blob: a91e55a21ed0e678093dd941416204eb8fc35557 [file] [log] [blame]
//
// Copyright (c) 2002-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Program.cpp: Implements the gl::Program class. Implements GL program objects
// and related functionality. [OpenGL ES 2.0.24] section 2.10.3 page 28.
#include "libANGLE/Program.h"
#include <algorithm>
#include "common/bitset_utils.h"
#include "common/debug.h"
#include "common/platform.h"
#include "common/string_utils.h"
#include "common/utilities.h"
#include "common/version.h"
#include "compiler/translator/blocklayout.h"
#include "libANGLE/Context.h"
#include "libANGLE/MemoryProgramCache.h"
#include "libANGLE/ProgramLinkedResources.h"
#include "libANGLE/ResourceManager.h"
#include "libANGLE/Uniform.h"
#include "libANGLE/VaryingPacking.h"
#include "libANGLE/Version.h"
#include "libANGLE/features.h"
#include "libANGLE/histogram_macros.h"
#include "libANGLE/queryconversions.h"
#include "libANGLE/renderer/GLImplFactory.h"
#include "libANGLE/renderer/ProgramImpl.h"
#include "platform/Platform.h"
namespace gl
{
namespace
{
// This simplified cast function doesn't need to worry about advanced concepts like
// depth range values, or casting to bool.
template <typename DestT, typename SrcT>
DestT UniformStateQueryCast(SrcT value);
// From-Float-To-Integer Casts
template <>
GLint UniformStateQueryCast(GLfloat value)
{
return clampCast<GLint>(roundf(value));
}
template <>
GLuint UniformStateQueryCast(GLfloat value)
{
return clampCast<GLuint>(roundf(value));
}
// From-Integer-to-Integer Casts
template <>
GLint UniformStateQueryCast(GLuint value)
{
return clampCast<GLint>(value);
}
template <>
GLuint UniformStateQueryCast(GLint value)
{
return clampCast<GLuint>(value);
}
// From-Boolean-to-Anything Casts
template <>
GLfloat UniformStateQueryCast(GLboolean value)
{
return (ConvertToBool(value) ? 1.0f : 0.0f);
}
template <>
GLint UniformStateQueryCast(GLboolean value)
{
return (ConvertToBool(value) ? 1 : 0);
}
template <>
GLuint UniformStateQueryCast(GLboolean value)
{
return (ConvertToBool(value) ? 1u : 0u);
}
// Default to static_cast
template <typename DestT, typename SrcT>
DestT UniformStateQueryCast(SrcT value)
{
return static_cast<DestT>(value);
}
template <typename SrcT, typename DestT>
void UniformStateQueryCastLoop(DestT *dataOut, const uint8_t *srcPointer, int components)
{
for (int comp = 0; comp < components; ++comp)
{
// We only work with strides of 4 bytes for uniform components. (GLfloat/GLint)
// Don't use SrcT stride directly since GLboolean has a stride of 1 byte.
size_t offset = comp * 4;
const SrcT *typedSrcPointer = reinterpret_cast<const SrcT *>(&srcPointer[offset]);
dataOut[comp] = UniformStateQueryCast<DestT>(*typedSrcPointer);
}
}
template <typename VarT>
GLuint GetResourceIndexFromName(const std::vector<VarT> &list, const std::string &name)
{
std::string nameAsArrayName = name + "[0]";
for (size_t index = 0; index < list.size(); index++)
{
const VarT &resource = list[index];
if (resource.name == name || (resource.isArray() && resource.name == nameAsArrayName))
{
return static_cast<GLuint>(index);
}
}
return GL_INVALID_INDEX;
}
template <typename VarT>
GLint GetVariableLocation(const std::vector<VarT> &list,
const std::vector<VariableLocation> &locationList,
const std::string &name)
{
size_t nameLengthWithoutArrayIndex;
unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex);
for (size_t location = 0u; location < locationList.size(); ++location)
{
const VariableLocation &variableLocation = locationList[location];
if (!variableLocation.used())
{
continue;
}
const VarT &variable = list[variableLocation.index];
// Array output variables may be bound out of order, so we need to ensure we only pick the
// first element if given the base name. Uniforms don't allow this behavior and some code
// seemingly depends on the opposite behavior, so only enable it for output variables.
if (angle::BeginsWith(variable.name, name) &&
(!std::is_base_of<sh::OutputVariable, VarT>::value || variableLocation.arrayIndex == 0))
{
if (name.length() == variable.name.length())
{
ASSERT(name == variable.name);
// GLES 3.1 November 2016 page 87.
// The string exactly matches the name of the active variable.
return static_cast<GLint>(location);
}
if (name.length() + 3u == variable.name.length() && variable.isArray())
{
ASSERT(name + "[0]" == variable.name);
// The string identifies the base name of an active array, where the string would
// exactly match the name of the variable if the suffix "[0]" were appended to the
// string.
return static_cast<GLint>(location);
}
}
if (variable.isArray() && variableLocation.arrayIndex == arrayIndex &&
nameLengthWithoutArrayIndex + 3u == variable.name.length() &&
angle::BeginsWith(variable.name, name, nameLengthWithoutArrayIndex))
{
ASSERT(name.substr(0u, nameLengthWithoutArrayIndex) + "[0]" == variable.name);
// The string identifies an active element of the array, where the string ends with the
// concatenation of the "[" character, an integer (with no "+" sign, extra leading
// zeroes, or whitespace) identifying an array element, and the "]" character, the
// integer is less than the number of active elements of the array variable, and where
// the string would exactly match the enumerated name of the array if the decimal
// integer were replaced with zero.
return static_cast<GLint>(location);
}
}
return -1;
}
void CopyStringToBuffer(GLchar *buffer, const std::string &string, GLsizei bufSize, GLsizei *length)
{
ASSERT(bufSize > 0);
strncpy(buffer, string.c_str(), bufSize);
buffer[bufSize - 1] = '\0';
if (length)
{
*length = static_cast<GLsizei>(strlen(buffer));
}
}
bool IncludeSameArrayElement(const std::set<std::string> &nameSet, const std::string &name)
{
std::vector<unsigned int> subscripts;
std::string baseName = ParseResourceName(name, &subscripts);
for (const std::string &nameInSet : nameSet)
{
std::vector<unsigned int> arrayIndices;
std::string arrayName = ParseResourceName(nameInSet, &arrayIndices);
if (baseName == arrayName &&
(subscripts.empty() || arrayIndices.empty() || subscripts == arrayIndices))
{
return true;
}
}
return false;
}
std::string GetInterfaceBlockLimitName(ShaderType shaderType, sh::BlockType blockType)
{
std::ostringstream stream;
stream << "GL_MAX_" << GetShaderTypeString(shaderType) << "_";
switch (blockType)
{
case sh::BlockType::BLOCK_UNIFORM:
stream << "UNIFORM_BUFFERS";
break;
case sh::BlockType::BLOCK_BUFFER:
stream << "SHADER_STORAGE_BLOCKS";
break;
default:
UNREACHABLE();
return "";
}
if (shaderType == ShaderType::Geometry)
{
stream << "_EXT";
}
return stream.str();
}
const char *GetInterfaceBlockTypeString(sh::BlockType blockType)
{
switch (blockType)
{
case sh::BlockType::BLOCK_UNIFORM:
return "uniform block";
case sh::BlockType::BLOCK_BUFFER:
return "shader storage block";
default:
UNREACHABLE();
return "";
}
}
void LogInterfaceBlocksExceedLimit(InfoLog &infoLog,
ShaderType shaderType,
sh::BlockType blockType,
GLuint limit)
{
infoLog << GetShaderTypeString(shaderType) << " shader "
<< GetInterfaceBlockTypeString(blockType) << " count exceeds "
<< GetInterfaceBlockLimitName(shaderType, blockType) << " (" << limit << ")";
}
bool ValidateInterfaceBlocksCount(GLuint maxInterfaceBlocks,
const std::vector<sh::InterfaceBlock> &interfaceBlocks,
ShaderType shaderType,
sh::BlockType blockType,
GLuint *combinedInterfaceBlocksCount,
InfoLog &infoLog)
{
GLuint blockCount = 0;
for (const sh::InterfaceBlock &block : interfaceBlocks)
{
if (IsActiveInterfaceBlock(block))
{
blockCount += std::max(block.arraySize, 1u);
if (blockCount > maxInterfaceBlocks)
{
LogInterfaceBlocksExceedLimit(infoLog, shaderType, blockType, maxInterfaceBlocks);
return false;
}
}
}
// [OpenGL ES 3.1] Chapter 7.6.2 Page 105:
// If a uniform block is used by multiple shader stages, each such use counts separately
// against this combined limit.
// [OpenGL ES 3.1] Chapter 7.8 Page 111:
// If a shader storage block in a program is referenced by multiple shaders, each such
// reference counts separately against this combined limit.
if (combinedInterfaceBlocksCount)
{
*combinedInterfaceBlocksCount += blockCount;
}
return true;
}
GLuint GetInterfaceBlockIndex(const std::vector<InterfaceBlock> &list, const std::string &name)
{
std::vector<unsigned int> subscripts;
std::string baseName = ParseResourceName(name, &subscripts);
unsigned int numBlocks = static_cast<unsigned int>(list.size());
for (unsigned int blockIndex = 0; blockIndex < numBlocks; blockIndex++)
{
const auto &block = list[blockIndex];
if (block.name == baseName)
{
const bool arrayElementZero =
(subscripts.empty() && (!block.isArray || block.arrayElement == 0));
const bool arrayElementMatches =
(subscripts.size() == 1 && subscripts[0] == block.arrayElement);
if (arrayElementMatches || arrayElementZero)
{
return blockIndex;
}
}
}
return GL_INVALID_INDEX;
}
void GetInterfaceBlockName(const GLuint index,
const std::vector<InterfaceBlock> &list,
GLsizei bufSize,
GLsizei *length,
GLchar *name)
{
ASSERT(index < list.size());
const auto &block = list[index];
if (bufSize > 0)
{
std::string blockName = block.name;
if (block.isArray)
{
blockName += ArrayString(block.arrayElement);
}
CopyStringToBuffer(name, blockName, bufSize, length);
}
}
void InitUniformBlockLinker(const ProgramState &state, UniformBlockLinker *blockLinker)
{
for (ShaderType shaderType : AllShaderTypes())
{
Shader *shader = state.getAttachedShader(shaderType);
if (shader)
{
blockLinker->addShaderBlocks(shaderType, &shader->getUniformBlocks());
}
}
}
void InitShaderStorageBlockLinker(const ProgramState &state, ShaderStorageBlockLinker *blockLinker)
{
for (ShaderType shaderType : AllShaderTypes())
{
Shader *shader = state.getAttachedShader(shaderType);
if (shader != nullptr)
{
blockLinker->addShaderBlocks(shaderType, &shader->getShaderStorageBlocks());
}
}
}
// Find the matching varying or field by name.
const sh::ShaderVariable *FindVaryingOrField(const ProgramMergedVaryings &varyings,
const std::string &name)
{
const sh::ShaderVariable *var = nullptr;
for (const auto &ref : varyings)
{
const sh::Varying *varying = ref.second.get();
if (varying->name == name)
{
var = varying;
break;
}
GLuint fieldIndex = 0;
var = FindShaderVarField(*varying, name, &fieldIndex);
if (var != nullptr)
{
break;
}
}
return var;
}
void AddParentPrefix(const std::string &parentName, std::string *mismatchedFieldName)
{
ASSERT(mismatchedFieldName);
if (mismatchedFieldName->empty())
{
*mismatchedFieldName = parentName;
}
else
{
std::ostringstream stream;
stream << parentName << "." << *mismatchedFieldName;
*mismatchedFieldName = stream.str();
}
}
const char *GetLinkMismatchErrorString(LinkMismatchError linkError)
{
switch (linkError)
{
case LinkMismatchError::TYPE_MISMATCH:
return "Type";
case LinkMismatchError::ARRAY_SIZE_MISMATCH:
return "Array size";
case LinkMismatchError::PRECISION_MISMATCH:
return "Precision";
case LinkMismatchError::STRUCT_NAME_MISMATCH:
return "Structure name";
case LinkMismatchError::FIELD_NUMBER_MISMATCH:
return "Field number";
case LinkMismatchError::FIELD_NAME_MISMATCH:
return "Field name";
case LinkMismatchError::INTERPOLATION_TYPE_MISMATCH:
return "Interpolation type";
case LinkMismatchError::INVARIANCE_MISMATCH:
return "Invariance";
case LinkMismatchError::BINDING_MISMATCH:
return "Binding layout qualifier";
case LinkMismatchError::LOCATION_MISMATCH:
return "Location layout qualifier";
case LinkMismatchError::OFFSET_MISMATCH:
return "Offset layout qualilfier";
case LinkMismatchError::LAYOUT_QUALIFIER_MISMATCH:
return "Layout qualifier";
case LinkMismatchError::MATRIX_PACKING_MISMATCH:
return "Matrix Packing";
default:
UNREACHABLE();
return "";
}
}
LinkMismatchError LinkValidateInterfaceBlockFields(const sh::InterfaceBlockField &blockField1,
const sh::InterfaceBlockField &blockField2,
bool webglCompatibility,
std::string *mismatchedBlockFieldName)
{
if (blockField1.name != blockField2.name)
{
return LinkMismatchError::FIELD_NAME_MISMATCH;
}
// If webgl, validate precision of UBO fields, otherwise don't. See Khronos bug 10287.
LinkMismatchError linkError = Program::LinkValidateVariablesBase(
blockField1, blockField2, webglCompatibility, true, mismatchedBlockFieldName);
if (linkError != LinkMismatchError::NO_MISMATCH)
{
AddParentPrefix(blockField1.name, mismatchedBlockFieldName);
return linkError;
}
if (blockField1.isRowMajorLayout != blockField2.isRowMajorLayout)
{
AddParentPrefix(blockField1.name, mismatchedBlockFieldName);
return LinkMismatchError::MATRIX_PACKING_MISMATCH;
}
return LinkMismatchError::NO_MISMATCH;
}
LinkMismatchError AreMatchingInterfaceBlocks(const sh::InterfaceBlock &interfaceBlock1,
const sh::InterfaceBlock &interfaceBlock2,
bool webglCompatibility,
std::string *mismatchedBlockFieldName)
{
// validate blocks for the same member types
if (interfaceBlock1.fields.size() != interfaceBlock2.fields.size())
{
return LinkMismatchError::FIELD_NUMBER_MISMATCH;
}
if (interfaceBlock1.arraySize != interfaceBlock2.arraySize)
{
return LinkMismatchError::ARRAY_SIZE_MISMATCH;
}
if (interfaceBlock1.layout != interfaceBlock2.layout ||
interfaceBlock1.binding != interfaceBlock2.binding)
{
return LinkMismatchError::LAYOUT_QUALIFIER_MISMATCH;
}
const unsigned int numBlockMembers = static_cast<unsigned int>(interfaceBlock1.fields.size());
for (unsigned int blockMemberIndex = 0; blockMemberIndex < numBlockMembers; blockMemberIndex++)
{
const sh::InterfaceBlockField &member1 = interfaceBlock1.fields[blockMemberIndex];
const sh::InterfaceBlockField &member2 = interfaceBlock2.fields[blockMemberIndex];
LinkMismatchError linkError = LinkValidateInterfaceBlockFields(
member1, member2, webglCompatibility, mismatchedBlockFieldName);
if (linkError != LinkMismatchError::NO_MISMATCH)
{
return linkError;
}
}
return LinkMismatchError::NO_MISMATCH;
}
using ShaderInterfaceBlock = std::pair<ShaderType, const sh::InterfaceBlock *>;
using InterfaceBlockMap = std::map<std::string, ShaderInterfaceBlock>;
void InitializeInterfaceBlockMap(const std::vector<sh::InterfaceBlock> &interfaceBlocks,
ShaderType shaderType,
InterfaceBlockMap *linkedInterfaceBlocks)
{
ASSERT(linkedInterfaceBlocks);
for (const sh::InterfaceBlock &interfaceBlock : interfaceBlocks)
{
(*linkedInterfaceBlocks)[interfaceBlock.name] = std::make_pair(shaderType, &interfaceBlock);
}
}
bool ValidateGraphicsInterfaceBlocksPerShader(
const std::vector<sh::InterfaceBlock> &interfaceBlocksToLink,
ShaderType shaderType,
bool webglCompatibility,
InterfaceBlockMap *linkedBlocks,
InfoLog &infoLog)
{
ASSERT(linkedBlocks);
for (const sh::InterfaceBlock &block : interfaceBlocksToLink)
{
const auto &entry = linkedBlocks->find(block.name);
if (entry != linkedBlocks->end())
{
const sh::InterfaceBlock &linkedBlock = *(entry->second.second);
std::string mismatchedStructFieldName;
LinkMismatchError linkError = AreMatchingInterfaceBlocks(
block, linkedBlock, webglCompatibility, &mismatchedStructFieldName);
if (linkError != LinkMismatchError::NO_MISMATCH)
{
LogLinkMismatch(infoLog, block.name, GetInterfaceBlockTypeString(block.blockType),
linkError, mismatchedStructFieldName, entry->second.first,
shaderType);
return false;
}
}
else
{
(*linkedBlocks)[block.name] = std::make_pair(shaderType, &block);
}
}
return true;
}
bool ValidateInterfaceBlocksMatch(
GLuint numShadersHasInterfaceBlocks,
const ShaderMap<const std::vector<sh::InterfaceBlock> *> &shaderInterfaceBlocks,
InfoLog &infoLog,
bool webglCompatibility)
{
if (numShadersHasInterfaceBlocks < 2u)
{
return true;
}
ASSERT(!shaderInterfaceBlocks[ShaderType::Compute]);
// Check that interface blocks defined in the graphics shaders are identical
InterfaceBlockMap linkedInterfaceBlocks;
bool interfaceBlockMapInitialized = false;
for (ShaderType shaderType : kAllGraphicsShaderTypes)
{
if (!shaderInterfaceBlocks[shaderType])
{
continue;
}
if (!interfaceBlockMapInitialized)
{
InitializeInterfaceBlockMap(*shaderInterfaceBlocks[shaderType], shaderType,
&linkedInterfaceBlocks);
interfaceBlockMapInitialized = true;
}
else if (!ValidateGraphicsInterfaceBlocksPerShader(*shaderInterfaceBlocks[shaderType],
shaderType, webglCompatibility,
&linkedInterfaceBlocks, infoLog))
{
return false;
}
}
return true;
}
void WriteShaderVar(BinaryOutputStream *stream, const sh::ShaderVariable &var)
{
stream->writeInt(var.type);
stream->writeInt(var.precision);
stream->writeString(var.name);
stream->writeString(var.mappedName);
stream->writeIntVector(var.arraySizes);
stream->writeInt(var.staticUse);
stream->writeInt(var.active);
stream->writeString(var.structName);
ASSERT(var.fields.empty());
}
void LoadShaderVar(BinaryInputStream *stream, sh::ShaderVariable *var)
{
var->type = stream->readInt<GLenum>();
var->precision = stream->readInt<GLenum>();
var->name = stream->readString();
var->mappedName = stream->readString();
stream->readIntVector<unsigned int>(&var->arraySizes);
var->staticUse = stream->readBool();
var->active = stream->readBool();
var->structName = stream->readString();
}
void WriteShaderVariableBuffer(BinaryOutputStream *stream, const ShaderVariableBuffer &var)
{
stream->writeInt(var.binding);
stream->writeInt(var.dataSize);
for (ShaderType shaderType : AllShaderTypes())
{
stream->writeInt(var.isActive(shaderType));
}
stream->writeInt(var.memberIndexes.size());
for (unsigned int memberCounterIndex : var.memberIndexes)
{
stream->writeInt(memberCounterIndex);
}
}
void LoadShaderVariableBuffer(BinaryInputStream *stream, ShaderVariableBuffer *var)
{
var->binding = stream->readInt<int>();
var->dataSize = stream->readInt<unsigned int>();
for (ShaderType shaderType : AllShaderTypes())
{
var->setActive(shaderType, stream->readBool());
}
unsigned int numMembers = stream->readInt<unsigned int>();
for (unsigned int blockMemberIndex = 0; blockMemberIndex < numMembers; blockMemberIndex++)
{
var->memberIndexes.push_back(stream->readInt<unsigned int>());
}
}
void WriteBufferVariable(BinaryOutputStream *stream, const BufferVariable &var)
{
WriteShaderVar(stream, var);
stream->writeInt(var.bufferIndex);
stream->writeInt(var.blockInfo.offset);
stream->writeInt(var.blockInfo.arrayStride);
stream->writeInt(var.blockInfo.matrixStride);
stream->writeInt(var.blockInfo.isRowMajorMatrix);
stream->writeInt(var.blockInfo.topLevelArrayStride);
stream->writeInt(var.topLevelArraySize);
for (ShaderType shaderType : AllShaderTypes())
{
stream->writeInt(var.isActive(shaderType));
}
}
void LoadBufferVariable(BinaryInputStream *stream, BufferVariable *var)
{
LoadShaderVar(stream, var);
var->bufferIndex = stream->readInt<int>();
var->blockInfo.offset = stream->readInt<int>();
var->blockInfo.arrayStride = stream->readInt<int>();
var->blockInfo.matrixStride = stream->readInt<int>();
var->blockInfo.isRowMajorMatrix = stream->readBool();
var->blockInfo.topLevelArrayStride = stream->readInt<int>();
var->topLevelArraySize = stream->readInt<int>();
for (ShaderType shaderType : AllShaderTypes())
{
var->setActive(shaderType, stream->readBool());
}
}
void WriteInterfaceBlock(BinaryOutputStream *stream, const InterfaceBlock &block)
{
stream->writeString(block.name);
stream->writeString(block.mappedName);
stream->writeInt(block.isArray);
stream->writeInt(block.arrayElement);
WriteShaderVariableBuffer(stream, block);
}
void LoadInterfaceBlock(BinaryInputStream *stream, InterfaceBlock *block)
{
block->name = stream->readString();
block->mappedName = stream->readString();
block->isArray = stream->readBool();
block->arrayElement = stream->readInt<unsigned int>();
LoadShaderVariableBuffer(stream, block);
}
} // anonymous namespace
// Saves the linking context for later use in resolveLink().
struct Program::LinkingState
{
const Context *context;
std::unique_ptr<ProgramLinkedResources> resources;
egl::BlobCache::Key programHash;
std::unique_ptr<rx::LinkEvent> linkEvent;
bool linkingFromBinary;
};
const char *const g_fakepath = "C:\\fakepath";
// InfoLog implementation.
InfoLog::InfoLog() {}
InfoLog::~InfoLog() {}
size_t InfoLog::getLength() const
{
if (!mLazyStream)
{
return 0;
}
const std::string &logString = mLazyStream->str();
return logString.empty() ? 0 : logString.length() + 1;
}
void InfoLog::getLog(GLsizei bufSize, GLsizei *length, char *infoLog) const
{
size_t index = 0;
if (bufSize > 0)
{
const std::string logString(str());
if (!logString.empty())
{
index = std::min(static_cast<size_t>(bufSize) - 1, logString.length());
memcpy(infoLog, logString.c_str(), index);
}
infoLog[index] = '\0';
}
if (length)
{
*length = static_cast<GLsizei>(index);
}
}
// append a santized message to the program info log.
// The D3D compiler includes a fake file path in some of the warning or error
// messages, so lets remove all occurrences of this fake file path from the log.
void InfoLog::appendSanitized(const char *message)
{
ensureInitialized();
std::string msg(message);
size_t found;
do
{
found = msg.find(g_fakepath);
if (found != std::string::npos)
{
msg.erase(found, strlen(g_fakepath));
}
} while (found != std::string::npos);
*mLazyStream << message << std::endl;
}
void InfoLog::reset()
{
if (mLazyStream)
{
mLazyStream.reset(nullptr);
}
}
bool InfoLog::empty() const
{
if (!mLazyStream)
{
return true;
}
return mLazyStream->rdbuf()->in_avail() == 0;
}
void LogLinkMismatch(InfoLog &infoLog,
const std::string &variableName,
const char *variableType,
LinkMismatchError linkError,
const std::string &mismatchedStructOrBlockFieldName,
ShaderType shaderType1,
ShaderType shaderType2)
{
std::ostringstream stream;
stream << GetLinkMismatchErrorString(linkError) << "s of " << variableType << " '"
<< variableName;
if (!mismatchedStructOrBlockFieldName.empty())
{
stream << "' member '" << variableName << "." << mismatchedStructOrBlockFieldName;
}
stream << "' differ between " << GetShaderTypeString(shaderType1) << " and "
<< GetShaderTypeString(shaderType2) << " shaders.";
infoLog << stream.str();
}
bool IsActiveInterfaceBlock(const sh::InterfaceBlock &interfaceBlock)
{
// Only 'packed' blocks are allowed to be considered inactive.
return interfaceBlock.active || interfaceBlock.layout != sh::BLOCKLAYOUT_PACKED;
}
// VariableLocation implementation.
VariableLocation::VariableLocation() : arrayIndex(0), index(kUnused), ignored(false) {}
VariableLocation::VariableLocation(unsigned int arrayIndex, unsigned int index)
: arrayIndex(arrayIndex), index(index), ignored(false)
{
ASSERT(arrayIndex != GL_INVALID_INDEX);
}
// SamplerBindings implementation.
SamplerBinding::SamplerBinding(TextureType textureTypeIn,
SamplerFormat formatIn,
size_t elementCount,
bool unreferenced)
: textureType(textureTypeIn),
format(formatIn),
boundTextureUnits(elementCount, 0),
unreferenced(unreferenced)
{}
SamplerBinding::SamplerBinding(const SamplerBinding &other) = default;
SamplerBinding::~SamplerBinding() = default;
// ProgramBindings implementation.
ProgramBindings::ProgramBindings() {}
ProgramBindings::~ProgramBindings() {}
void ProgramBindings::bindLocation(GLuint index, const std::string &name)
{
mBindings[name] = ProgramBinding(index);
// EXT_blend_func_extended spec: "If it specifies the base name of an array,
// it identifies the resources associated with the first element of the array."
//
// Normalize array bindings so that "name" and "name[0]" map to the same entry.
// If this binding is of the form "name[0]", then mark the "name" binding as
// aliased but do not update it yet in case "name" is not actually an array.
size_t nameLengthWithoutArrayIndex;
unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex);
if (arrayIndex == 0)
{
std::string baseName = name.substr(0u, nameLengthWithoutArrayIndex);
auto iter = mBindings.find(baseName);
if (iter != mBindings.end())
{
iter->second.aliased = true;
}
}
}
int ProgramBindings::getBindingByName(const std::string &name) const
{
auto iter = mBindings.find(name);
return (iter != mBindings.end()) ? iter->second.location : -1;
}
int ProgramBindings::getBinding(const sh::VariableWithLocation &variable) const
{
const std::string &name = variable.name;
// Check with the normalized array name if applicable.
if (variable.isArray())
{
size_t nameLengthWithoutArrayIndex;
unsigned int arrayIndex = ParseArrayIndex(name, &nameLengthWithoutArrayIndex);
if (arrayIndex == 0)
{
std::string baseName = name.substr(0u, nameLengthWithoutArrayIndex);
auto iter = mBindings.find(baseName);
// If "name" exists and is not aliased, that means it was modified more
// recently than its "name[0]" form and should be used instead of that.
if (iter != mBindings.end() && !iter->second.aliased)
{
return iter->second.location;
}
}
}
return getBindingByName(name);
}
ProgramBindings::const_iterator ProgramBindings::begin() const
{
return mBindings.begin();
}
ProgramBindings::const_iterator ProgramBindings::end() const
{
return mBindings.end();
}
// ImageBinding implementation.
ImageBinding::ImageBinding(size_t count) : boundImageUnits(count, 0), unreferenced(false) {}
ImageBinding::ImageBinding(GLuint imageUnit, size_t count, bool unreferenced)
: unreferenced(unreferenced)
{
for (size_t index = 0; index < count; ++index)
{
boundImageUnits.push_back(imageUnit + static_cast<GLuint>(index));
}
}
ImageBinding::ImageBinding(const ImageBinding &other) = default;
ImageBinding::~ImageBinding() = default;
// ProgramState implementation.
ProgramState::ProgramState()
: mLabel(),
mAttachedShaders({}),
mTransformFeedbackBufferMode(GL_INTERLEAVED_ATTRIBS),
mMaxActiveAttribLocation(0),
mSamplerUniformRange(0, 0),
mImageUniformRange(0, 0),
mAtomicCounterUniformRange(0, 0),
mBinaryRetrieveableHint(false),
mNumViews(-1),
// [GL_EXT_geometry_shader] Table 20.22
mGeometryShaderInputPrimitiveType(PrimitiveMode::Triangles),
mGeometryShaderOutputPrimitiveType(PrimitiveMode::TriangleStrip),
mGeometryShaderInvocations(1),
mGeometryShaderMaxVertices(0),
mDrawIDLocation(-1),
mActiveSamplerRefCounts{}
{
mComputeShaderLocalSize.fill(1);
mActiveSamplerTypes.fill(TextureType::InvalidEnum);
}
ProgramState::~ProgramState()
{
ASSERT(!hasAttachedShader());
}
const std::string &ProgramState::getLabel()
{
return mLabel;
}
Shader *ProgramState::getAttachedShader(ShaderType shaderType) const
{
ASSERT(shaderType != ShaderType::InvalidEnum);
return mAttachedShaders[shaderType];
}
GLuint ProgramState::getUniformIndexFromName(const std::string &name) const
{
return GetResourceIndexFromName(mUniforms, name);
}
GLuint ProgramState::getBufferVariableIndexFromName(const std::string &name) const
{
return GetResourceIndexFromName(mBufferVariables, name);
}
GLuint ProgramState::getUniformIndexFromLocation(GLint location) const
{
ASSERT(location >= 0 && static_cast<size_t>(location) < mUniformLocations.size());
return mUniformLocations[location].index;
}
Optional<GLuint> ProgramState::getSamplerIndex(GLint location) const
{
GLuint index = getUniformIndexFromLocation(location);
if (!isSamplerUniformIndex(index))
{
return Optional<GLuint>::Invalid();
}
return getSamplerIndexFromUniformIndex(index);
}
bool ProgramState::isSamplerUniformIndex(GLuint index) const
{
return mSamplerUniformRange.contains(index);
}
GLuint ProgramState::getSamplerIndexFromUniformIndex(GLuint uniformIndex) const
{
ASSERT(isSamplerUniformIndex(uniformIndex));
return uniformIndex - mSamplerUniformRange.low();
}
bool ProgramState::isImageUniformIndex(GLuint index) const
{
return mImageUniformRange.contains(index);
}
GLuint ProgramState::getImageIndexFromUniformIndex(GLuint uniformIndex) const
{
ASSERT(isImageUniformIndex(uniformIndex));
return uniformIndex - mImageUniformRange.low();
}
GLuint ProgramState::getAttributeLocation(const std::string &name) const
{
for (const sh::Attribute &attribute : mAttributes)
{
if (attribute.name == name)
{
return attribute.location;
}
}
return static_cast<GLuint>(-1);
}
bool ProgramState::hasAttachedShader() const
{
for (const Shader *shader : mAttachedShaders)
{
if (shader)
{
return true;
}
}
return false;
}
Program::Program(rx::GLImplFactory *factory, ShaderProgramManager *manager, GLuint handle)
: mProgram(factory->createProgram(mState)),
mValidated(false),
mLinked(false),
mLinkResolved(true),
mDeleteStatus(false),
mRefCount(0),
mResourceManager(manager),
mHandle(handle)
{
ASSERT(mProgram);
unlink();
}
Program::~Program()
{
ASSERT(!mProgram);
}
void Program::onDestroy(const Context *context)
{
resolveLink(context);
for (ShaderType shaderType : AllShaderTypes())
{
if (mState.mAttachedShaders[shaderType])
{
mState.mAttachedShaders[shaderType]->release(context);
mState.mAttachedShaders[shaderType] = nullptr;
}
}
mProgram->destroy(context);
ASSERT(!mState.hasAttachedShader());
SafeDelete(mProgram);
delete this;
}
GLuint Program::id() const
{
ASSERT(mLinkResolved);
return mHandle;
}
void Program::setLabel(const Context *context, const std::string &label)
{
ASSERT(mLinkResolved);
mState.mLabel = label;
}
const std::string &Program::getLabel() const
{
ASSERT(mLinkResolved);
return mState.mLabel;
}
void Program::attachShader(Shader *shader)
{
ASSERT(mLinkResolved);
ShaderType shaderType = shader->getType();
ASSERT(shaderType != ShaderType::InvalidEnum);
mState.mAttachedShaders[shaderType] = shader;
mState.mAttachedShaders[shaderType]->addRef();
}
void Program::detachShader(const Context *context, Shader *shader)
{
ASSERT(mLinkResolved);
ShaderType shaderType = shader->getType();
ASSERT(shaderType != ShaderType::InvalidEnum);
ASSERT(mState.mAttachedShaders[shaderType] == shader);
shader->release(context);
mState.mAttachedShaders[shaderType] = nullptr;
}
int Program::getAttachedShadersCount() const
{
ASSERT(mLinkResolved);
int numAttachedShaders = 0;
for (const Shader *shader : mState.mAttachedShaders)
{
if (shader)
{
++numAttachedShaders;
}
}
return numAttachedShaders;
}
const Shader *Program::getAttachedShader(ShaderType shaderType) const
{
ASSERT(mLinkResolved);
return mState.getAttachedShader(shaderType);
}
void Program::bindAttributeLocation(GLuint index, const char *name)
{
ASSERT(mLinkResolved);
mAttributeBindings.bindLocation(index, name);
}
void Program::bindUniformLocation(GLuint index, const char *name)
{
ASSERT(mLinkResolved);
mUniformLocationBindings.bindLocation(index, name);
}
void Program::bindFragmentInputLocation(GLint index, const char *name)
{
ASSERT(mLinkResolved);
mFragmentInputBindings.bindLocation(index, name);
}
void Program::bindFragmentOutputLocation(GLuint index, const char *name)
{
mFragmentOutputLocations.bindLocation(index, name);
}
void Program::bindFragmentOutputIndex(GLuint index, const char *name)
{
mFragmentOutputIndexes.bindLocation(index, name);
}
BindingInfo Program::getFragmentInputBindingInfo(GLint index) const
{
ASSERT(mLinkResolved);
BindingInfo ret;
ret.type = GL_NONE;
ret.valid = false;
Shader *fragmentShader = mState.getAttachedShader(ShaderType::Fragment);
ASSERT(fragmentShader);
// Find the actual fragment shader varying we're interested in
const std::vector<sh::Varying> &inputs = fragmentShader->getInputVaryings();
for (const auto &binding : mFragmentInputBindings)
{
if (binding.second.location != static_cast<GLuint>(index))
continue;
ret.valid = true;
size_t nameLengthWithoutArrayIndex;
unsigned int arrayIndex = ParseArrayIndex(binding.first, &nameLengthWithoutArrayIndex);
for (const auto &in : inputs)
{
if (in.name.length() == nameLengthWithoutArrayIndex &&
angle::BeginsWith(in.name, binding.first, nameLengthWithoutArrayIndex))
{
if (in.isArray())
{
// The client wants to bind either "name" or "name[0]".
// GL ES 3.1 spec refers to active array names with language such as:
// "if the string identifies the base name of an active array, where the
// string would exactly match the name of the variable if the suffix "[0]"
// were appended to the string".
if (arrayIndex == GL_INVALID_INDEX)
arrayIndex = 0;
ret.name = in.mappedName + "[" + ToString(arrayIndex) + "]";
}
else
{
ret.name = in.mappedName;
}
ret.type = in.type;
return ret;
}
}
}
return ret;
}
void Program::pathFragmentInputGen(GLint index,
GLenum genMode,
GLint components,
const GLfloat *coeffs)
{
ASSERT(mLinkResolved);
// If the location is -1 then the command is silently ignored
if (index == -1)
return;
const auto &binding = getFragmentInputBindingInfo(index);
// If the input doesn't exist then then the command is silently ignored
// This could happen through optimization for example, the shader translator
// decides that a variable is not actually being used and optimizes it away.
if (binding.name.empty())
return;
mProgram->setPathFragmentInputGen(binding.name, genMode, components, coeffs);
}
// The attached shaders are checked for linking errors by matching up their variables.
// Uniform, input and output variables get collected.
// The code gets compiled into binaries.
angle::Result Program::link(const Context *context)
{
ASSERT(mLinkResolved);
const auto &data = context->getState();
auto *platform = ANGLEPlatformCurrent();
double startTime = platform->currentTime(platform);
unlink();
mInfoLog.reset();
// Validate we have properly attached shaders before checking the cache.
if (!linkValidateShaders(mInfoLog))
{
return angle::Result::Continue;
}
egl::BlobCache::Key programHash = {0};
MemoryProgramCache *cache = context->getMemoryProgramCache();
if (cache)
{
angle::Result cacheResult = cache->getProgram(context, this, &programHash);
ANGLE_TRY(cacheResult);
// Check explicitly for Continue, Incomplete means a cache miss
if (cacheResult == angle::Result::Continue)
{
// Succeeded in loading the binaries in the front-end, back end may still be loading
// asynchronously
double delta = platform->currentTime(platform) - startTime;
int us = static_cast<int>(delta * 1000000.0);
ANGLE_HISTOGRAM_COUNTS("GPU.ANGLE.ProgramCache.ProgramCacheHitTimeUS", us);
return angle::Result::Continue;
}
}
// Cache load failed, fall through to normal linking.
unlink();
// Re-link shaders after the unlink call.
ASSERT(linkValidateShaders(mInfoLog));
std::unique_ptr<ProgramLinkedResources> resources;
if (mState.mAttachedShaders[ShaderType::Compute])
{
resources.reset(new ProgramLinkedResources(
0, PackMode::ANGLE_RELAXED, &mState.mUniformBlocks, &mState.mUniforms,
&mState.mShaderStorageBlocks, &mState.mBufferVariables, &mState.mAtomicCounterBuffers));
GLuint combinedImageUniforms = 0u;
if (!linkUniforms(context->getCaps(), mInfoLog, mUniformLocationBindings,
&combinedImageUniforms, &resources->unusedUniforms))
{
return angle::Result::Continue;
}
GLuint combinedShaderStorageBlocks = 0u;
if (!linkInterfaceBlocks(context->getCaps(), context->getClientVersion(),
context->getExtensions().webglCompatibility, mInfoLog,
&combinedShaderStorageBlocks))
{
return angle::Result::Continue;
}
// [OpenGL ES 3.1] Chapter 8.22 Page 203:
// A link error will be generated if the sum of the number of active image uniforms used in
// all shaders, the number of active shader storage blocks, and the number of active
// fragment shader outputs exceeds the implementation-dependent value of
// MAX_COMBINED_SHADER_OUTPUT_RESOURCES.
if (combinedImageUniforms + combinedShaderStorageBlocks >
context->getCaps().maxCombinedShaderOutputResources)
{
mInfoLog
<< "The sum of the number of active image uniforms, active shader storage blocks "
"and active fragment shader outputs exceeds "
"MAX_COMBINED_SHADER_OUTPUT_RESOURCES ("
<< context->getCaps().maxCombinedShaderOutputResources << ")";
return angle::Result::Continue;
}
InitUniformBlockLinker(mState, &resources->uniformBlockLinker);
InitShaderStorageBlockLinker(mState, &resources->shaderStorageBlockLinker);
}
else
{
// Map the varyings to the register file
// In WebGL, we use a slightly different handling for packing variables.
gl::PackMode packMode = PackMode::ANGLE_RELAXED;
if (data.getLimitations().noFlexibleVaryingPacking)
{
// D3D9 pack mode is strictly more strict than WebGL, so takes priority.
packMode = PackMode::ANGLE_NON_CONFORMANT_D3D9;
}
else if (data.getExtensions().webglCompatibility)
{
packMode = PackMode::WEBGL_STRICT;
}
resources.reset(new ProgramLinkedResources(
data.getCaps().maxVaryingVectors, packMode, &mState.mUniformBlocks, &mState.mUniforms,
&mState.mShaderStorageBlocks, &mState.mBufferVariables, &mState.mAtomicCounterBuffers));
if (!linkAttributes(context->getCaps(), mInfoLog,
context->getExtensions().webglCompatibility))
{
return angle::Result::Continue;
}
if (!linkVaryings(mInfoLog))
{
return angle::Result::Continue;
}
GLuint combinedImageUniforms = 0u;
if (!linkUniforms(context->getCaps(), mInfoLog, mUniformLocationBindings,
&combinedImageUniforms, &resources->unusedUniforms))
{
return angle::Result::Continue;
}
GLuint combinedShaderStorageBlocks = 0u;
if (!linkInterfaceBlocks(context->getCaps(), context->getClientVersion(),
context->getExtensions().webglCompatibility, mInfoLog,
&combinedShaderStorageBlocks))
{
return angle::Result::Continue;
}
if (!linkValidateGlobalNames(mInfoLog))
{
return angle::Result::Continue;
}
if (!linkOutputVariables(context->getCaps(), context->getExtensions(),
context->getClientVersion(), combinedImageUniforms,
combinedShaderStorageBlocks))
{
return angle::Result::Continue;
}
const auto &mergedVaryings = getMergedVaryings();
ASSERT(mState.mAttachedShaders[ShaderType::Vertex]);
mState.mNumViews = mState.mAttachedShaders[ShaderType::Vertex]->getNumViews();
InitUniformBlockLinker(mState, &resources->uniformBlockLinker);
InitShaderStorageBlockLinker(mState, &resources->shaderStorageBlockLinker);
if (!linkValidateTransformFeedback(context->getClientVersion(), mInfoLog, mergedVaryings,
context->getCaps()))
{
return angle::Result::Continue;
}
if (!resources->varyingPacking.collectAndPackUserVaryings(
mInfoLog, mergedVaryings, mState.getTransformFeedbackVaryingNames()))
{
return angle::Result::Continue;
}
gatherTransformFeedbackVaryings(mergedVaryings);
}
mLinkingState.reset(new LinkingState());
mLinkingState->context = context;
mLinkingState->linkingFromBinary = false;
mLinkingState->programHash = programHash;
mLinkingState->linkEvent = mProgram->link(context, *resources, mInfoLog);
mLinkingState->resources = std::move(resources);
mLinkResolved = false;
return angle::Result::Continue;
}
bool Program::isLinking() const
{
return (mLinkingState.get() && mLinkingState->linkEvent->isLinking());
}
void Program::resolveLinkImpl(const Context *context)
{
ASSERT(mLinkingState.get());
angle::Result result = mLinkingState->linkEvent->wait(context);
mLinked = result == angle::Result::Continue;
mLinkResolved = true;
std::unique_ptr<LinkingState> linkingState = std::move(mLinkingState);
if (!mLinked)
{
return;
}
if (linkingState->linkingFromBinary)
{
// All internal Program state is already loaded from the binary.
return;
}
initInterfaceBlockBindings();
// According to GLES 3.0/3.1 spec for LinkProgram and UseProgram,
// Only successfully linked program can replace the executables.
ASSERT(mLinked);
updateLinkedShaderStages();
// Mark implementation-specific unreferenced uniforms as ignored.
mProgram->markUnusedUniformLocations(&mState.mUniformLocations, &mState.mSamplerBindings,
&mState.mImageBindings);
// Must be called after markUnusedUniformLocations.
postResolveLink(context);
// TODO(syoussefi): this might need to be moved to postResolveLink() so it will be called from
// deserialize() as well. http://anglebug.com/3089
setUniformValuesFromBindingQualifiers();
// Save to the program cache.
auto *cache = linkingState->context->getMemoryProgramCache();
if (cache && (mState.mLinkedTransformFeedbackVaryings.empty() ||
!linkingState->context->getWorkarounds()
.disableProgramCachingForTransformFeedback.enabled))
{
cache->putProgram(linkingState->programHash, linkingState->context, this);
}
}
void Program::updateLinkedShaderStages()
{
mState.mLinkedShaderStages.reset();
for (const Shader *shader : mState.mAttachedShaders)
{
if (shader)
{
mState.mLinkedShaderStages.set(shader->getType());
}
}
}
void ProgramState::updateTransformFeedbackStrides()
{
if (mTransformFeedbackBufferMode == GL_INTERLEAVED_ATTRIBS)
{
mTransformFeedbackStrides.resize(1);
size_t totalSize = 0;
for (const TransformFeedbackVarying &varying : mLinkedTransformFeedbackVaryings)
{
totalSize += varying.size() * VariableExternalSize(varying.type);
}
mTransformFeedbackStrides[0] = static_cast<GLsizei>(totalSize);
}
else
{
mTransformFeedbackStrides.resize(mLinkedTransformFeedbackVaryings.size());
for (size_t i = 0; i < mLinkedTransformFeedbackVaryings.size(); i++)
{
TransformFeedbackVarying &varying = mLinkedTransformFeedbackVaryings[i];
mTransformFeedbackStrides[i] =
static_cast<GLsizei>(varying.size() * VariableExternalSize(varying.type));
}
}
}
void ProgramState::updateActiveSamplers()
{
mActiveSamplerRefCounts.fill(0);
for (SamplerBinding &samplerBinding : mSamplerBindings)
{
if (samplerBinding.unreferenced)
continue;
for (GLint textureUnit : samplerBinding.boundTextureUnits)
{
if (++mActiveSamplerRefCounts[textureUnit] == 1)
{
mActiveSamplerTypes[textureUnit] = samplerBinding.textureType;
mActiveSamplerFormats[textureUnit] = samplerBinding.format;
}
else
{
if (mActiveSamplerTypes[textureUnit] != samplerBinding.textureType)
{
mActiveSamplerTypes[textureUnit] = TextureType::InvalidEnum;
}
if (mActiveSamplerFormats[textureUnit] != samplerBinding.format)
{
mActiveSamplerFormats[textureUnit] = SamplerFormat::InvalidEnum;
}
}
mActiveSamplersMask.set(textureUnit);
}
}
}
void ProgramState::updateActiveImages()
{
for (ImageBinding &imageBinding : mImageBindings)
{
if (imageBinding.unreferenced)
continue;
for (GLint imageUnit : imageBinding.boundImageUnits)
{
mActiveImagesMask.set(imageUnit);
}
}
}
// Returns the program object to an unlinked state, before re-linking, or at destruction
void Program::unlink()
{
mState.mAttributes.clear();
mState.mAttributesTypeMask.reset();
mState.mAttributesMask.reset();
mState.mActiveAttribLocationsMask.reset();
mState.mMaxActiveAttribLocation = 0;
mState.mLinkedTransformFeedbackVaryings.clear();
mState.mUniforms.clear();
mState.mUniformLocations.clear();
mState.mUniformBlocks.clear();
mState.mActiveUniformBlockBindings.reset();
mState.mAtomicCounterBuffers.clear();
mState.mOutputVariables.clear();
mState.mOutputLocations.clear();
mState.mSecondaryOutputLocations.clear();
mState.mOutputVariableTypes.clear();
mState.mDrawBufferTypeMask.reset();
mState.mActiveOutputVariables.reset();
mState.mComputeShaderLocalSize.fill(1);
mState.mSamplerBindings.clear();
mState.mImageBindings.clear();
mState.mActiveImagesMask.reset();
mState.mNumViews = -1;
mState.mGeometryShaderInputPrimitiveType = PrimitiveMode::Triangles;
mState.mGeometryShaderOutputPrimitiveType = PrimitiveMode::TriangleStrip;
mState.mGeometryShaderInvocations = 1;
mState.mGeometryShaderMaxVertices = 0;
mState.mDrawIDLocation = -1;
mValidated = false;
mLinked = false;
mInfoLog.reset();
}
angle::Result Program::loadBinary(const Context *context,
GLenum binaryFormat,
const void *binary,
GLsizei length)
{
ASSERT(mLinkResolved);
unlink();
#if ANGLE_PROGRAM_BINARY_LOAD != ANGLE_ENABLED
return angle::Result::Continue;
#else
ASSERT(binaryFormat == GL_PROGRAM_BINARY_ANGLE);
if (binaryFormat != GL_PROGRAM_BINARY_ANGLE)
{
mInfoLog << "Invalid program binary format.";
return angle::Result::Continue;
}
BinaryInputStream stream(binary, length);
ANGLE_TRY(deserialize(context, stream, mInfoLog));
// Currently we require the full shader text to compute the program hash.
// We could also store the binary in the internal program cache.
for (size_t uniformBlockIndex = 0; uniformBlockIndex < mState.mUniformBlocks.size();
++uniformBlockIndex)
{
mDirtyBits.set(uniformBlockIndex);
}
mLinkingState.reset(new LinkingState());
mLinkingState->context = context;
mLinkingState->linkingFromBinary = true;
mLinkingState->linkEvent = mProgram->load(context, &stream, mInfoLog);
mLinkResolved = false;
return angle::Result::Continue;
#endif // #if ANGLE_PROGRAM_BINARY_LOAD == ANGLE_ENABLED
}
angle::Result Program::saveBinary(Context *context,
GLenum *binaryFormat,
void *binary,
GLsizei bufSize,
GLsizei *length) const
{
ASSERT(mLinkResolved);
if (binaryFormat)
{
*binaryFormat = GL_PROGRAM_BINARY_ANGLE;
}
angle::MemoryBuffer memoryBuf;
serialize(context, &memoryBuf);
GLsizei streamLength = static_cast<GLsizei>(memoryBuf.size());
const uint8_t *streamState = memoryBuf.data();
if (streamLength > bufSize)
{
if (length)
{
*length = 0;
}
// TODO: This should be moved to the validation layer but computing the size of the binary
// before saving it causes the save to happen twice. It may be possible to write the binary
// to a separate buffer, validate sizes and then copy it.
ANGLE_CHECK(context, false, "Insufficient buffer size", GL_INVALID_OPERATION);
}
if (binary)
{
char *ptr = reinterpret_cast<char *>(binary);
memcpy(ptr, streamState, streamLength);
ptr += streamLength;
ASSERT(ptr - streamLength == binary);
}
if (length)
{
*length = streamLength;
}
return angle::Result::Continue;
}
GLint Program::getBinaryLength(Context *context) const
{
ASSERT(mLinkResolved);
if (!mLinked)
{
return 0;
}
GLint length;
angle::Result result =
saveBinary(context, nullptr, nullptr, std::numeric_limits<GLint>::max(), &length);
if (result != angle::Result::Continue)
{
return 0;
}
return length;
}
void Program::setBinaryRetrievableHint(bool retrievable)
{
ASSERT(mLinkResolved);
// TODO(jmadill) : replace with dirty bits
mProgram->setBinaryRetrievableHint(retrievable);
mState.mBinaryRetrieveableHint = retrievable;
}
bool Program::getBinaryRetrievableHint() const
{
ASSERT(mLinkResolved);
return mState.mBinaryRetrieveableHint;
}
void Program::setSeparable(bool separable)
{
ASSERT(mLinkResolved);
// TODO(yunchao) : replace with dirty bits
if (mState.mSeparable != separable)
{
mProgram->setSeparable(separable);
mState.mSeparable = separable;
}
}
bool Program::isSeparable() const
{
ASSERT(mLinkResolved);
return mState.mSeparable;
}
void Program::deleteSelf(const Context *context)
{
ASSERT(mRefCount == 0 && mDeleteStatus);
mResourceManager->deleteProgram(context, mHandle);
}
unsigned int Program::getRefCount() const
{
return mRefCount;
}
int Program::getInfoLogLength() const
{
ASSERT(mLinkResolved);
return static_cast<int>(mInfoLog.getLength());
}
void Program::getInfoLog(GLsizei bufSize, GLsizei *length, char *infoLog) const
{
ASSERT(mLinkResolved);
return mInfoLog.getLog(bufSize, length, infoLog);
}
void Program::getAttachedShaders(GLsizei maxCount, GLsizei *count, GLuint *shaders) const
{
ASSERT(mLinkResolved);
int total = 0;
for (const Shader *shader : mState.mAttachedShaders)
{
if (shader && (total < maxCount))
{
shaders[total] = shader->getHandle();
++total;
}
}
if (count)
{
*count = total;
}
}
GLuint Program::getAttributeLocation(const std::string &name) const
{
ASSERT(mLinkResolved);
return mState.getAttributeLocation(name);
}
bool Program::isAttribLocationActive(size_t attribLocation) const
{
ASSERT(mLinkResolved);
ASSERT(attribLocation < mState.mActiveAttribLocationsMask.size());
return mState.mActiveAttribLocationsMask[attribLocation];
}
void Program::getActiveAttribute(GLuint index,
GLsizei bufsize,
GLsizei *length,
GLint *size,
GLenum *type,
GLchar *name) const
{
ASSERT(mLinkResolved);
if (!mLinked)
{
if (bufsize > 0)
{
name[0] = '\0';
}
if (length)
{
*length = 0;
}
*type = GL_NONE;
*size = 1;
return;
}
ASSERT(index < mState.mAttributes.size());
const sh::Attribute &attrib = mState.mAttributes[index];
if (bufsize > 0)
{
CopyStringToBuffer(name, attrib.name, bufsize, length);
}
// Always a single 'type' instance
*size = 1;
*type = attrib.type;
}
GLint Program::getActiveAttributeCount() const
{
ASSERT(mLinkResolved);
if (!mLinked)
{
return 0;
}
return static_cast<GLint>(mState.mAttributes.size());
}
GLint Program::getActiveAttributeMaxLength() const
{
ASSERT(mLinkResolved);
if (!mLinked)
{
return 0;
}
size_t maxLength = 0;
for (const sh::Attribute &attrib : mState.mAttributes)
{
maxLength = std::max(attrib.name.length() + 1, maxLength);
}
return static_cast<GLint>(maxLength);
}
const std::vector<sh::Attribute> &Program::getAttributes() const
{
ASSERT(mLinkResolved);
return mState.mAttributes;
}
const std::vector<SamplerBinding> &Program::getSamplerBindings() const
{
ASSERT(mLinkResolved);
return mState.mSamplerBindings;
}
const sh::WorkGroupSize &Program::getComputeShaderLocalSize() const
{
ASSERT(mLinkResolved);
return mState.mComputeShaderLocalSize;
}
PrimitiveMode Program::getGeometryShaderInputPrimitiveType() const
{
ASSERT(mLinkResolved);
return mState.mGeometryShaderInputPrimitiveType;
}
PrimitiveMode Program::getGeometryShaderOutputPrimitiveType() const
{
ASSERT(mLinkResolved);
return mState.mGeometryShaderOutputPrimitiveType;
}
GLint Program::getGeometryShaderInvocations() const
{
ASSERT(mLinkResolved);
return mState.mGeometryShaderInvocations;
}
GLint Program::getGeometryShaderMaxVertices() const
{
ASSERT(mLinkResolved);
return mState.mGeometryShaderMaxVertices;
}
GLuint Program::getInputResourceIndex(const GLchar *name) const
{
ASSERT(mLinkResolved);
return GetResourceIndexFromName(mState.mAttributes, std::string(name));
}
GLuint Program::getOutputResourceIndex(const GLchar *name) const
{
ASSERT(mLinkResolved);
return GetResourceIndexFromName(mState.mOutputVariables, std::string(name));
}
size_t Program::getOutputResourceCount() const
{
ASSERT(mLinkResolved);
return (mLinked ? mState.mOutputVariables.size() : 0);
}
const std::vector<GLenum> &Program::getOutputVariableTypes() const
{
ASSERT(mLinkResolved);
return mState.mOutputVariableTypes;
}
template <typename T>
void Program::getResourceName(GLuint index,
const std::vector<T> &resources,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
if (length)
{
*length = 0;
}
if (!mLinked)
{
if (bufSize > 0)
{
name[0] = '\0';
}
return;
}
ASSERT(index < resources.size());
const auto &resource = resources[index];
if (bufSize > 0)
{
CopyStringToBuffer(name, resource.name, bufSize, length);
}
}
void Program::getInputResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
ASSERT(mLinkResolved);
getResourceName(index, mState.mAttributes, bufSize, length, name);
}
void Program::getOutputResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
ASSERT(mLinkResolved);
getResourceName(index, mState.mOutputVariables, bufSize, length, name);
}
void Program::getUniformResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
ASSERT(mLinkResolved);
getResourceName(index, mState.mUniforms, bufSize, length, name);
}
void Program::getBufferVariableResourceName(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLchar *name) const
{
ASSERT(mLinkResolved);
getResourceName(index, mState.mBufferVariables, bufSize, length, name);
}
const sh::Attribute &Program::getInputResource(GLuint index) const
{
ASSERT(mLinkResolved);
ASSERT(index < mState.mAttributes.size());
return mState.mAttributes[index];
}
const sh::OutputVariable &Program::getOutputResource(GLuint index) const
{
ASSERT(mLinkResolved);
ASSERT(index < mState.mOutputVariables.size());
return mState.mOutputVariables[index];
}
const ProgramBindings &Program::getAttributeBindings() const
{
ASSERT(mLinkResolved);
return mAttributeBindings;
}
const ProgramBindings &Program::getUniformLocationBindings() const
{
ASSERT(mLinkResolved);
return mUniformLocationBindings;
}
const ProgramBindings &Program::getFragmentInputBindings() const
{
ASSERT(mLinkResolved);
return mFragmentInputBindings;
}
ComponentTypeMask Program::getDrawBufferTypeMask() const
{
ASSERT(mLinkResolved);
return mState.mDrawBufferTypeMask;
}
ComponentTypeMask Program::getAttributesTypeMask() const
{
ASSERT(mLinkResolved);
return mState.mAttributesTypeMask;
}
AttributesMask Program::getAttributesMask() const
{
ASSERT(mLinkResolved);
return mState.mAttributesMask;
}
const std::vector<GLsizei> &Program::getTransformFeedbackStrides() const
{
ASSERT(mLinkResolved);
return mState.mTransformFeedbackStrides;
}
GLint Program::getFragDataLocation(const std::string &name) const
{
ASSERT(mLinkResolved);
GLint primaryLocation =
GetVariableLocation(mState.mOutputVariables, mState.mOutputLocations, name);
if (primaryLocation != -1)
{
return primaryLocation;
}
return GetVariableLocation(mState.mOutputVariables, mState.mSecondaryOutputLocations, name);
}
GLint Program::getFragDataIndex(const std::string &name) const
{
ASSERT(mLinkResolved);
if (GetVariableLocation(mState.mOutputVariables, mState.mOutputLocations, name) != -1)
{
return 0;
}
if (GetVariableLocation(mState.mOutputVariables, mState.mSecondaryOutputLocations, name) != -1)
{
return 1;
}
return -1;
}
void Program::getActiveUniform(GLuint index,
GLsizei bufsize,
GLsizei *length,
GLint *size,
GLenum *type,
GLchar *name) const
{
ASSERT(mLinkResolved);
if (mLinked)
{
// index must be smaller than getActiveUniformCount()
ASSERT(index < mState.mUniforms.size());
const LinkedUniform &uniform = mState.mUniforms[index];
if (bufsize > 0)
{
std::string string = uniform.name;
CopyStringToBuffer(name, string, bufsize, length);
}
*size = clampCast<GLint>(uniform.getBasicTypeElementCount());
*type = uniform.type;
}
else
{
if (bufsize > 0)
{
name[0] = '\0';
}
if (length)
{
*length = 0;
}
*size = 0;
*type = GL_NONE;
}
}
GLint Program::getActiveUniformCount() const
{
ASSERT(mLinkResolved);
if (mLinked)
{
return static_cast<GLint>(mState.mUniforms.size());
}
else
{
return 0;
}
}
size_t Program::getActiveBufferVariableCount() const
{
ASSERT(mLinkResolved);
return mLinked ? mState.mBufferVariables.size() : 0;
}
GLint Program::getActiveUniformMaxLength() const
{
ASSERT(mLinkResolved);
size_t maxLength = 0;
if (mLinked)
{
for (const LinkedUniform &uniform : mState.mUniforms)
{
if (!uniform.name.empty())
{
size_t length = uniform.name.length() + 1u;
if (uniform.isArray())
{
length += 3; // Counting in "[0]".
}
maxLength = std::max(length, maxLength);
}
}
}
return static_cast<GLint>(maxLength);
}
bool Program::isValidUniformLocation(GLint location) const
{
ASSERT(mLinkResolved);
ASSERT(angle::IsValueInRangeForNumericType<GLint>(mState.mUniformLocations.size()));
return (location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size() &&
mState.mUniformLocations[static_cast<size_t>(location)].used());
}
const LinkedUniform &Program::getUniformByLocation(GLint location) const
{
ASSERT(mLinkResolved);
ASSERT(location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size());
return mState.mUniforms[mState.getUniformIndexFromLocation(location)];
}
const VariableLocation &Program::getUniformLocation(GLint location) const
{
ASSERT(mLinkResolved);
ASSERT(location >= 0 && static_cast<size_t>(location) < mState.mUniformLocations.size());
return mState.mUniformLocations[location];
}
const BufferVariable &Program::getBufferVariableByIndex(GLuint index) const
{
ASSERT(mLinkResolved);
ASSERT(index < static_cast<size_t>(mState.mBufferVariables.size()));
return mState.mBufferVariables[index];
}
GLint Program::getUniformLocation(const std::string &name) const
{
ASSERT(mLinkResolved);
return GetVariableLocation(mState.mUniforms, mState.mUniformLocations, name);
}
GLuint Program::getUniformIndex(const std::string &name) const
{
ASSERT(mLinkResolved);
return mState.getUniformIndexFromName(name);
}
void Program::setUniform1fv(GLint location, GLsizei count, const GLfloat *v)
{
ASSERT(mLinkResolved);
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v);
mProgram->setUniform1fv(location, clampedCount, v);
}
void Program::setUniform2fv(GLint location, GLsizei count, const GLfloat *v)
{
ASSERT(mLinkResolved);
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v);
mProgram->setUniform2fv(location, clampedCount, v);
}
void Program::setUniform3fv(GLint location, GLsizei count, const GLfloat *v)
{
ASSERT(mLinkResolved);
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v);
mProgram->setUniform3fv(location, clampedCount, v);
}
void Program::setUniform4fv(GLint location, GLsizei count, const GLfloat *v)
{
ASSERT(mLinkResolved);
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v);
mProgram->setUniform4fv(location, clampedCount, v);
}
void Program::setUniform1iv(Context *context, GLint location, GLsizei count, const GLint *v)
{
ASSERT(mLinkResolved);
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v);
mProgram->setUniform1iv(location, clampedCount, v);
if (mState.isSamplerUniformIndex(locationInfo.index))
{
updateSamplerUniform(context, locationInfo, clampedCount, v);
}
}
void Program::setUniform2iv(GLint location, GLsizei count, const GLint *v)
{
ASSERT(mLinkResolved);
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v);
mProgram->setUniform2iv(location, clampedCount, v);
}
void Program::setUniform3iv(GLint location, GLsizei count, const GLint *v)
{
ASSERT(mLinkResolved);
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v);
mProgram->setUniform3iv(location, clampedCount, v);
}
void Program::setUniform4iv(GLint location, GLsizei count, const GLint *v)
{
ASSERT(mLinkResolved);
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v);
mProgram->setUniform4iv(location, clampedCount, v);
}
void Program::setUniform1uiv(GLint location, GLsizei count, const GLuint *v)
{
ASSERT(mLinkResolved);
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 1, v);
mProgram->setUniform1uiv(location, clampedCount, v);
}
void Program::setUniform2uiv(GLint location, GLsizei count, const GLuint *v)
{
ASSERT(mLinkResolved);
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 2, v);
mProgram->setUniform2uiv(location, clampedCount, v);
}
void Program::setUniform3uiv(GLint location, GLsizei count, const GLuint *v)
{
ASSERT(mLinkResolved);
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 3, v);
mProgram->setUniform3uiv(location, clampedCount, v);
}
void Program::setUniform4uiv(GLint location, GLsizei count, const GLuint *v)
{
ASSERT(mLinkResolved);
const VariableLocation &locationInfo = mState.mUniformLocations[location];
GLsizei clampedCount = clampUniformCount(locationInfo, count, 4, v);
mProgram->setUniform4uiv(location, clampedCount, v);
}
void Program::setUniformMatrix2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(mLinkResolved);
GLsizei clampedCount = clampMatrixUniformCount<2, 2>(location, count, transpose, v);
mProgram->setUniformMatrix2fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(mLinkResolved);
GLsizei clampedCount = clampMatrixUniformCount<3, 3>(location, count, transpose, v);
mProgram->setUniformMatrix3fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(mLinkResolved);
GLsizei clampedCount = clampMatrixUniformCount<4, 4>(location, count, transpose, v);
mProgram->setUniformMatrix4fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix2x3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(mLinkResolved);
GLsizei clampedCount = clampMatrixUniformCount<2, 3>(location, count, transpose, v);
mProgram->setUniformMatrix2x3fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix2x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(mLinkResolved);
GLsizei clampedCount = clampMatrixUniformCount<2, 4>(location, count, transpose, v);
mProgram->setUniformMatrix2x4fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix3x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(mLinkResolved);
GLsizei clampedCount = clampMatrixUniformCount<3, 2>(location, count, transpose, v);
mProgram->setUniformMatrix3x2fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix3x4fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(mLinkResolved);
GLsizei clampedCount = clampMatrixUniformCount<3, 4>(location, count, transpose, v);
mProgram->setUniformMatrix3x4fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix4x2fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(mLinkResolved);
GLsizei clampedCount = clampMatrixUniformCount<4, 2>(location, count, transpose, v);
mProgram->setUniformMatrix4x2fv(location, clampedCount, transpose, v);
}
void Program::setUniformMatrix4x3fv(GLint location,
GLsizei count,
GLboolean transpose,
const GLfloat *v)
{
ASSERT(mLinkResolved);
GLsizei clampedCount = clampMatrixUniformCount<4, 3>(location, count, transpose, v);
mProgram->setUniformMatrix4x3fv(location, clampedCount, transpose, v);
}
GLuint Program::getSamplerUniformBinding(const VariableLocation &uniformLocation) const
{
ASSERT(mLinkResolved);
GLuint samplerIndex = mState.getSamplerIndexFromUniformIndex(uniformLocation.index);
const std::vector<GLuint> &boundTextureUnits =
mState.mSamplerBindings[samplerIndex].boundTextureUnits;
return boundTextureUnits[uniformLocation.arrayIndex];
}
void Program::getUniformfv(const Context *context, GLint location, GLfloat *v) const
{
ASSERT(mLinkResolved);
const VariableLocation &uniformLocation = mState.getUniformLocations()[location];
const LinkedUniform &uniform = mState.getUniforms()[uniformLocation.index];
if (uniform.isSampler())
{
*v = static_cast<GLfloat>(getSamplerUniformBinding(uniformLocation));
return;
}
const GLenum nativeType = gl::VariableComponentType(uniform.type);
if (nativeType == GL_FLOAT)
{
mProgram->getUniformfv(context, location, v);
}
else
{
getUniformInternal(context, v, location, nativeType, VariableComponentCount(uniform.type));
}
}
void Program::getUniformiv(const Context *context, GLint location, GLint *v) const
{
ASSERT(mLinkResolved);
const VariableLocation &uniformLocation = mState.getUniformLocations()[location];
const LinkedUniform &uniform = mState.getUniforms()[uniformLocation.index];
if (uniform.isSampler())
{
*v = static_cast<GLint>(getSamplerUniformBinding(uniformLocation));
return;
}
const GLenum nativeType = gl::VariableComponentType(uniform.type);
if (nativeType == GL_INT || nativeType == GL_BOOL)
{
mProgram->getUniformiv(context, location, v);
}
else
{
getUniformInternal(context, v, location, nativeType, VariableComponentCount(uniform.type));
}
}
void Program::getUniformuiv(const Context *context, GLint location, GLuint *v) const
{
ASSERT(mLinkResolved);
const VariableLocation &uniformLocation = mState.getUniformLocations()[location];
const LinkedUniform &uniform = mState.getUniforms()[uniformLocation.index];
if (uniform.isSampler())
{
*v = getSamplerUniformBinding(uniformLocation);
return;
}
const GLenum nativeType = VariableComponentType(uniform.type);
if (nativeType == GL_UNSIGNED_INT)
{
mProgram->getUniformuiv(context, location, v);
}
else
{
getUniformInternal(context, v, location, nativeType, VariableComponentCount(uniform.type));
}
}
void Program::flagForDeletion()
{
ASSERT(mLinkResolved);
mDeleteStatus = true;
}
bool Program::isFlaggedForDeletion() const
{
ASSERT(mLinkResolved);
return mDeleteStatus;
}
void Program::validate(const Caps &caps)
{
ASSERT(mLinkResolved);
mInfoLog.reset();
if (mLinked)
{
mValidated = ConvertToBool(mProgram->validate(caps, &mInfoLog));
}
else
{
mInfoLog << "Program has not been successfully linked.";
}
}
bool Program::validateSamplersImpl(InfoLog *infoLog, const Caps &caps)
{
ASSERT(mLinkResolved);
// if any two active samplers in a program are of different types, but refer to the same
// texture image unit, and this is the current program, then ValidateProgram will fail, and
// DrawArrays and DrawElements will issue the INVALID_OPERATION error.
for (size_t textureUnit : mState.mActiveSamplersMask)
{
if (mState.mActiveSamplerTypes[textureUnit] == TextureType::InvalidEnum)
{
if (infoLog)
{
(*infoLog) << "Samplers of conflicting types refer to the same texture "
"image unit ("
<< textureUnit << ").";
}
mCachedValidateSamplersResult = false;
return false;
}
}
mCachedValidateSamplersResult = true;
return true;
}
bool Program::isValidated() const
{
ASSERT(mLinkResolved);
return mValidated;
}
void Program::getActiveUniformBlockName(const GLuint blockIndex,
GLsizei bufSize,
GLsizei *length,
GLchar *blockName) const
{
ASSERT(mLinkResolved);
GetInterfaceBlockName(blockIndex, mState.mUniformBlocks, bufSize, length, blockName);
}
void Program::getActiveShaderStorageBlockName(const GLuint blockIndex,
GLsizei bufSize,
GLsizei *length,
GLchar *blockName) const
{
ASSERT(mLinkResolved);
GetInterfaceBlockName(blockIndex, mState.mShaderStorageBlocks, bufSize, length, blockName);
}
template <typename T>
GLint Program::getActiveInterfaceBlockMaxNameLength(const std::vector<T> &resources) const
{
int maxLength = 0;
if (mLinked)
{
for (const T &resource : resources)
{
if (!resource.name.empty())
{
int length = static_cast<int>(resource.nameWithArrayIndex().length());
maxLength = std::max(length + 1, maxLength);
}
}
}
return maxLength;
}
GLint Program::getActiveUniformBlockMaxNameLength() const
{
ASSERT(mLinkResolved);
return getActiveInterfaceBlockMaxNameLength(mState.mUniformBlocks);
}
GLint Program::getActiveShaderStorageBlockMaxNameLength() const
{
ASSERT(mLinkResolved);
return getActiveInterfaceBlockMaxNameLength(mState.mShaderStorageBlocks);
}
GLuint Program::getUniformBlockIndex(const std::string &name) const
{
ASSERT(mLinkResolved);
return GetInterfaceBlockIndex(mState.mUniformBlocks, name);
}
GLuint Program::getShaderStorageBlockIndex(const std::string &name) const
{
ASSERT(mLinkResolved);
return GetInterfaceBlockIndex(mState.mShaderStorageBlocks, name);
}
const InterfaceBlock &Program::getUniformBlockByIndex(GLuint index) const
{
ASSERT(mLinkResolved);
ASSERT(index < static_cast<GLuint>(mState.mUniformBlocks.size()));
return mState.mUniformBlocks[index];
}
const InterfaceBlock &Program::getShaderStorageBlockByIndex(GLuint index) const
{
ASSERT(mLinkResolved);
ASSERT(index < static_cast<GLuint>(mState.mShaderStorageBlocks.size()));
return mState.mShaderStorageBlocks[index];
}
void Program::bindUniformBlock(GLuint uniformBlockIndex, GLuint uniformBlockBinding)
{
ASSERT(mLinkResolved);
mState.mUniformBlocks[uniformBlockIndex].binding = uniformBlockBinding;
mState.mActiveUniformBlockBindings.set(uniformBlockIndex, uniformBlockBinding != 0);
mDirtyBits.set(DIRTY_BIT_UNIFORM_BLOCK_BINDING_0 + uniformBlockIndex);
}
GLuint Program::getUniformBlockBinding(GLuint uniformBlockIndex) const
{
ASSERT(mLinkResolved);
return mState.getUniformBlockBinding(uniformBlockIndex);
}
GLuint Program::getShaderStorageBlockBinding(GLuint shaderStorageBlockIndex) const
{
ASSERT(mLinkResolved);
return mState.getShaderStorageBlockBinding(shaderStorageBlockIndex);
}
void Program::setTransformFeedbackVaryings(GLsizei count,
const GLchar *const *varyings,
GLenum bufferMode)
{
ASSERT(mLinkResolved);
mState.mTransformFeedbackVaryingNames.resize(count);
for (GLsizei i = 0; i < count; i++)
{
mState.mTransformFeedbackVaryingNames[i] = varyings[i];
}
mState.mTransformFeedbackBufferMode = bufferMode;
}
void Program::getTransformFeedbackVarying(GLuint index,
GLsizei bufSize,
GLsizei *length,
GLsizei *size,
GLenum *type,
GLchar *name) const
{
ASSERT(mLinkResolved);
if (mLinked)
{
ASSERT(index < mState.mLinkedTransformFeedbackVaryings.size());
const auto &var = mState.mLinkedTransformFeedbackVaryings[index];
std::string varName = var.nameWithArrayIndex();
GLsizei lastNameIdx = std::min(bufSize - 1, static_cast<GLsizei>(varName.length()));
if (length)
{
*length = lastNameIdx;
}
if (size)
{
*size = var.size();
}
if (type)
{
*type = var.type;
}
if (name)
{
memcpy(name, varName.c_str(), lastNameIdx);
name[lastNameIdx] = '\0';
}
}
}
GLsizei Program::getTransformFeedbackVaryingCount() const
{
ASSERT(mLinkResolved);
if (mLinked)
{
return static_cast<GLsizei>(mState.mLinkedTransformFeedbackVaryings.size());
}
else
{
return 0;