blob: 0baba7661266675abb2780337d309691ca32ecfa [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/core/quic_data_writer.h"
#include <cstdint>
#include "net/quic/core/quic_data_reader.h"
#include "net/quic/core/quic_utils.h"
#include "net/quic/platform/api/quic_flags.h"
#include "net/quic/platform/api/quic_test.h"
#include "net/quic/test_tools/quic_test_utils.h"
namespace net {
namespace test {
namespace {
char* AsChars(unsigned char* data) {
return reinterpret_cast<char*>(data);
}
struct TestParams {
TestParams(Perspective perspective, Endianness endianness)
: perspective(perspective), endianness(endianness) {}
Perspective perspective;
Endianness endianness;
};
std::vector<TestParams> GetTestParams() {
std::vector<TestParams> params;
for (Perspective perspective :
{Perspective::IS_CLIENT, Perspective::IS_SERVER}) {
for (Endianness endianness : {NETWORK_BYTE_ORDER, HOST_BYTE_ORDER}) {
params.push_back(TestParams(perspective, endianness));
}
}
return params;
}
class QuicDataWriterTest : public QuicTestWithParam<TestParams> {};
INSTANTIATE_TEST_CASE_P(QuicDataWriterTests,
QuicDataWriterTest,
::testing::ValuesIn(GetTestParams()));
TEST_P(QuicDataWriterTest, SanityCheckUFloat16Consts) {
// Check the arithmetic on the constants - otherwise the values below make
// no sense.
EXPECT_EQ(30, kUFloat16MaxExponent);
EXPECT_EQ(11, kUFloat16MantissaBits);
EXPECT_EQ(12, kUFloat16MantissaEffectiveBits);
EXPECT_EQ(UINT64_C(0x3FFC0000000), kUFloat16MaxValue);
}
TEST_P(QuicDataWriterTest, WriteUFloat16) {
struct TestCase {
uint64_t decoded;
uint16_t encoded;
};
TestCase test_cases[] = {
// Small numbers represent themselves.
{0, 0},
{1, 1},
{2, 2},
{3, 3},
{4, 4},
{5, 5},
{6, 6},
{7, 7},
{15, 15},
{31, 31},
{42, 42},
{123, 123},
{1234, 1234},
// Check transition through 2^11.
{2046, 2046},
{2047, 2047},
{2048, 2048},
{2049, 2049},
// Running out of mantissa at 2^12.
{4094, 4094},
{4095, 4095},
{4096, 4096},
{4097, 4096},
{4098, 4097},
{4099, 4097},
{4100, 4098},
{4101, 4098},
// Check transition through 2^13.
{8190, 6143},
{8191, 6143},
{8192, 6144},
{8193, 6144},
{8194, 6144},
{8195, 6144},
{8196, 6145},
{8197, 6145},
// Half-way through the exponents.
{0x7FF8000, 0x87FF},
{0x7FFFFFF, 0x87FF},
{0x8000000, 0x8800},
{0xFFF0000, 0x8FFF},
{0xFFFFFFF, 0x8FFF},
{0x10000000, 0x9000},
// Transition into the largest exponent.
{0x1FFFFFFFFFE, 0xF7FF},
{0x1FFFFFFFFFF, 0xF7FF},
{0x20000000000, 0xF800},
{0x20000000001, 0xF800},
{0x2003FFFFFFE, 0xF800},
{0x2003FFFFFFF, 0xF800},
{0x20040000000, 0xF801},
{0x20040000001, 0xF801},
// Transition into the max value and clamping.
{0x3FF80000000, 0xFFFE},
{0x3FFBFFFFFFF, 0xFFFE},
{0x3FFC0000000, 0xFFFF},
{0x3FFC0000001, 0xFFFF},
{0x3FFFFFFFFFF, 0xFFFF},
{0x40000000000, 0xFFFF},
{0xFFFFFFFFFFFFFFFF, 0xFFFF},
};
int num_test_cases = sizeof(test_cases) / sizeof(test_cases[0]);
for (int i = 0; i < num_test_cases; ++i) {
char buffer[2];
QuicDataWriter writer(2, buffer, GetParam().perspective,
GetParam().endianness);
EXPECT_TRUE(writer.WriteUFloat16(test_cases[i].decoded));
uint16_t result = *reinterpret_cast<uint16_t*>(writer.data());
if (GetParam().endianness == NETWORK_BYTE_ORDER) {
result = QuicEndian::HostToNet16(result);
}
EXPECT_EQ(test_cases[i].encoded, result);
}
}
TEST_P(QuicDataWriterTest, ReadUFloat16) {
struct TestCase {
uint64_t decoded;
uint16_t encoded;
};
TestCase test_cases[] = {
// There are fewer decoding test cases because encoding truncates, and
// decoding returns the smallest expansion.
// Small numbers represent themselves.
{0, 0},
{1, 1},
{2, 2},
{3, 3},
{4, 4},
{5, 5},
{6, 6},
{7, 7},
{15, 15},
{31, 31},
{42, 42},
{123, 123},
{1234, 1234},
// Check transition through 2^11.
{2046, 2046},
{2047, 2047},
{2048, 2048},
{2049, 2049},
// Running out of mantissa at 2^12.
{4094, 4094},
{4095, 4095},
{4096, 4096},
{4098, 4097},
{4100, 4098},
// Check transition through 2^13.
{8190, 6143},
{8192, 6144},
{8196, 6145},
// Half-way through the exponents.
{0x7FF8000, 0x87FF},
{0x8000000, 0x8800},
{0xFFF0000, 0x8FFF},
{0x10000000, 0x9000},
// Transition into the largest exponent.
{0x1FFE0000000, 0xF7FF},
{0x20000000000, 0xF800},
{0x20040000000, 0xF801},
// Transition into the max value.
{0x3FF80000000, 0xFFFE},
{0x3FFC0000000, 0xFFFF},
};
int num_test_cases = sizeof(test_cases) / sizeof(test_cases[0]);
for (int i = 0; i < num_test_cases; ++i) {
uint16_t encoded_ufloat = test_cases[i].encoded;
if (GetParam().endianness == NETWORK_BYTE_ORDER) {
encoded_ufloat = QuicEndian::HostToNet16(encoded_ufloat);
}
QuicDataReader reader(reinterpret_cast<char*>(&encoded_ufloat), 2,
GetParam().perspective, GetParam().endianness);
uint64_t value;
EXPECT_TRUE(reader.ReadUFloat16(&value));
EXPECT_EQ(test_cases[i].decoded, value);
}
}
TEST_P(QuicDataWriterTest, RoundTripUFloat16) {
// Just test all 16-bit encoded values. 0 and max already tested above.
uint64_t previous_value = 0;
for (uint16_t i = 1; i < 0xFFFF; ++i) {
// Read the two bytes.
uint16_t read_number = i;
if (GetParam().endianness == NETWORK_BYTE_ORDER) {
read_number = QuicEndian::HostToNet16(read_number);
}
QuicDataReader reader(reinterpret_cast<char*>(&read_number), 2,
GetParam().perspective, GetParam().endianness);
uint64_t value;
// All values must be decodable.
EXPECT_TRUE(reader.ReadUFloat16(&value));
// Check that small numbers represent themselves
if (i < 4097) {
EXPECT_EQ(i, value);
}
// Check there's monotonic growth.
EXPECT_LT(previous_value, value);
// Check that precision is within 0.5% away from the denormals.
if (i > 2000) {
EXPECT_GT(previous_value * 1005, value * 1000);
}
// Check we're always within the promised range.
EXPECT_LT(value, UINT64_C(0x3FFC0000000));
previous_value = value;
char buffer[6];
QuicDataWriter writer(6, buffer, GetParam().perspective,
GetParam().endianness);
EXPECT_TRUE(writer.WriteUFloat16(value - 1));
EXPECT_TRUE(writer.WriteUFloat16(value));
EXPECT_TRUE(writer.WriteUFloat16(value + 1));
// Check minimal decoding (previous decoding has previous encoding).
uint16_t encoded1 = *reinterpret_cast<uint16_t*>(writer.data());
uint16_t encoded2 = *reinterpret_cast<uint16_t*>(writer.data() + 2);
uint16_t encoded3 = *reinterpret_cast<uint16_t*>(writer.data() + 4);
if (GetParam().endianness == NETWORK_BYTE_ORDER) {
encoded1 = QuicEndian::NetToHost16(encoded1);
encoded2 = QuicEndian::NetToHost16(encoded2);
encoded3 = QuicEndian::NetToHost16(encoded3);
}
EXPECT_EQ(i - 1, encoded1);
// Check roundtrip.
EXPECT_EQ(i, encoded2);
// Check next decoding.
EXPECT_EQ(i < 4096 ? i + 1 : i, encoded3);
}
}
TEST_P(QuicDataWriterTest, WriteConnectionId) {
uint64_t connection_id = 0x0011223344556677;
char big_endian[] = {
0x00, 0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77,
};
const int kBufferLength = sizeof(connection_id);
char buffer[kBufferLength];
QuicDataWriter writer(kBufferLength, buffer, GetParam().perspective,
GetParam().endianness);
writer.WriteConnectionId(connection_id);
test::CompareCharArraysWithHexError("connection_id", buffer, kBufferLength,
big_endian, kBufferLength);
uint64_t read_connection_id;
QuicDataReader reader(buffer, kBufferLength, GetParam().perspective,
GetParam().endianness);
reader.ReadConnectionId(&read_connection_id);
EXPECT_EQ(connection_id, read_connection_id);
}
TEST_P(QuicDataWriterTest, WriteTag) {
char CHLO[] = {
'C', 'H', 'L', 'O',
};
const int kBufferLength = sizeof(QuicTag);
char buffer[kBufferLength];
QuicDataWriter writer(kBufferLength, buffer, GetParam().perspective,
GetParam().endianness);
writer.WriteTag(kCHLO);
test::CompareCharArraysWithHexError("CHLO", buffer, kBufferLength, CHLO,
kBufferLength);
QuicTag read_chlo;
QuicDataReader reader(buffer, kBufferLength, GetParam().perspective,
GetParam().endianness);
reader.ReadTag(&read_chlo);
EXPECT_EQ(kCHLO, read_chlo);
}
TEST_P(QuicDataWriterTest, Write16BitUnsignedIntegers) {
char little_endian16[] = {0x22, 0x11};
char big_endian16[] = {0x11, 0x22};
char buffer16[2];
{
uint16_t in_memory16 = 0x1122;
QuicDataWriter writer(2, buffer16, GetParam().perspective,
GetParam().endianness);
writer.WriteUInt16(in_memory16);
test::CompareCharArraysWithHexError(
"uint16_t", buffer16, 2,
GetParam().endianness == NETWORK_BYTE_ORDER ? big_endian16
: little_endian16,
2);
uint16_t read_number16;
QuicDataReader reader(buffer16, 2, GetParam().perspective,
GetParam().endianness);
reader.ReadUInt16(&read_number16);
EXPECT_EQ(in_memory16, read_number16);
}
{
uint64_t in_memory16 = 0x0000000000001122;
QuicDataWriter writer(2, buffer16, GetParam().perspective,
GetParam().endianness);
writer.WriteBytesToUInt64(2, in_memory16);
test::CompareCharArraysWithHexError(
"uint16_t", buffer16, 2,
GetParam().endianness == NETWORK_BYTE_ORDER ? big_endian16
: little_endian16,
2);
uint64_t read_number16 = 0u;
QuicDataReader reader(buffer16, 2, GetParam().perspective,
GetParam().endianness);
reader.ReadBytesToUInt64(2, &read_number16);
EXPECT_EQ(in_memory16, read_number16);
}
}
TEST_P(QuicDataWriterTest, Write24BitUnsignedIntegers) {
char little_endian24[] = {0x33, 0x22, 0x11};
char big_endian24[] = {0x11, 0x22, 0x33};
char buffer24[3];
uint64_t in_memory24 = 0x0000000000112233;
QuicDataWriter writer(3, buffer24, GetParam().perspective,
GetParam().endianness);
writer.WriteBytesToUInt64(3, in_memory24);
test::CompareCharArraysWithHexError(
"uint24", buffer24, 3,
GetParam().endianness == NETWORK_BYTE_ORDER ? big_endian24
: little_endian24,
3);
uint64_t read_number24 = 0u;
QuicDataReader reader(buffer24, 3, GetParam().perspective,
GetParam().endianness);
reader.ReadBytesToUInt64(3, &read_number24);
EXPECT_EQ(in_memory24, read_number24);
}
TEST_P(QuicDataWriterTest, Write32BitUnsignedIntegers) {
char little_endian32[] = {0x44, 0x33, 0x22, 0x11};
char big_endian32[] = {0x11, 0x22, 0x33, 0x44};
char buffer32[4];
{
uint32_t in_memory32 = 0x11223344;
QuicDataWriter writer(4, buffer32, GetParam().perspective,
GetParam().endianness);
writer.WriteUInt32(in_memory32);
test::CompareCharArraysWithHexError(
"uint32_t", buffer32, 4,
GetParam().endianness == NETWORK_BYTE_ORDER ? big_endian32
: little_endian32,
4);
uint32_t read_number32;
QuicDataReader reader(buffer32, 4, GetParam().perspective,
GetParam().endianness);
reader.ReadUInt32(&read_number32);
EXPECT_EQ(in_memory32, read_number32);
}
{
uint64_t in_memory32 = 0x11223344;
QuicDataWriter writer(4, buffer32, GetParam().perspective,
GetParam().endianness);
writer.WriteBytesToUInt64(4, in_memory32);
test::CompareCharArraysWithHexError(
"uint32_t", buffer32, 4,
GetParam().endianness == NETWORK_BYTE_ORDER ? big_endian32
: little_endian32,
4);
uint64_t read_number32 = 0u;
QuicDataReader reader(buffer32, 4, GetParam().perspective,
GetParam().endianness);
reader.ReadBytesToUInt64(4, &read_number32);
EXPECT_EQ(in_memory32, read_number32);
}
}
TEST_P(QuicDataWriterTest, Write40BitUnsignedIntegers) {
uint64_t in_memory40 = 0x0000001122334455;
char little_endian40[] = {0x55, 0x44, 0x33, 0x22, 0x11};
char big_endian40[] = {0x11, 0x22, 0x33, 0x44, 0x55};
char buffer40[5];
QuicDataWriter writer(5, buffer40, GetParam().perspective,
GetParam().endianness);
writer.WriteBytesToUInt64(5, in_memory40);
test::CompareCharArraysWithHexError(
"uint40", buffer40, 5,
GetParam().endianness == NETWORK_BYTE_ORDER ? big_endian40
: little_endian40,
5);
uint64_t read_number40 = 0u;
QuicDataReader reader(buffer40, 5, GetParam().perspective,
GetParam().endianness);
reader.ReadBytesToUInt64(5, &read_number40);
EXPECT_EQ(in_memory40, read_number40);
}
TEST_P(QuicDataWriterTest, Write48BitUnsignedIntegers) {
uint64_t in_memory48 = 0x0000112233445566;
char little_endian48[] = {0x66, 0x55, 0x44, 0x33, 0x22, 0x11};
char big_endian48[] = {0x11, 0x22, 0x33, 0x44, 0x55, 0x66};
char buffer48[6];
QuicDataWriter writer(6, buffer48, GetParam().perspective,
GetParam().endianness);
writer.WriteBytesToUInt64(6, in_memory48);
test::CompareCharArraysWithHexError(
"uint48", buffer48, 6,
GetParam().endianness == NETWORK_BYTE_ORDER ? big_endian48
: little_endian48,
6);
uint64_t read_number48 = 0u;
QuicDataReader reader(buffer48, 6, GetParam().perspective,
GetParam().endianness);
reader.ReadBytesToUInt64(6., &read_number48);
EXPECT_EQ(in_memory48, read_number48);
}
TEST_P(QuicDataWriterTest, Write56BitUnsignedIntegers) {
uint64_t in_memory56 = 0x0011223344556677;
char little_endian56[] = {0x77, 0x66, 0x55, 0x44, 0x33, 0x22, 0x11};
char big_endian56[] = {0x11, 0x22, 0x33, 0x44, 0x55, 0x66, 0x77};
char buffer56[7];
QuicDataWriter writer(7, buffer56, GetParam().perspective,
GetParam().endianness);
writer.WriteBytesToUInt64(7, in_memory56);
test::CompareCharArraysWithHexError(
"uint56", buffer56, 7,
GetParam().endianness == NETWORK_BYTE_ORDER ? big_endian56
: little_endian56,
7);
uint64_t read_number56 = 0u;
QuicDataReader reader(buffer56, 7, GetParam().perspective,
GetParam().endianness);
reader.ReadBytesToUInt64(7, &read_number56);
EXPECT_EQ(in_memory56, read_number56);
}
TEST_P(QuicDataWriterTest, Write64BitUnsignedIntegers) {
uint64_t in_memory64 = 0x1122334455667788;
unsigned char little_endian64[] = {0x88, 0x77, 0x66, 0x55,
0x44, 0x33, 0x22, 0x11};
unsigned char big_endian64[] = {0x11, 0x22, 0x33, 0x44,
0x55, 0x66, 0x77, 0x88};
char buffer64[8];
QuicDataWriter writer(8, buffer64, GetParam().perspective,
GetParam().endianness);
writer.WriteBytesToUInt64(8, in_memory64);
test::CompareCharArraysWithHexError(
"uint64_t", buffer64, 8,
GetParam().endianness == NETWORK_BYTE_ORDER ? AsChars(big_endian64)
: AsChars(little_endian64),
8);
uint64_t read_number64 = 0u;
QuicDataReader reader(buffer64, 8, GetParam().perspective,
GetParam().endianness);
reader.ReadBytesToUInt64(8, &read_number64);
EXPECT_EQ(in_memory64, read_number64);
QuicDataWriter writer2(8, buffer64, GetParam().perspective,
GetParam().endianness);
writer2.WriteUInt64(in_memory64);
test::CompareCharArraysWithHexError(
"uint64_t", buffer64, 8,
GetParam().endianness == NETWORK_BYTE_ORDER ? AsChars(big_endian64)
: AsChars(little_endian64),
8);
read_number64 = 0u;
QuicDataReader reader2(buffer64, 8, GetParam().perspective,
GetParam().endianness);
reader2.ReadUInt64(&read_number64);
EXPECT_EQ(in_memory64, read_number64);
}
TEST_P(QuicDataWriterTest, WriteIntegers) {
char buf[43];
uint8_t i8 = 0x01;
uint16_t i16 = 0x0123;
uint32_t i32 = 0x01234567;
uint64_t i64 = 0x0123456789ABCDEF;
QuicDataWriter writer(46, buf, GetParam().perspective, GetParam().endianness);
for (size_t i = 0; i < 10; ++i) {
switch (i) {
case 0u:
EXPECT_TRUE(writer.WriteBytesToUInt64(i, i64));
break;
case 1u:
EXPECT_TRUE(writer.WriteUInt8(i8));
EXPECT_TRUE(writer.WriteBytesToUInt64(i, i64));
break;
case 2u:
EXPECT_TRUE(writer.WriteUInt16(i16));
EXPECT_TRUE(writer.WriteBytesToUInt64(i, i64));
break;
case 3u:
EXPECT_TRUE(writer.WriteBytesToUInt64(i, i64));
break;
case 4u:
EXPECT_TRUE(writer.WriteUInt32(i32));
EXPECT_TRUE(writer.WriteBytesToUInt64(i, i64));
break;
case 5u:
case 6u:
case 7u:
case 8u:
EXPECT_TRUE(writer.WriteBytesToUInt64(i, i64));
break;
default:
EXPECT_FALSE(writer.WriteBytesToUInt64(i, i64));
}
}
QuicDataReader reader(buf, 46, GetParam().perspective, GetParam().endianness);
for (size_t i = 0; i < 10; ++i) {
uint8_t read8;
uint16_t read16;
uint32_t read32;
uint64_t read64 = 0u;
switch (i) {
case 0u:
EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64));
EXPECT_EQ(0u, read64);
break;
case 1u:
EXPECT_TRUE(reader.ReadUInt8(&read8));
EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64));
EXPECT_EQ(i8, read8);
EXPECT_EQ(0xEFu, read64);
break;
case 2u:
EXPECT_TRUE(reader.ReadUInt16(&read16));
EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64));
EXPECT_EQ(i16, read16);
EXPECT_EQ(0xCDEFu, read64);
break;
case 3u:
EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64));
EXPECT_EQ(0xABCDEFu, read64);
break;
case 4u:
EXPECT_TRUE(reader.ReadUInt32(&read32));
EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64));
EXPECT_EQ(i32, read32);
EXPECT_EQ(0x89ABCDEFu, read64);
break;
case 5u:
EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64));
EXPECT_EQ(0x6789ABCDEFu, read64);
break;
case 6u:
EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64));
EXPECT_EQ(0x456789ABCDEFu, read64);
break;
case 7u:
EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64));
EXPECT_EQ(0x23456789ABCDEFu, read64);
break;
case 8u:
EXPECT_TRUE(reader.ReadBytesToUInt64(i, &read64));
EXPECT_EQ(0x0123456789ABCDEFu, read64);
break;
default:
EXPECT_FALSE(reader.ReadBytesToUInt64(i, &read64));
}
}
}
TEST_P(QuicDataWriterTest, WriteBytes) {
char bytes[] = {0, 1, 2, 3, 4, 5, 6, 7, 8};
char buf[arraysize(bytes)];
QuicDataWriter writer(arraysize(buf), buf, GetParam().perspective,
GetParam().endianness);
EXPECT_TRUE(writer.WriteBytes(bytes, arraysize(bytes)));
for (unsigned int i = 0; i < arraysize(bytes); ++i) {
EXPECT_EQ(bytes[i], buf[i]);
}
}
TEST_P(QuicDataWriterTest, WriteUInt8AtOffset) {
char bytes[] = {'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H'};
char buf[arraysize(bytes)];
for (unsigned int i = 0; i < arraysize(bytes); ++i) {
QuicDataWriter writer(arraysize(buf), buf, GetParam().perspective,
GetParam().endianness);
EXPECT_TRUE(writer.WriteBytes(bytes, arraysize(bytes)));
EXPECT_TRUE(writer.WriteUInt8AtOffset('I', i));
for (unsigned int j = 0; j < arraysize(bytes); ++j) {
if (j == i) {
EXPECT_EQ('I', buf[j]);
} else {
EXPECT_EQ(bytes[j], buf[j]);
}
}
}
}
} // namespace
} // namespace test
} // namespace net