blob: c057ec215677b3a6f12b7837c11f3acfa6ed3607 [file] [log] [blame]
/* mpn_powm -- Compute R = U^E mod M.
Copyright 2007, 2008, 2009 Free Software Foundation, Inc.
This file is part of the GNU MP Library.
The GNU MP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MP Library. If not, see http://www.gnu.org/licenses/. */
/*
BASIC ALGORITHM, Compute b^e mod n, where n is odd.
1. w <- b
2. While w^2 < n (and there are more bits in e)
w <- power left-to-right base-2 without reduction
3. t <- (B^n * b) / n Convert to REDC form
4. Compute power table of e-dependent size
5. While there are more bits in e
w <- power left-to-right base-k with reduction
TODO:
* Make getbits a macro, thereby allowing it to update the index operand.
That will simplify the code using getbits. (Perhaps make getbits' sibling
getbit then have similar form, for symmetry.)
* Write an itch function.
* Choose window size without looping. (Superoptimize or think(tm).)
* How do we handle small bases?
* This is slower than old mpz code, in particular if we base it on redc_1
(use: #undef HAVE_NATIVE_mpn_addmul_2). Why?
* Make it sub-quadratic.
* Call new division functions, not mpn_tdiv_qr.
* Is redc obsolete with improved SB division?
* Consider special code for one-limb M.
* CRT for N = odd*2^t:
Using Newton's method and 2-adic arithmetic:
m1_inv_m2 = 1/odd mod 2^t
Plain 2-adic (REDC) modexp:
r1 = a ^ b mod odd
Mullo+sqrlo-based modexp:
r2 = a ^ b mod 2^t
mullo, mul, add:
r = ((r2 - r1) * m1_i_m2 mod 2^t) * odd + r1
* How should we handle the redc1/redc2/redc2/redc4/redc_subquad choice?
- redc1: T(binvert_1limb) + e * (n) * (T(mullo1x1) + n*T(addmul_1))
- redc2: T(binvert_2limbs) + e * (n/2) * (T(mullo2x2) + n*T(addmul_2))
- redc3: T(binvert_3limbs) + e * (n/3) * (T(mullo3x3) + n*T(addmul_3))
This disregards the addmul_N constant term, but we could think of
that as part of the respective mulloNxN.
*/
#include "gmp.h"
#include "gmp-impl.h"
#include "longlong.h"
#define getbit(p,bi) \
((p[(bi - 1) / GMP_LIMB_BITS] >> (bi - 1) % GMP_LIMB_BITS) & 1)
static inline mp_limb_t
getbits (const mp_limb_t *p, unsigned long bi, int nbits)
{
int nbits_in_r;
mp_limb_t r;
mp_size_t i;
if (bi < nbits)
{
return p[0] & (((mp_limb_t) 1 << bi) - 1);
}
else
{
bi -= nbits; /* bit index of low bit to extract */
i = bi / GMP_LIMB_BITS; /* word index of low bit to extract */
bi %= GMP_LIMB_BITS; /* bit index in low word */
r = p[i] >> bi; /* extract (low) bits */
nbits_in_r = GMP_LIMB_BITS - bi; /* number of bits now in r */
if (nbits_in_r < nbits) /* did we get enough bits? */
r += p[i + 1] << nbits_in_r; /* prepend bits from higher word */
return r & (((mp_limb_t ) 1 << nbits) - 1);
}
}
#undef HAVE_NATIVE_mpn_addmul_2
#ifndef HAVE_NATIVE_mpn_addmul_2
#define REDC_2_THRESHOLD MP_SIZE_T_MAX
#endif
#ifndef REDC_2_THRESHOLD
#define REDC_2_THRESHOLD 4
#endif
static void mpn_redc_n () {ASSERT_ALWAYS(0);}
static inline int
win_size (unsigned long eb)
{
int k;
static unsigned long x[] = {1,7,25,81,241,673,1793,4609,11521,28161,~0ul};
for (k = 0; eb > x[k]; k++)
;
return k;
}
#define MPN_REDC_X(rp, tp, mp, n, mip) \
do { \
if (redc_x == 1) \
mpn_redc_1 (rp, tp, mp, n, mip[0]); \
else if (redc_x == 2) \
mpn_redc_2 (rp, tp, mp, n, mip); \
else \
mpn_redc_n (rp, tp, mp, n, mip); \
} while (0)
/* Convert U to REDC form, U_r = B^n * U mod M */
static void
redcify (mp_ptr rp, mp_srcptr up, mp_size_t un, mp_srcptr mp, mp_size_t n)
{
mp_ptr tp, qp;
TMP_DECL;
TMP_MARK;
tp = TMP_ALLOC_LIMBS (un + n);
qp = TMP_ALLOC_LIMBS (un + 1); /* FIXME: Put at tp+? */
MPN_ZERO (tp, n);
MPN_COPY (tp + n, up, un);
mpn_tdiv_qr (qp, rp, 0L, tp, un + n, mp, n);
TMP_FREE;
}
/* rp[n-1..0] = bp[bn-1..0] ^ ep[en-1..0] mod mp[n-1..0]
Requires that mp[n-1..0] is odd.
Requires that ep[en-1..0] is > 1.
Uses scratch space tp[3n..0], i.e., 3n+1 words. */
void
mpn_powm (mp_ptr rp, mp_srcptr bp, mp_size_t bn,
mp_srcptr ep, mp_size_t en,
mp_srcptr mp, mp_size_t n, mp_ptr tp)
{
mp_limb_t mip[2];
int cnt;
long ebi;
int windowsize, this_windowsize;
mp_limb_t expbits;
mp_ptr pp, this_pp, last_pp;
mp_ptr b2p;
long i;
int redc_x;
TMP_DECL;
ASSERT (en > 1 || (en == 1 && ep[0] > 1));
ASSERT (n >= 1 && ((mp[0] & 1) != 0));
TMP_MARK;
count_leading_zeros (cnt, ep[en - 1]);
ebi = en * GMP_LIMB_BITS - cnt;
#if 0
if (bn < n)
{
/* Do the first few exponent bits without mod reductions,
until the result is greater than the mod argument. */
for (;;)
{
mpn_sqr_n (tp, this_pp, tn);
tn = tn * 2 - 1, tn += tp[tn] != 0;
if (getbit (ep, ebi) != 0)
mpn_mul (..., tp, tn, bp, bn);
ebi--;
}
}
#endif
windowsize = win_size (ebi);
if (BELOW_THRESHOLD (n, REDC_2_THRESHOLD))
{
binvert_limb (mip[0], mp[0]);
mip[0] = -mip[0];
redc_x = 1;
}
#if defined (HAVE_NATIVE_mpn_addmul_2)
else
{
mpn_binvert (mip, mp, 2, tp);
mip[0] = -mip[0]; mip[1] = ~mip[1];
redc_x = 2;
}
#endif
#if 0
mpn_binvert (mip, mp, n, tp);
redc_x = 0;
#endif
pp = TMP_ALLOC_LIMBS (n << (windowsize - 1));
this_pp = pp;
redcify (this_pp, bp, bn, mp, n);
b2p = tp + 2*n;
/* Store b^2 in b2. */
mpn_sqr_n (tp, this_pp, n);
MPN_REDC_X (b2p, tp, mp, n, mip);
/* Precompute odd powers of b and put them in the temporary area at pp. */
for (i = (1 << (windowsize - 1)) - 1; i > 0; i--)
{
last_pp = this_pp;
this_pp += n;
mpn_mul_n (tp, last_pp, b2p, n);
MPN_REDC_X (this_pp, tp, mp, n, mip);
}
expbits = getbits (ep, ebi, windowsize);
ebi -= windowsize;
if (ebi < 0)
ebi = 0;
count_trailing_zeros (cnt, expbits);
ebi += cnt;
expbits >>= cnt;
MPN_COPY (rp, pp + n * (expbits >> 1), n);
while (ebi != 0)
{
while (getbit (ep, ebi) == 0)
{
mpn_sqr_n (tp, rp, n);
MPN_REDC_X (rp, tp, mp, n, mip);
ebi--;
if (ebi == 0)
goto done;
}
/* The next bit of the exponent is 1. Now extract the largest block of
bits <= windowsize, and such that the least significant bit is 1. */
expbits = getbits (ep, ebi, windowsize);
ebi -= windowsize;
this_windowsize = windowsize;
if (ebi < 0)
{
this_windowsize += ebi;
ebi = 0;
}
count_trailing_zeros (cnt, expbits);
this_windowsize -= cnt;
ebi += cnt;
expbits >>= cnt;
do
{
mpn_sqr_n (tp, rp, n);
MPN_REDC_X (rp, tp, mp, n, mip);
this_windowsize--;
}
while (this_windowsize != 0);
mpn_mul_n (tp, rp, pp + n * (expbits >> 1), n);
MPN_REDC_X (rp, tp, mp, n, mip);
}
done:
MPN_COPY (tp, rp, n);
MPN_ZERO (tp + n, n);
MPN_REDC_X (rp, tp, mp, n, mip);
if (mpn_cmp (rp, mp, n) >= 0)
mpn_sub_n (rp, rp, mp, n);
TMP_FREE;
}