "vld1.16\t{%z0}, %A1"; case 1: / memory from S register / return "vst1.16\t{%z1}, %A0"; case 2: / ARM register from memory / return "ldrh\t%0, %1\t%@ __fp16"; case 3: / memory from ARM register / return "strh\t%1, %0\t%@ __fp16"; case 4: / S register from S register / return "fcpys\t%0, %1"; case 5: / ARM register from ARM register / return "mov\t%0, %1\t%@ __fp16"; case 6: / S register from ARM register / return "fmsr\t%0, %1"; case 7: / ARM register from S register / return "fmrs\t%0, %1"; case 8: / ARM register from constant */ { REAL_VALUE_TYPE r; long bits; rtx ops[4];

    REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
bits = real_to_target (NULL, &r, HFmode);
ops[0] = operands[0];
ops[1] = GEN_INT (bits);
ops[2] = GEN_INT (bits & 0xff00);
ops[3] = GEN_INT (bits & 0x00ff);

if (arm_arch_thumb2)
  output_asm_insn (\"movw\\t%0, %1\", ops);
else
  output_asm_insn (\"mov\\t%0, %2\;orr\\t%0, %0, %3\", ops);
return \"\";
   }
default:
  gcc_unreachable ();
}

" [(set_attr “conds” “unconditional”) (set_attr “type” “,,load1,store1,fcpys,,r_2_f,f_2_r,”) (set_attr “neon_type” “neon_vld1_1_2_regs,neon_vst1_1_2_regs_vst2_2_regs,,,,,,,*”) (set_attr “length” “4,4,4,4,4,4,4,4,8”)] )

;; FP16 without element load/store instructions. (define_insn “*movhf_vfp” [(set (match_operand:HF 0 “nonimmediate_operand” “=r,m,t,r,t,r,r”) (match_operand:HF 1 “general_operand” " m,r,t,r,r,t,F"))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_FP16 && !TARGET_NEON_FP16 && ( s_register_operand (operands[0], HFmode) || s_register_operand (operands[1], HFmode))” "* switch (which_alternative) { case 0: /* ARM register from memory / return "ldrh\t%0, %1\t%@ __fp16"; case 1: / memory from ARM register / return "strh\t%1, %0\t%@ __fp16"; case 2: / S register from S register / return "fcpys\t%0, %1"; case 3: / ARM register from ARM register / return "mov\t%0, %1\t%@ __fp16"; case 4: / S register from ARM register / return "fmsr\t%0, %1"; case 5: / ARM register from S register / return "fmrs\t%0, %1"; case 6: / ARM register from constant */ { REAL_VALUE_TYPE r; long bits; rtx ops[4];

    REAL_VALUE_FROM_CONST_DOUBLE (r, operands[1]);
bits = real_to_target (NULL, &r, HFmode);
ops[0] = operands[0];
ops[1] = GEN_INT (bits);
ops[2] = GEN_INT (bits & 0xff00);
ops[3] = GEN_INT (bits & 0x00ff);

if (arm_arch_thumb2)
  output_asm_insn (\"movw\\t%0, %1\", ops);
else
  output_asm_insn (\"mov\\t%0, %2\;orr\\t%0, %0, %3\", ops);
return \"\";
   }
default:
  gcc_unreachable ();
}

" [(set_attr “conds” “unconditional”) (set_attr “type” “load1,store1,fcpys,,r_2_f,f_2_r,”) (set_attr “length” “4,4,4,4,4,4,8”)] )

;; SFmode moves ;; Disparage the w<->r cases because reloading an invalid address is ;; preferable to loading the value via integer registers.

(define_insn “*movsf_vfp” [(set (match_operand:SF 0 “nonimmediate_operand” “=t,?r,t ,t ,Uv,r ,m,t,r”) (match_operand:SF 1 “general_operand” " ?r,t,Dv,UvE,t, mE,r,t,r"))] “TARGET_ARM && TARGET_HARD_FLOAT && TARGET_VFP && ( s_register_operand (operands[0], SFmode) || s_register_operand (operands[1], SFmode))” "* switch (which_alternative) { case 0: return "fmsr%?\t%0, %1"; case 1: return "fmrs%?\t%0, %1"; case 2: return "fconsts%?\t%0, #%G1"; case 3: case 4: return output_move_vfp (operands); case 5: return "ldr%?\t%0, %1\t%@ float"; case 6: return "str%?\t%1, %0\t%@ float"; case 7: return "fcpys%?\t%0, %1"; case 8: return "mov%?\t%0, %1\t%@ float"; default: gcc_unreachable (); } " [(set_attr “predicable” “yes”) (set_attr “type” “r_2_f,f_2_r,fconsts,f_loads,f_stores,load1,store1,fcpys,*”) (set_attr “neon_type” “neon_mcr,neon_mrc,,,,,,neon_vmov,”) (set_attr “insn” “,,,,,,,,mov”) (set_attr “pool_range” “,,,1020,,4096,,,*”) (set_attr “neg_pool_range” “,,,1008,,4080,,,*”)] )

(define_insn “*thumb2_movsf_vfp” [(set (match_operand:SF 0 “nonimmediate_operand” “=t,?r,t, t ,Uv,r ,m,t,r”) (match_operand:SF 1 “general_operand” " ?r,t,Dv,UvE,t, mE,r,t,r"))] “TARGET_THUMB2 && TARGET_HARD_FLOAT && TARGET_VFP && ( s_register_operand (operands[0], SFmode) || s_register_operand (operands[1], SFmode))” "* switch (which_alternative) { case 0: return "fmsr%?\t%0, %1"; case 1: return "fmrs%?\t%0, %1"; case 2: return "fconsts%?\t%0, #%G1"; case 3: case 4: return output_move_vfp (operands); case 5: return "ldr%?\t%0, %1\t%@ float"; case 6: return "str%?\t%1, %0\t%@ float"; case 7: return "fcpys%?\t%0, %1"; case 8: return "mov%?\t%0, %1\t%@ float"; default: gcc_unreachable (); } " [(set_attr “predicable” “yes”) (set_attr “type” “r_2_f,f_2_r,fconsts,f_loads,f_stores,load1,store1,fcpys,*”) (set_attr “neon_type” “neon_mcr,neon_mrc,,,,,,neon_vmov,”) (set_attr “insn” “,,,,,,,,mov”) (set_attr “pool_range” “,,,1018,,4090,,,*”) (set_attr “neg_pool_range” “,,,1008,,0,,,*”)] )

;; DFmode moves

(define_insn “*movdf_vfp” [(set (match_operand:DF 0 “nonimmediate_soft_df_operand” “=w,?r,w ,w ,Uv,r, m,w,r”) (match_operand:DF 1 “soft_df_operand” " ?r,w,Dy,UvF,w ,mF,r,w,r"))] “TARGET_ARM && TARGET_HARD_FLOAT && TARGET_VFP && ( register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode))” "* { switch (which_alternative) { case 0: return "fmdrr%?\t%P0, %Q1, %R1"; case 1: return "fmrrd%?\t%Q0, %R0, %P1"; case 2: gcc_assert (TARGET_VFP_DOUBLE); return "fconstd%?\t%P0, #%G1"; case 3: case 4: return output_move_vfp (operands); case 5: case 6: return output_move_double (operands, true, NULL); case 7: if (TARGET_VFP_SINGLE) return "fcpys%?\t%0, %1;fcpys%?\t%p0, %p1"; else return "fcpyd%?\t%P0, %P1"; case 8: return "#"; default: gcc_unreachable (); } } " [(set_attr “type” “r_2_f,f_2_r,fconstd,f_loadd,f_stored,load2,store2,ffarithd,*”) (set_attr “neon_type” “neon_mcr_2_mcrr,neon_mrrc,,,,,,neon_vmov,”) (set (attr “length”) (cond [(eq_attr “alternative” “5,6,8”) (const_int 8) (eq_attr “alternative” “7”) (if_then_else (match_test “TARGET_VFP_SINGLE”) (const_int 8) (const_int 4))] (const_int 4))) (set_attr “predicable” “yes”) (set_attr “pool_range” “,,,1020,,1020,,,*”) (set_attr “neg_pool_range” “,,,1004,,1004,,,*”)] )

(define_insn “*thumb2_movdf_vfp” [(set (match_operand:DF 0 “nonimmediate_soft_df_operand” “=w,?r,w ,w ,Uv,r ,m,w,r”) (match_operand:DF 1 “soft_df_operand” " ?r,w,Dy,UvF,w, mF,r, w,r"))] “TARGET_THUMB2 && TARGET_HARD_FLOAT && TARGET_VFP && ( register_operand (operands[0], DFmode) || register_operand (operands[1], DFmode))” "* { switch (which_alternative) { case 0: return "fmdrr%?\t%P0, %Q1, %R1"; case 1: return "fmrrd%?\t%Q0, %R0, %P1"; case 2: gcc_assert (TARGET_VFP_DOUBLE); return "fconstd%?\t%P0, #%G1"; case 3: case 4: return output_move_vfp (operands); case 5: case 6: case 8: return output_move_double (operands, true, NULL); case 7: if (TARGET_VFP_SINGLE) return "fcpys%?\t%0, %1;fcpys%?\t%p0, %p1"; else return "fcpyd%?\t%P0, %P1"; default: abort (); } } " [(set_attr “type” “r_2_f,f_2_r,fconstd,f_loadd,f_stored,load2,store2,ffarithd,*”) (set_attr “neon_type” “neon_mcr_2_mcrr,neon_mrrc,,,,,,neon_vmov,”) (set (attr “length”) (cond [(eq_attr “alternative” “5,6,8”) (const_int 8) (eq_attr “alternative” “7”) (if_then_else (match_test “TARGET_VFP_SINGLE”) (const_int 8) (const_int 4))] (const_int 4))) (set_attr “pool_range” “,,,1018,,4094,,,*”) (set_attr “neg_pool_range” “,,,1008,,0,,,*”)] )

;; Conditional move patterns

(define_insn “*movsfcc_vfp” [(set (match_operand:SF 0 “s_register_operand” “=t,t,t,t,t,t,?r,?r,?r”) (if_then_else:SF (match_operator 3 “arm_comparison_operator” [(match_operand 4 “cc_register” "") (const_int 0)]) (match_operand:SF 1 “s_register_operand” “0,t,t,0,?r,?r,0,t,t”) (match_operand:SF 2 “s_register_operand” “t,0,t,?r,0,?r,t,0,t”)))] “TARGET_ARM && TARGET_HARD_FLOAT && TARGET_VFP” “@ fcpys%D3\t%0, %2 fcpys%d3\t%0, %1 fcpys%D3\t%0, %2;fcpys%d3\t%0, %1 fmsr%D3\t%0, %2 fmsr%d3\t%0, %1 fmsr%D3\t%0, %2;fmsr%d3\t%0, %1 fmrs%D3\t%0, %2 fmrs%d3\t%0, %1 fmrs%D3\t%0, %2;fmrs%d3\t%0, %1” [(set_attr “conds” “use”) (set_attr “length” “4,4,8,4,4,8,4,4,8”) (set_attr “type” “fcpys,fcpys,fcpys,r_2_f,r_2_f,r_2_f,f_2_r,f_2_r,f_2_r”) (set_attr “neon_type” “neon_vmov,neon_vmov,neon_vmov,neon_mcr,neon_mcr,neon_mcr,neon_mrc,neon_mrc,neon_mrc”)] )

(define_insn “*thumb2_movsfcc_vfp” [(set (match_operand:SF 0 “s_register_operand” “=t,t,t,t,t,t,?r,?r,?r”) (if_then_else:SF (match_operator 3 “arm_comparison_operator” [(match_operand 4 “cc_register” "") (const_int 0)]) (match_operand:SF 1 “s_register_operand” “0,t,t,0,?r,?r,0,t,t”) (match_operand:SF 2 “s_register_operand” “t,0,t,?r,0,?r,t,0,t”)))] “TARGET_THUMB2 && TARGET_HARD_FLOAT && TARGET_VFP” “@ it\t%D3;fcpys%D3\t%0, %2 it\t%d3;fcpys%d3\t%0, %1 ite\t%D3;fcpys%D3\t%0, %2;fcpys%d3\t%0, %1 it\t%D3;fmsr%D3\t%0, %2 it\t%d3;fmsr%d3\t%0, %1 ite\t%D3;fmsr%D3\t%0, %2;fmsr%d3\t%0, %1 it\t%D3;fmrs%D3\t%0, %2 it\t%d3;fmrs%d3\t%0, %1 ite\t%D3;fmrs%D3\t%0, %2;fmrs%d3\t%0, %1” [(set_attr “conds” “use”) (set_attr “length” “6,6,10,6,6,10,6,6,10”) (set_attr “type” “fcpys,fcpys,fcpys,r_2_f,r_2_f,r_2_f,f_2_r,f_2_r,f_2_r”) (set_attr “neon_type” “neon_vmov,neon_vmov,neon_vmov,neon_mcr,neon_mcr,neon_mcr,neon_mrc,neon_mrc,neon_mrc”)] )

(define_insn “*movdfcc_vfp” [(set (match_operand:DF 0 “s_register_operand” “=w,w,w,w,w,w,?r,?r,?r”) (if_then_else:DF (match_operator 3 “arm_comparison_operator” [(match_operand 4 “cc_register” "") (const_int 0)]) (match_operand:DF 1 “s_register_operand” “0,w,w,0,?r,?r,0,w,w”) (match_operand:DF 2 “s_register_operand” “w,0,w,?r,0,?r,w,0,w”)))] “TARGET_ARM && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “@ fcpyd%D3\t%P0, %P2 fcpyd%d3\t%P0, %P1 fcpyd%D3\t%P0, %P2;fcpyd%d3\t%P0, %P1 fmdrr%D3\t%P0, %Q2, %R2 fmdrr%d3\t%P0, %Q1, %R1 fmdrr%D3\t%P0, %Q2, %R2;fmdrr%d3\t%P0, %Q1, %R1 fmrrd%D3\t%Q0, %R0, %P2 fmrrd%d3\t%Q0, %R0, %P1 fmrrd%D3\t%Q0, %R0, %P2;fmrrd%d3\t%Q0, %R0, %P1” [(set_attr “conds” “use”) (set_attr “length” “4,4,8,4,4,8,4,4,8”) (set_attr “type” “ffarithd,ffarithd,ffarithd,r_2_f,r_2_f,r_2_f,f_2_r,f_2_r,f_2_r”) (set_attr “neon_type” “neon_vmov,neon_vmov,neon_vmov,neon_mcr_2_mcrr,neon_mcr_2_mcrr,neon_mcr_2_mcrr,neon_mrrc,neon_mrrc,neon_mrrc”)] )

(define_insn “*thumb2_movdfcc_vfp” [(set (match_operand:DF 0 “s_register_operand” “=w,w,w,w,w,w,?r,?r,?r”) (if_then_else:DF (match_operator 3 “arm_comparison_operator” [(match_operand 4 “cc_register” "") (const_int 0)]) (match_operand:DF 1 “s_register_operand” “0,w,w,0,?r,?r,0,w,w”) (match_operand:DF 2 “s_register_operand” “w,0,w,?r,0,?r,w,0,w”)))] “TARGET_THUMB2 && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “@ it\t%D3;fcpyd%D3\t%P0, %P2 it\t%d3;fcpyd%d3\t%P0, %P1 ite\t%D3;fcpyd%D3\t%P0, %P2;fcpyd%d3\t%P0, %P1 it\t%D3;fmdrr%D3\t%P0, %Q2, %R2 it\t%d3;fmdrr%d3\t%P0, %Q1, %R1 ite\t%D3;fmdrr%D3\t%P0, %Q2, %R2;fmdrr%d3\t%P0, %Q1, %R1 it\t%D3;fmrrd%D3\t%Q0, %R0, %P2 it\t%d3;fmrrd%d3\t%Q0, %R0, %P1 ite\t%D3;fmrrd%D3\t%Q0, %R0, %P2;fmrrd%d3\t%Q0, %R0, %P1” [(set_attr “conds” “use”) (set_attr “length” “6,6,10,6,6,10,6,6,10”) (set_attr “type” “ffarithd,ffarithd,ffarithd,r_2_f,r_2_f,r_2_f,f_2_r,f_2_r,f_2_r”) (set_attr “neon_type” “neon_vmov,neon_vmov,neon_vmov,neon_mcr_2_mcrr,neon_mcr_2_mcrr,neon_mcr_2_mcrr,neon_mrrc,neon_mrrc,neon_mrrc”)] )

;; Sign manipulation functions

(define_insn “*abssf2_vfp” [(set (match_operand:SF 0 “s_register_operand” “=t”) (abs:SF (match_operand:SF 1 “s_register_operand” “t”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “fabss%?\t%0, %1” [(set_attr “predicable” “yes”) (set_attr “type” “ffariths”)] )

(define_insn “*absdf2_vfp” [(set (match_operand:DF 0 “s_register_operand” “=w”) (abs:DF (match_operand:DF 1 “s_register_operand” “w”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “fabsd%?\t%P0, %P1” [(set_attr “predicable” “yes”) (set_attr “type” “ffarithd”)] )

(define_insn “*negsf2_vfp” [(set (match_operand:SF 0 “s_register_operand” “=t,?r”) (neg:SF (match_operand:SF 1 “s_register_operand” “t,r”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “@ fnegs%?\t%0, %1 eor%?\t%0, %1, #-2147483648” [(set_attr “predicable” “yes”) (set_attr “type” “ffariths”)] )

(define_insn_and_split “*negdf2_vfp” [(set (match_operand:DF 0 “s_register_operand” “=w,?r,?r”) (neg:DF (match_operand:DF 1 “s_register_operand” “w,0,r”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” "@ fnegd%?\t%P0, %P1

#" “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE && reload_completed && arm_general_register_operand (operands[0], DFmode)” [(set (match_dup 0) (match_dup 1))] " if (REGNO (operands[0]) == REGNO (operands[1])) { operands[0] = gen_highpart (SImode, operands[0]); operands[1] = gen_rtx_XOR (SImode, operands[0], GEN_INT (0x80000000)); } else { rtx in_hi, in_lo, out_hi, out_lo;

  in_hi = gen_rtx_XOR (SImode, gen_highpart (SImode, operands[1]),
		   GEN_INT (0x80000000));
  in_lo = gen_lowpart (SImode, operands[1]);
  out_hi = gen_highpart (SImode, operands[0]);
  out_lo = gen_lowpart (SImode, operands[0]);

  if (REGNO (in_lo) == REGNO (out_hi))
    {
      emit_insn (gen_rtx_SET (SImode, out_lo, in_lo));
  operands[0] = out_hi;
      operands[1] = in_hi;
    }
  else
    {
      emit_insn (gen_rtx_SET (SImode, out_hi, in_hi));
  operands[0] = out_lo;
      operands[1] = in_lo;
    }
}

" [(set_attr “predicable” “yes”) (set_attr “length” “4,4,8”) (set_attr “type” “ffarithd”)] )

;; Arithmetic insns

(define_insn “*addsf3_vfp” [(set (match_operand:SF 0 “s_register_operand” “=t”) (plus:SF (match_operand:SF 1 “s_register_operand” “t”) (match_operand:SF 2 “s_register_operand” “t”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “fadds%?\t%0, %1, %2” [(set_attr “predicable” “yes”) (set_attr “type” “fadds”)] )

(define_insn “*adddf3_vfp” [(set (match_operand:DF 0 “s_register_operand” “=w”) (plus:DF (match_operand:DF 1 “s_register_operand” “w”) (match_operand:DF 2 “s_register_operand” “w”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “faddd%?\t%P0, %P1, %P2” [(set_attr “predicable” “yes”) (set_attr “type” “faddd”)] )

(define_insn “*subsf3_vfp” [(set (match_operand:SF 0 “s_register_operand” “=t”) (minus:SF (match_operand:SF 1 “s_register_operand” “t”) (match_operand:SF 2 “s_register_operand” “t”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “fsubs%?\t%0, %1, %2” [(set_attr “predicable” “yes”) (set_attr “type” “fadds”)] )

(define_insn “*subdf3_vfp” [(set (match_operand:DF 0 “s_register_operand” “=w”) (minus:DF (match_operand:DF 1 “s_register_operand” “w”) (match_operand:DF 2 “s_register_operand” “w”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “fsubd%?\t%P0, %P1, %P2” [(set_attr “predicable” “yes”) (set_attr “type” “faddd”)] )

;; Division insns

(define_insn “*divsf3_vfp” [(set (match_operand:SF 0 “s_register_operand” “=t”) (div:SF (match_operand:SF 1 “s_register_operand” “t”) (match_operand:SF 2 “s_register_operand” “t”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “fdivs%?\t%0, %1, %2” [(set_attr “predicable” “yes”) (set_attr “type” “fdivs”)] )

(define_insn “*divdf3_vfp” [(set (match_operand:DF 0 “s_register_operand” “=w”) (div:DF (match_operand:DF 1 “s_register_operand” “w”) (match_operand:DF 2 “s_register_operand” “w”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “fdivd%?\t%P0, %P1, %P2” [(set_attr “predicable” “yes”) (set_attr “type” “fdivd”)] )

;; Multiplication insns

(define_insn “*mulsf3_vfp” [(set (match_operand:SF 0 “s_register_operand” “=t”) (mult:SF (match_operand:SF 1 “s_register_operand” “t”) (match_operand:SF 2 “s_register_operand” “t”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “fmuls%?\t%0, %1, %2” [(set_attr “predicable” “yes”) (set_attr “type” “fmuls”)] )

(define_insn “*muldf3_vfp” [(set (match_operand:DF 0 “s_register_operand” “=w”) (mult:DF (match_operand:DF 1 “s_register_operand” “w”) (match_operand:DF 2 “s_register_operand” “w”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “fmuld%?\t%P0, %P1, %P2” [(set_attr “predicable” “yes”) (set_attr “type” “fmuld”)] )

(define_insn “*mulsf3negsf_vfp” [(set (match_operand:SF 0 “s_register_operand” “=t”) (mult:SF (neg:SF (match_operand:SF 1 “s_register_operand” “t”)) (match_operand:SF 2 “s_register_operand” “t”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “fnmuls%?\t%0, %1, %2” [(set_attr “predicable” “yes”) (set_attr “type” “fmuls”)] )

(define_insn “*muldf3negdf_vfp” [(set (match_operand:DF 0 “s_register_operand” “=w”) (mult:DF (neg:DF (match_operand:DF 1 “s_register_operand” “w”)) (match_operand:DF 2 “s_register_operand” “w”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “fnmuld%?\t%P0, %P1, %P2” [(set_attr “predicable” “yes”) (set_attr “type” “fmuld”)] )

;; Multiply-accumulate insns

;; 0 = 1 * 2 + 0 (define_insn “*mulsf3addsf_vfp” [(set (match_operand:SF 0 “s_register_operand” “=t”) (plus:SF (mult:SF (match_operand:SF 2 “s_register_operand” “t”) (match_operand:SF 3 “s_register_operand” “t”)) (match_operand:SF 1 “s_register_operand” “0”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “fmacs%?\t%0, %2, %3” [(set_attr “predicable” “yes”) (set_attr “type” “fmacs”)] )

(define_insn “*muldf3adddf_vfp” [(set (match_operand:DF 0 “s_register_operand” “=w”) (plus:DF (mult:DF (match_operand:DF 2 “s_register_operand” “w”) (match_operand:DF 3 “s_register_operand” “w”)) (match_operand:DF 1 “s_register_operand” “0”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “fmacd%?\t%P0, %P2, %P3” [(set_attr “predicable” “yes”) (set_attr “type” “fmacd”)] )

;; 0 = 1 * 2 - 0 (define_insn “*mulsf3subsf_vfp” [(set (match_operand:SF 0 “s_register_operand” “=t”) (minus:SF (mult:SF (match_operand:SF 2 “s_register_operand” “t”) (match_operand:SF 3 “s_register_operand” “t”)) (match_operand:SF 1 “s_register_operand” “0”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “fmscs%?\t%0, %2, %3” [(set_attr “predicable” “yes”) (set_attr “type” “fmacs”)] )

(define_insn “*muldf3subdf_vfp” [(set (match_operand:DF 0 “s_register_operand” “=w”) (minus:DF (mult:DF (match_operand:DF 2 “s_register_operand” “w”) (match_operand:DF 3 “s_register_operand” “w”)) (match_operand:DF 1 “s_register_operand” “0”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “fmscd%?\t%P0, %P2, %P3” [(set_attr “predicable” “yes”) (set_attr “type” “fmacd”)] )

;; 0 = -(1 * 2) + 0 (define_insn “*mulsf3negsfaddsf_vfp” [(set (match_operand:SF 0 “s_register_operand” “=t”) (minus:SF (match_operand:SF 1 “s_register_operand” “0”) (mult:SF (match_operand:SF 2 “s_register_operand” “t”) (match_operand:SF 3 “s_register_operand” “t”))))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “fnmacs%?\t%0, %2, %3” [(set_attr “predicable” “yes”) (set_attr “type” “fmacs”)] )

(define_insn “*fmuldf3negdfadddf_vfp” [(set (match_operand:DF 0 “s_register_operand” “=w”) (minus:DF (match_operand:DF 1 “s_register_operand” “0”) (mult:DF (match_operand:DF 2 “s_register_operand” “w”) (match_operand:DF 3 “s_register_operand” “w”))))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “fnmacd%?\t%P0, %P2, %P3” [(set_attr “predicable” “yes”) (set_attr “type” “fmacd”)] )

;; 0 = -(1 * 2) - 0 (define_insn “*mulsf3negsfsubsf_vfp” [(set (match_operand:SF 0 “s_register_operand” “=t”) (minus:SF (mult:SF (neg:SF (match_operand:SF 2 “s_register_operand” “t”)) (match_operand:SF 3 “s_register_operand” “t”)) (match_operand:SF 1 “s_register_operand” “0”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “fnmscs%?\t%0, %2, %3” [(set_attr “predicable” “yes”) (set_attr “type” “fmacs”)] )

(define_insn “*muldf3negdfsubdf_vfp” [(set (match_operand:DF 0 “s_register_operand” “=w”) (minus:DF (mult:DF (neg:DF (match_operand:DF 2 “s_register_operand” “w”)) (match_operand:DF 3 “s_register_operand” “w”)) (match_operand:DF 1 “s_register_operand” “0”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “fnmscd%?\t%P0, %P2, %P3” [(set_attr “predicable” “yes”) (set_attr “type” “fmacd”)] )

;; Fused-multiply-accumulate

(define_insn “fmaSDF:mode4” [(set (match_operand:SDF 0 “register_operand” “=<F_constraint>”) (fma:SDF (match_operand:SDF 1 “register_operand” “<F_constraint>”) (match_operand:SDF 2 “register_operand” “<F_constraint>”) (match_operand:SDF 3 “register_operand” “0”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_FMA” “vfma%?.<V_if_elem>\t%<V_reg>0, %<V_reg>1, %<V_reg>2” [(set_attr “predicable” “yes”) (set_attr “type” “ffma<vfp_type>”)] )

(define_insn “*fmsubSDF:mode4” [(set (match_operand:SDF 0 “register_operand” “=<F_constraint>”) (fma:SDF (neg:SDF (match_operand:SDF 1 “register_operand” “<F_constraint>”)) (match_operand:SDF 2 “register_operand” “<F_constraint>”) (match_operand:SDF 3 “register_operand” “0”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_FMA” “vfms%?.<V_if_elem>\t%<V_reg>0, %<V_reg>1, %<V_reg>2” [(set_attr “predicable” “yes”) (set_attr “type” “ffma<vfp_type>”)] )

(define_insn “*fnmsubSDF:mode4” [(set (match_operand:SDF 0 “register_operand” “=<F_constraint>”) (fma:SDF (match_operand:SDF 1 “register_operand” “<F_constraint>”) (match_operand:SDF 2 “register_operand” “<F_constraint>”) (neg:SDF (match_operand:SDF 3 “register_operand” “0”))))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_FMA” “vfnms%?.<V_if_elem>\t%<V_reg>0, %<V_reg>1, %<V_reg>2” [(set_attr “predicable” “yes”) (set_attr “type” “ffma<vfp_type>”)] )

(define_insn “*fnmaddSDF:mode4” [(set (match_operand:SDF 0 “register_operand” “=<F_constraint>”) (fma:SDF (neg:SDF (match_operand:SDF 1 “register_operand” “<F_constraint>”)) (match_operand:SDF 2 “register_operand” “<F_constraint>”) (neg:SDF (match_operand:SDF 3 “register_operand” “0”))))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_FMA” “vfnma%?.<V_if_elem>\t%<V_reg>0, %<V_reg>1, %<V_reg>2” [(set_attr “predicable” “yes”) (set_attr “type” “ffma<vfp_type>”)] )

;; Conversion routines

(define_insn “*extendsfdf2_vfp” [(set (match_operand:DF 0 “s_register_operand” “=w”) (float_extend:DF (match_operand:SF 1 “s_register_operand” “t”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “fcvtds%?\t%P0, %1” [(set_attr “predicable” “yes”) (set_attr “type” “f_cvt”)] )

(define_insn “*truncdfsf2_vfp” [(set (match_operand:SF 0 “s_register_operand” “=t”) (float_truncate:SF (match_operand:DF 1 “s_register_operand” “w”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “fcvtsd%?\t%0, %P1” [(set_attr “predicable” “yes”) (set_attr “type” “f_cvt”)] )

(define_insn “extendhfsf2” [(set (match_operand:SF 0 “s_register_operand” “=t”) (float_extend:SF (match_operand:HF 1 “s_register_operand” “t”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_FP16” “vcvtb%?.f32.f16\t%0, %1” [(set_attr “predicable” “yes”) (set_attr “type” “f_cvt”)] )

(define_insn “truncsfhf2” [(set (match_operand:HF 0 “s_register_operand” “=t”) (float_truncate:HF (match_operand:SF 1 “s_register_operand” “t”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_FP16” “vcvtb%?.f16.f32\t%0, %1” [(set_attr “predicable” “yes”) (set_attr “type” “f_cvt”)] )

(define_insn “*truncsisf2_vfp” [(set (match_operand:SI 0 “s_register_operand” “=t”) (fix:SI (fix:SF (match_operand:SF 1 “s_register_operand” “t”))))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “ftosizs%?\t%0, %1” [(set_attr “predicable” “yes”) (set_attr “type” “f_cvt”)] )

(define_insn “*truncsidf2_vfp” [(set (match_operand:SI 0 “s_register_operand” “=t”) (fix:SI (fix:DF (match_operand:DF 1 “s_register_operand” “w”))))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “ftosizd%?\t%0, %P1” [(set_attr “predicable” “yes”) (set_attr “type” “f_cvt”)] )

(define_insn “fixuns_truncsfsi2” [(set (match_operand:SI 0 “s_register_operand” “=t”) (unsigned_fix:SI (fix:SF (match_operand:SF 1 “s_register_operand” “t”))))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “ftouizs%?\t%0, %1” [(set_attr “predicable” “yes”) (set_attr “type” “f_cvt”)] )

(define_insn “fixuns_truncdfsi2” [(set (match_operand:SI 0 “s_register_operand” “=t”) (unsigned_fix:SI (fix:DF (match_operand:DF 1 “s_register_operand” “t”))))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “ftouizd%?\t%0, %P1” [(set_attr “predicable” “yes”) (set_attr “type” “f_cvt”)] )

(define_insn “*floatsisf2_vfp” [(set (match_operand:SF 0 “s_register_operand” “=t”) (float:SF (match_operand:SI 1 “s_register_operand” “t”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “fsitos%?\t%0, %1” [(set_attr “predicable” “yes”) (set_attr “type” “f_cvt”)] )

(define_insn “*floatsidf2_vfp” [(set (match_operand:DF 0 “s_register_operand” “=w”) (float:DF (match_operand:SI 1 “s_register_operand” “t”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “fsitod%?\t%P0, %1” [(set_attr “predicable” “yes”) (set_attr “type” “f_cvt”)] )

(define_insn “floatunssisf2” [(set (match_operand:SF 0 “s_register_operand” “=t”) (unsigned_float:SF (match_operand:SI 1 “s_register_operand” “t”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “fuitos%?\t%0, %1” [(set_attr “predicable” “yes”) (set_attr “type” “f_cvt”)] )

(define_insn “floatunssidf2” [(set (match_operand:DF 0 “s_register_operand” “=w”) (unsigned_float:DF (match_operand:SI 1 “s_register_operand” “t”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “fuitod%?\t%P0, %1” [(set_attr “predicable” “yes”) (set_attr “type” “f_cvt”)] )

;; Sqrt insns.

(define_insn “*sqrtsf2_vfp” [(set (match_operand:SF 0 “s_register_operand” “=t”) (sqrt:SF (match_operand:SF 1 “s_register_operand” “t”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “fsqrts%?\t%0, %1” [(set_attr “predicable” “yes”) (set_attr “type” “fdivs”)] )

(define_insn “*sqrtdf2_vfp” [(set (match_operand:DF 0 “s_register_operand” “=w”) (sqrt:DF (match_operand:DF 1 “s_register_operand” “w”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “fsqrtd%?\t%P0, %P1” [(set_attr “predicable” “yes”) (set_attr “type” “fdivd”)] )

;; Patterns to split/copy vfp condition flags.

(define_insn “*movcc_vfp” [(set (reg CC_REGNUM) (reg VFPCC_REGNUM))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “fmstat%?” [(set_attr “conds” “set”) (set_attr “type” “f_flag”)] )

(define_insn_and_split “*cmpsf_split_vfp” [(set (reg:CCFP CC_REGNUM) (compare:CCFP (match_operand:SF 0 “s_register_operand” “t”) (match_operand:SF 1 “vfp_compare_operand” “tG”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “#” “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” [(set (reg:CCFP VFPCC_REGNUM) (compare:CCFP (match_dup 0) (match_dup 1))) (set (reg:CCFP CC_REGNUM) (reg:CCFP VFPCC_REGNUM))] "" )

(define_insn_and_split “*cmpsf_trap_split_vfp” [(set (reg:CCFPE CC_REGNUM) (compare:CCFPE (match_operand:SF 0 “s_register_operand” “t”) (match_operand:SF 1 “vfp_compare_operand” “tG”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “#” “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” [(set (reg:CCFPE VFPCC_REGNUM) (compare:CCFPE (match_dup 0) (match_dup 1))) (set (reg:CCFPE CC_REGNUM) (reg:CCFPE VFPCC_REGNUM))] "" )

(define_insn_and_split “*cmpdf_split_vfp” [(set (reg:CCFP CC_REGNUM) (compare:CCFP (match_operand:DF 0 “s_register_operand” “w”) (match_operand:DF 1 “vfp_compare_operand” “wG”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “#” “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” [(set (reg:CCFP VFPCC_REGNUM) (compare:CCFP (match_dup 0) (match_dup 1))) (set (reg:CCFP CC_REGNUM) (reg:CCFP VFPCC_REGNUM))] "" )

(define_insn_and_split “*cmpdf_trap_split_vfp” [(set (reg:CCFPE CC_REGNUM) (compare:CCFPE (match_operand:DF 0 “s_register_operand” “w”) (match_operand:DF 1 “vfp_compare_operand” “wG”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “#” “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” [(set (reg:CCFPE VFPCC_REGNUM) (compare:CCFPE (match_dup 0) (match_dup 1))) (set (reg:CCFPE CC_REGNUM) (reg:CCFPE VFPCC_REGNUM))] "" )

;; Comparison patterns

(define_insn “*cmpsf_vfp” [(set (reg:CCFP VFPCC_REGNUM) (compare:CCFP (match_operand:SF 0 “s_register_operand” “t,t”) (match_operand:SF 1 “vfp_compare_operand” “t,G”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “@ fcmps%?\t%0, %1 fcmpzs%?\t%0” [(set_attr “predicable” “yes”) (set_attr “type” “fcmps”)] )

(define_insn “*cmpsf_trap_vfp” [(set (reg:CCFPE VFPCC_REGNUM) (compare:CCFPE (match_operand:SF 0 “s_register_operand” “t,t”) (match_operand:SF 1 “vfp_compare_operand” “t,G”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “@ fcmpes%?\t%0, %1 fcmpezs%?\t%0” [(set_attr “predicable” “yes”) (set_attr “type” “fcmps”)] )

(define_insn “*cmpdf_vfp” [(set (reg:CCFP VFPCC_REGNUM) (compare:CCFP (match_operand:DF 0 “s_register_operand” “w,w”) (match_operand:DF 1 “vfp_compare_operand” “w,G”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “@ fcmpd%?\t%P0, %P1 fcmpzd%?\t%P0” [(set_attr “predicable” “yes”) (set_attr “type” “fcmpd”)] )

(define_insn “*cmpdf_trap_vfp” [(set (reg:CCFPE VFPCC_REGNUM) (compare:CCFPE (match_operand:DF 0 “s_register_operand” “w,w”) (match_operand:DF 1 “vfp_compare_operand” “w,G”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP_DOUBLE” “@ fcmped%?\t%P0, %P1 fcmpezd%?\t%P0” [(set_attr “predicable” “yes”) (set_attr “type” “fcmpd”)] )

;; Fixed point to floating point conversions. (define_code_iterator FCVT [unsigned_float float]) (define_code_attr FCVTI32typename [(unsigned_float “u32”) (float “s32”)])

(define_insn “*combine_vcvt_f32_” [(set (match_operand:SF 0 “s_register_operand” “=t”) (mult:SF (FCVT:SF (match_operand:SI 1 “s_register_operand” “0”)) (match_operand 2 “const_double_vcvt_power_of_two_reciprocal” “Dt”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP3 && !flag_rounding_math” “vcvt%?.f32.\t%0, %1, %v2” [(set_attr “predicable” “yes”) (set_attr “type” “f_cvt”)] )

;; Not the ideal way of implementing this. Ideally we would be able to split ;; this into a move to a DP register and then a vcvt.f64.i32 (define_insn “*combine_vcvt_f64_” [(set (match_operand:DF 0 “s_register_operand” “=x,x,w”) (mult:DF (FCVT:DF (match_operand:SI 1 “s_register_operand” “r,t,r”)) (match_operand 2 “const_double_vcvt_power_of_two_reciprocal” “Dt,Dt,Dt”)))] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP3 && !flag_rounding_math && !TARGET_VFP_SINGLE” “@ vmov%?.f32\t%0, %1;vcvt%?.f64.\t%P0, %P0, %v2 vmov%?.f32\t%0, %1;vcvt%?.f64.\t%P0, %P0, %v2 vmov%?.f64\t%P0, %1, %1;vcvt%?.f64.\t%P0, %P0, %v2” [(set_attr “predicable” “yes”) (set_attr “ce_count” “2”) (set_attr “type” “f_cvt”) (set_attr “length” “8”)] )

;; Store multiple insn used in function prologue. (define_insn “*push_multi_vfp” [(match_parallel 2 “multi_register_push” [(set (match_operand:BLK 0 “memory_operand” “=m”) (unspec:BLK [(match_operand:DF 1 “vfp_register_operand” "")] UNSPEC_PUSH_MULT))])] “TARGET_32BIT && TARGET_HARD_FLOAT && TARGET_VFP” “* return vfp_output_fstmd (operands);” [(set_attr “type” “f_stored”)] )

;; VRINT round to integral instructions. ;; Invoked for the patterns: btruncsf2, btruncdf2, ceilsf2, ceildf2, ;; roundsf2, rounddf2, floorsf2, floordf2, nearbyintsf2, nearbyintdf2, ;; rintsf2, rintdf2. (define_insn “<vrint_pattern>SDF:mode2” [(set (match_operand:SDF 0 “register_operand” “=<F_constraint>”) (unspec:SDF [(match_operand:SDF 1 “register_operand” “<F_constraint>”)] VRINT))] “TARGET_HARD_FLOAT && TARGET_FPU_ARMV8 <vfp_double_cond>” “vrint<vrint_variant>%?.<V_if_elem>\t%<V_reg>0, %<V_reg>1” [(set_attr “predicable” “<vrint_predicable>”) (set_attr “conds” “<vrint_conds>”) (set_attr “type” “f_rint<vfp_type>”)] )

;; MIN_EXPR and MAX_EXPR eventually map to ‘smin’ and ‘smax’ in RTL. ;; The ‘smax’ and ‘smin’ RTL standard pattern names do not specify which ;; operand will be returned when both operands are zero (i.e. they may not ;; honour signed zeroes), or when either operand is NaN. Therefore GCC ;; only introduces MIN_EXPR/MAX_EXPR in fast math mode or when not honouring ;; NaNs.

(define_insn “smax3” [(set (match_operand:SDF 0 “register_operand” “=<F_constraint>”) (smax:SDF (match_operand:SDF 1 “register_operand” “<F_constraint>”) (match_operand:SDF 2 “register_operand” “<F_constraint>”)))] “TARGET_HARD_FLOAT && TARGET_FPU_ARMV8 <vfp_double_cond>” “vmaxnm.<V_if_elem>\t%<V_reg>0, %<V_reg>1, %<V_reg>2” [(set_attr “type” “f_minmax<vfp_type>”) (set_attr “conds” “unconditional”)] )

(define_insn “smin3” [(set (match_operand:SDF 0 “register_operand” “=<F_constraint>”) (smin:SDF (match_operand:SDF 1 “register_operand” “<F_constraint>”) (match_operand:SDF 2 “register_operand” “<F_constraint>”)))] “TARGET_HARD_FLOAT && TARGET_FPU_ARMV8 <vfp_double_cond>” “vminnm.<V_if_elem>\t%<V_reg>0, %<V_reg>1, %<V_reg>2” [(set_attr “type” “f_minmax<vfp_type>”) (set_attr “conds” “unconditional”)] )

;; Unimplemented insns: ;; fldm* ;; fstm* ;; fmdhr et al (VFPv1) ;; Support for xD (single precision only) variants. ;; fmrrs, fmsrr