blob: 4fb304caf7dbf6085ff6bfc05f833415ffeb2b77 [file] [log] [blame]
//
// Copyright (c) 2012-2014 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// renderer11_utils.cpp: Conversion functions and other utility routines
// specific to the D3D11 renderer.
#include "libANGLE/renderer/d3d/d3d11/renderer11_utils.h"
#include <algorithm>
#include "common/debug.h"
#include "libANGLE/Buffer.h"
#include "libANGLE/Context.h"
#include "libANGLE/Framebuffer.h"
#include "libANGLE/Program.h"
#include "libANGLE/State.h"
#include "libANGLE/VertexArray.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/renderer/d3d/BufferD3D.h"
#include "libANGLE/renderer/d3d/FramebufferD3D.h"
#include "libANGLE/renderer/d3d/d3d11/Context11.h"
#include "libANGLE/renderer/d3d/d3d11/RenderTarget11.h"
#include "libANGLE/renderer/d3d/d3d11/Renderer11.h"
#include "libANGLE/renderer/d3d/d3d11/dxgi_support_table.h"
#include "libANGLE/renderer/d3d/d3d11/formatutils11.h"
#include "libANGLE/renderer/d3d/d3d11/texture_format_table.h"
#include "libANGLE/renderer/driver_utils.h"
#include "platform/Platform.h"
#include "platform/WorkaroundsD3D.h"
namespace rx
{
namespace d3d11_gl
{
namespace
{
// Standard D3D sample positions from
// https://msdn.microsoft.com/en-us/library/windows/desktop/ff476218.aspx
using SamplePositionsArray = std::array<float, 32>;
static constexpr std::array<SamplePositionsArray, 5> kSamplePositions = {
{{{0.5f, 0.5f}},
{{0.75f, 0.75f, 0.25f, 0.25f}},
{{0.375f, 0.125f, 0.875f, 0.375f, 0.125f, 0.625f, 0.625f, 0.875f}},
{{0.5625f, 0.3125f, 0.4375f, 0.6875f, 0.8125f, 0.5625f, 0.3125f, 0.1875f, 0.1875f, 0.8125f,
0.0625f, 0.4375f, 0.6875f, 0.9375f, 0.9375f, 0.0625f}},
{{0.5625f, 0.5625f, 0.4375f, 0.3125f, 0.3125f, 0.625f, 0.75f, 0.4375f,
0.1875f, 0.375f, 0.625f, 0.8125f, 0.8125f, 0.6875f, 0.6875f, 0.1875f,
0.375f, 0.875f, 0.5f, 0.0625f, 0.25f, 0.125f, 0.125f, 0.75f,
0.0f, 0.5f, 0.9375f, 0.25f, 0.875f, 0.9375f, 0.0625f, 0.0f}}}};
// TODO(xinghua.cao@intel.com): Get a more accurate limit.
static D3D_FEATURE_LEVEL kMinimumFeatureLevelForES31 = D3D_FEATURE_LEVEL_11_0;
// Helper functor for querying DXGI support. Saves passing the parameters repeatedly.
class DXGISupportHelper : angle::NonCopyable
{
public:
DXGISupportHelper(ID3D11Device *device, D3D_FEATURE_LEVEL featureLevel)
: mDevice(device), mFeatureLevel(featureLevel)
{}
bool query(DXGI_FORMAT dxgiFormat, UINT supportMask)
{
if (dxgiFormat == DXGI_FORMAT_UNKNOWN)
return false;
auto dxgiSupport = d3d11::GetDXGISupport(dxgiFormat, mFeatureLevel);
UINT supportedBits = dxgiSupport.alwaysSupportedFlags;
if ((dxgiSupport.optionallySupportedFlags & supportMask) != 0)
{
UINT formatSupport;
if (SUCCEEDED(mDevice->CheckFormatSupport(dxgiFormat, &formatSupport)))
{
supportedBits |= (formatSupport & supportMask);
}
else
{
// TODO(jmadill): find out why we fail this call sometimes in FL9_3
// ERR() << "Error checking format support for format 0x" << std::hex << dxgiFormat;
}
}
return ((supportedBits & supportMask) == supportMask);
}
private:
ID3D11Device *mDevice;
D3D_FEATURE_LEVEL mFeatureLevel;
};
gl::TextureCaps GenerateTextureFormatCaps(gl::Version maxClientVersion,
GLenum internalFormat,
ID3D11Device *device,
const Renderer11DeviceCaps &renderer11DeviceCaps)
{
gl::TextureCaps textureCaps;
DXGISupportHelper support(device, renderer11DeviceCaps.featureLevel);
const d3d11::Format &formatInfo = d3d11::Format::Get(internalFormat, renderer11DeviceCaps);
const gl::InternalFormat &internalFormatInfo = gl::GetSizedInternalFormatInfo(internalFormat);
UINT texSupportMask = D3D11_FORMAT_SUPPORT_TEXTURE2D;
if (internalFormatInfo.depthBits == 0 && internalFormatInfo.stencilBits == 0)
{
texSupportMask |= D3D11_FORMAT_SUPPORT_TEXTURECUBE;
if (maxClientVersion.major > 2)
{
texSupportMask |= D3D11_FORMAT_SUPPORT_TEXTURE3D;
}
}
textureCaps.texturable = support.query(formatInfo.texFormat, texSupportMask);
textureCaps.filterable =
support.query(formatInfo.srvFormat, D3D11_FORMAT_SUPPORT_SHADER_SAMPLE);
textureCaps.textureAttachment =
(support.query(formatInfo.rtvFormat, D3D11_FORMAT_SUPPORT_RENDER_TARGET)) ||
(support.query(formatInfo.dsvFormat, D3D11_FORMAT_SUPPORT_DEPTH_STENCIL));
textureCaps.renderbuffer = textureCaps.textureAttachment;
DXGI_FORMAT renderFormat = DXGI_FORMAT_UNKNOWN;
if (formatInfo.dsvFormat != DXGI_FORMAT_UNKNOWN)
{
renderFormat = formatInfo.dsvFormat;
}
else if (formatInfo.rtvFormat != DXGI_FORMAT_UNKNOWN)
{
renderFormat = formatInfo.rtvFormat;
}
if (renderFormat != DXGI_FORMAT_UNKNOWN &&
support.query(renderFormat, D3D11_FORMAT_SUPPORT_MULTISAMPLE_RENDERTARGET))
{
// Assume 1x
textureCaps.sampleCounts.insert(1);
for (unsigned int sampleCount = 2; sampleCount <= D3D11_MAX_MULTISAMPLE_SAMPLE_COUNT;
sampleCount *= 2)
{
UINT qualityCount = 0;
if (SUCCEEDED(device->CheckMultisampleQualityLevels(renderFormat, sampleCount,
&qualityCount)))
{
// Assume we always support lower sample counts
if (qualityCount == 0)
{
break;
}
textureCaps.sampleCounts.insert(sampleCount);
}
}
}
return textureCaps;
}
bool GetNPOTTextureSupport(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return true;
// From http://msdn.microsoft.com/en-us/library/windows/desktop/ff476876.aspx
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return false;
default:
UNREACHABLE();
return false;
}
}
float GetMaximumAnisotropy(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_MAX_MAXANISOTROPY;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_MAX_MAXANISOTROPY;
// From http://msdn.microsoft.com/en-us/library/windows/desktop/ff476876.aspx
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
return 16;
case D3D_FEATURE_LEVEL_9_1:
return D3D_FL9_1_DEFAULT_MAX_ANISOTROPY;
default:
UNREACHABLE();
return 0;
}
}
bool GetOcclusionQuerySupport(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return true;
// From http://msdn.microsoft.com/en-us/library/windows/desktop/ff476150.aspx
// ID3D11Device::CreateQuery
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
return true;
case D3D_FEATURE_LEVEL_9_1:
return false;
default:
UNREACHABLE();
return false;
}
}
bool GetEventQuerySupport(D3D_FEATURE_LEVEL featureLevel)
{
// From http://msdn.microsoft.com/en-us/library/windows/desktop/ff476150.aspx
// ID3D11Device::CreateQuery
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return true;
default:
UNREACHABLE();
return false;
}
}
bool GetInstancingSupport(D3D_FEATURE_LEVEL featureLevel)
{
// From http://msdn.microsoft.com/en-us/library/windows/desktop/ff476150.aspx
// ID3D11Device::CreateInputLayout
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return true;
// Feature Level 9_3 supports instancing, but slot 0 in the input layout must not be
// instanced.
// D3D9 has a similar restriction, where stream 0 must not be instanced.
// This restriction can be worked around by remapping any non-instanced slot to slot
// 0.
// This works because HLSL uses shader semantics to match the vertex inputs to the
// elements in the input layout, rather than the slots.
// Note that we only support instancing via ANGLE_instanced_array on 9_3, since 9_3
// doesn't support OpenGL ES 3.0
case D3D_FEATURE_LEVEL_9_3:
return true;
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return false;
default:
UNREACHABLE();
return false;
}
}
bool GetFramebufferMultisampleSupport(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return true;
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return false;
default:
UNREACHABLE();
return false;
}
}
bool GetFramebufferBlitSupport(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return true;
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return false;
default:
UNREACHABLE();
return false;
}
}
bool GetDerivativeInstructionSupport(D3D_FEATURE_LEVEL featureLevel)
{
// http://msdn.microsoft.com/en-us/library/windows/desktop/bb509588.aspx states that
// shader model
// ps_2_x is required for the ddx (and other derivative functions).
// http://msdn.microsoft.com/en-us/library/windows/desktop/ff476876.aspx states that
// feature level
// 9.3 supports shader model ps_2_x.
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
case D3D_FEATURE_LEVEL_9_3:
return true;
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return false;
default:
UNREACHABLE();
return false;
}
}
bool GetShaderTextureLODSupport(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return true;
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return false;
default:
UNREACHABLE();
return false;
}
}
size_t GetMaximumSimultaneousRenderTargets(D3D_FEATURE_LEVEL featureLevel)
{
// From http://msdn.microsoft.com/en-us/library/windows/desktop/ff476150.aspx
// ID3D11Device::CreateInputLayout
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_SIMULTANEOUS_RENDER_TARGET_COUNT;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_SIMULTANEOUS_RENDER_TARGET_COUNT;
case D3D_FEATURE_LEVEL_9_3:
return D3D_FL9_3_SIMULTANEOUS_RENDER_TARGET_COUNT;
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return D3D_FL9_1_SIMULTANEOUS_RENDER_TARGET_COUNT;
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximum2DTextureSize(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_REQ_TEXTURE2D_U_OR_V_DIMENSION;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_REQ_TEXTURE2D_U_OR_V_DIMENSION;
case D3D_FEATURE_LEVEL_9_3:
return D3D_FL9_3_REQ_TEXTURE2D_U_OR_V_DIMENSION;
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return D3D_FL9_1_REQ_TEXTURE2D_U_OR_V_DIMENSION;
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumCubeMapTextureSize(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_REQ_TEXTURECUBE_DIMENSION;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_REQ_TEXTURECUBE_DIMENSION;
case D3D_FEATURE_LEVEL_9_3:
return D3D_FL9_3_REQ_TEXTURECUBE_DIMENSION;
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return D3D_FL9_1_REQ_TEXTURECUBE_DIMENSION;
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximum2DTextureArraySize(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_REQ_TEXTURE2D_ARRAY_AXIS_DIMENSION;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_REQ_TEXTURE2D_ARRAY_AXIS_DIMENSION;
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 0;
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximum3DTextureSize(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_REQ_TEXTURE3D_U_V_OR_W_DIMENSION;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_REQ_TEXTURE3D_U_V_OR_W_DIMENSION;
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return D3D_FL9_1_REQ_TEXTURE3D_U_V_OR_W_DIMENSION;
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumViewportSize(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_VIEWPORT_BOUNDS_MAX;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_VIEWPORT_BOUNDS_MAX;
// No constants for D3D11 Feature Level 9 viewport size limits, use the maximum
// texture sizes
case D3D_FEATURE_LEVEL_9_3:
return D3D_FL9_3_REQ_TEXTURE2D_U_OR_V_DIMENSION;
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return D3D_FL9_1_REQ_TEXTURE2D_U_OR_V_DIMENSION;
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumDrawIndexedIndexCount(D3D_FEATURE_LEVEL featureLevel)
{
// D3D11 allows up to 2^32 elements, but we report max signed int for convenience since
// that's what's
// returned from glGetInteger
static_assert(D3D11_REQ_DRAWINDEXED_INDEX_COUNT_2_TO_EXP == 32,
"Unexpected D3D11 constant value.");
static_assert(D3D10_REQ_DRAWINDEXED_INDEX_COUNT_2_TO_EXP == 32,
"Unexpected D3D11 constant value.");
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return std::numeric_limits<GLint>::max();
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
return D3D_FL9_2_IA_PRIMITIVE_MAX_COUNT;
case D3D_FEATURE_LEVEL_9_1:
return D3D_FL9_1_IA_PRIMITIVE_MAX_COUNT;
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumDrawVertexCount(D3D_FEATURE_LEVEL featureLevel)
{
// D3D11 allows up to 2^32 elements, but we report max signed int for convenience since
// that's what's
// returned from glGetInteger
static_assert(D3D11_REQ_DRAW_VERTEX_COUNT_2_TO_EXP == 32, "Unexpected D3D11 constant value.");
static_assert(D3D10_REQ_DRAW_VERTEX_COUNT_2_TO_EXP == 32, "Unexpected D3D11 constant value.");
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return std::numeric_limits<GLint>::max();
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
return D3D_FL9_2_IA_PRIMITIVE_MAX_COUNT;
case D3D_FEATURE_LEVEL_9_1:
return D3D_FL9_1_IA_PRIMITIVE_MAX_COUNT;
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumVertexInputSlots(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_STANDARD_VERTEX_ELEMENT_COUNT;
case D3D_FEATURE_LEVEL_10_1:
return D3D10_1_STANDARD_VERTEX_ELEMENT_COUNT;
case D3D_FEATURE_LEVEL_10_0:
return D3D10_STANDARD_VERTEX_ELEMENT_COUNT;
// From http://http://msdn.microsoft.com/en-us/library/windows/desktop/ff476876.aspx
// "Max Input Slots"
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 16;
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumVertexUniformVectors(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_REQ_CONSTANT_BUFFER_ELEMENT_COUNT;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_REQ_CONSTANT_BUFFER_ELEMENT_COUNT;
// From http://msdn.microsoft.com/en-us/library/windows/desktop/ff476149.aspx
// ID3D11DeviceContext::VSSetConstantBuffers
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 255 - d3d11_gl::GetReservedVertexUniformVectors(featureLevel);
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumVertexUniformBlocks(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_COMMONSHADER_CONSTANT_BUFFER_API_SLOT_COUNT -
d3d11::RESERVED_CONSTANT_BUFFER_SLOT_COUNT;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_COMMONSHADER_CONSTANT_BUFFER_API_SLOT_COUNT -
d3d11::RESERVED_CONSTANT_BUFFER_SLOT_COUNT;
// Uniform blocks not supported on D3D11 Feature Level 9
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 0;
default:
UNREACHABLE();
return 0;
}
}
size_t GetReservedVertexOutputVectors(D3D_FEATURE_LEVEL featureLevel)
{
// According to The OpenGL ES Shading Language specifications
// (Language Version 1.00 section 10.16, Language Version 3.10 section 12.21)
// built-in special variables (e.g. gl_FragCoord, or gl_PointCoord)
// which are statically used in the shader should be included in the variable packing
// algorithm.
// Therefore, we should not reserve output vectors for them.
switch (featureLevel)
{
// We must reserve one output vector for dx_Position.
// We also reserve one for gl_Position, which we unconditionally output on Feature
// Levels 10_0+,
// even if it's unused in the shader (e.g. for transform feedback). TODO: This could
// be improved.
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return 2;
// Just reserve dx_Position on Feature Level 9, since we don't ever need to output
// gl_Position.
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 1;
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumVertexOutputVectors(D3D_FEATURE_LEVEL featureLevel)
{
static_assert(gl::IMPLEMENTATION_MAX_VARYING_VECTORS == D3D11_VS_OUTPUT_REGISTER_COUNT,
"Unexpected D3D11 constant value.");
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_VS_OUTPUT_REGISTER_COUNT - GetReservedVertexOutputVectors(featureLevel);
case D3D_FEATURE_LEVEL_10_1:
return D3D10_1_VS_OUTPUT_REGISTER_COUNT - GetReservedVertexOutputVectors(featureLevel);
case D3D_FEATURE_LEVEL_10_0:
return D3D10_VS_OUTPUT_REGISTER_COUNT - GetReservedVertexOutputVectors(featureLevel);
// Use Shader Model 2.X limits
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 8 - GetReservedVertexOutputVectors(featureLevel);
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumVertexTextureUnits(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_COMMONSHADER_SAMPLER_SLOT_COUNT;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_COMMONSHADER_SAMPLER_SLOT_COUNT;
// Vertex textures not supported on D3D11 Feature Level 9 according to
// http://msdn.microsoft.com/en-us/library/windows/desktop/ff476149.aspx
// ID3D11DeviceContext::VSSetSamplers and ID3D11DeviceContext::VSSetShaderResources
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 0;
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumPixelUniformVectors(D3D_FEATURE_LEVEL featureLevel)
{
// TODO(geofflang): Remove hard-coded limit once the gl-uniform-arrays test can pass
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return 1024; // D3D11_REQ_CONSTANT_BUFFER_ELEMENT_COUNT;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return 1024; // D3D10_REQ_CONSTANT_BUFFER_ELEMENT_COUNT;
// From http://msdn.microsoft.com/en-us/library/windows/desktop/ff476149.aspx
// ID3D11DeviceContext::PSSetConstantBuffers
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 32 - d3d11_gl::GetReservedFragmentUniformVectors(featureLevel);
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumPixelUniformBlocks(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_COMMONSHADER_CONSTANT_BUFFER_API_SLOT_COUNT -
d3d11::RESERVED_CONSTANT_BUFFER_SLOT_COUNT;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_COMMONSHADER_CONSTANT_BUFFER_API_SLOT_COUNT -
d3d11::RESERVED_CONSTANT_BUFFER_SLOT_COUNT;
// Uniform blocks not supported on D3D11 Feature Level 9
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 0;
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumPixelInputVectors(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_PS_INPUT_REGISTER_COUNT - GetReservedVertexOutputVectors(featureLevel);
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_PS_INPUT_REGISTER_COUNT - GetReservedVertexOutputVectors(featureLevel);
// Use Shader Model 2.X limits
case D3D_FEATURE_LEVEL_9_3:
return 8 - GetReservedVertexOutputVectors(featureLevel);
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 8 - GetReservedVertexOutputVectors(featureLevel);
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumPixelTextureUnits(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_COMMONSHADER_SAMPLER_SLOT_COUNT;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_COMMONSHADER_SAMPLER_SLOT_COUNT;
// http://msdn.microsoft.com/en-us/library/windows/desktop/ff476149.aspx
// ID3D11DeviceContext::PSSetShaderResources
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 16;
default:
UNREACHABLE();
return 0;
}
}
std::array<GLuint, 3> GetMaxComputeWorkGroupCount(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return {{D3D11_CS_DISPATCH_MAX_THREAD_GROUPS_PER_DIMENSION,
D3D11_CS_DISPATCH_MAX_THREAD_GROUPS_PER_DIMENSION,
D3D11_CS_DISPATCH_MAX_THREAD_GROUPS_PER_DIMENSION}};
break;
default:
return {{0, 0, 0}};
}
}
std::array<GLuint, 3> GetMaxComputeWorkGroupSize(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return {{D3D11_CS_THREAD_GROUP_MAX_X, D3D11_CS_THREAD_GROUP_MAX_Y,
D3D11_CS_THREAD_GROUP_MAX_Z}};
break;
default:
return {{0, 0, 0}};
}
}
size_t GetMaxComputeWorkGroupInvocations(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_CS_THREAD_GROUP_MAX_THREADS_PER_GROUP;
default:
return 0;
}
}
size_t GetMaximumComputeUniformVectors(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_REQ_CONSTANT_BUFFER_ELEMENT_COUNT;
default:
return 0;
}
}
size_t GetMaximumComputeUniformBlocks(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_COMMONSHADER_CONSTANT_BUFFER_API_SLOT_COUNT -
d3d11::RESERVED_CONSTANT_BUFFER_SLOT_COUNT;
default:
return 0;
}
}
size_t GetMaximumComputeTextureUnits(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_COMMONSHADER_SAMPLER_SLOT_COUNT;
default:
return 0;
}
}
void SetUAVRelatedResourceLimits(D3D_FEATURE_LEVEL featureLevel, gl::Caps *caps)
{
ASSERT(caps);
GLuint reservedUAVsForAtomicCounterBuffers = 0u;
// For pixel shaders, the render targets and unordered access views share the same resource
// slots when being written out.
// https://msdn.microsoft.com/en-us/library/windows/desktop/ff476465(v=vs.85).aspx
GLuint maxNumRTVsAndUAVs = 0u;
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
// Currently we allocate 4 UAV slots for atomic counter buffers on feature level 11_1.
reservedUAVsForAtomicCounterBuffers = 4u;
maxNumRTVsAndUAVs = D3D11_1_UAV_SLOT_COUNT;
break;
case D3D_FEATURE_LEVEL_11_0:
// Currently we allocate 1 UAV slot for atomic counter buffers on feature level 11_0.
reservedUAVsForAtomicCounterBuffers = 1u;
maxNumRTVsAndUAVs = D3D11_PS_CS_UAV_REGISTER_COUNT;
break;
default:
return;
}
// Set limits on atomic counter buffers in fragment shaders and compute shaders.
caps->maxCombinedAtomicCounterBuffers = reservedUAVsForAtomicCounterBuffers;
caps->maxShaderAtomicCounterBuffers[gl::ShaderType::Compute] =
reservedUAVsForAtomicCounterBuffers;
caps->maxShaderAtomicCounterBuffers[gl::ShaderType::Fragment] =
reservedUAVsForAtomicCounterBuffers;
caps->maxAtomicCounterBufferBindings = reservedUAVsForAtomicCounterBuffers;
// Setting MAX_COMPUTE_ATOMIC_COUNTERS to a conservative number of 1024 * the number of UAV
// reserved for atomic counters. It could theoretically be set to max buffer size / 4 but that
// number could cause problems.
caps->maxCombinedAtomicCounters = reservedUAVsForAtomicCounterBuffers * 1024;
caps->maxShaderAtomicCounters[gl::ShaderType::Compute] = caps->maxCombinedAtomicCounters;
// See
// https://docs.microsoft.com/en-us/windows/desktop/direct3d11/overviews-direct3d-11-resources-limits
// Resource size (in MB) for any of the preceding resources is min(max(128,0.25f * (amount of
// dedicated VRAM)), 2048) MB. So we set it to 128MB to keep same with GL backend.
caps->maxShaderStorageBlockSize =
D3D11_REQ_RESOURCE_SIZE_IN_MEGABYTES_EXPRESSION_A_TERM * 1024 * 1024;
// Allocate the remaining slots for images and shader storage blocks.
// The maximum number of fragment shader outputs depends on the current context version, so we
// will not set it here. See comments in Context11::initialize().
caps->maxCombinedShaderOutputResources =
maxNumRTVsAndUAVs - reservedUAVsForAtomicCounterBuffers;
// Set limits on images and shader storage blocks in fragment shaders and compute shaders.
caps->maxCombinedShaderStorageBlocks = caps->maxCombinedShaderOutputResources;
caps->maxShaderStorageBlocks[gl::ShaderType::Compute] = caps->maxCombinedShaderOutputResources;
caps->maxShaderStorageBlocks[gl::ShaderType::Fragment] = caps->maxCombinedShaderOutputResources;
caps->maxShaderStorageBufferBindings = caps->maxCombinedShaderOutputResources;
caps->maxImageUnits = caps->maxCombinedShaderOutputResources;
caps->maxCombinedImageUniforms = caps->maxCombinedShaderOutputResources;
caps->maxShaderImageUniforms[gl::ShaderType::Compute] = caps->maxCombinedShaderOutputResources;
caps->maxShaderImageUniforms[gl::ShaderType::Fragment] = caps->maxCombinedShaderOutputResources;
// On feature level 11_1, UAVs are also available in vertex shaders and geometry shaders.
if (featureLevel == D3D_FEATURE_LEVEL_11_1)
{
caps->maxShaderAtomicCounterBuffers[gl::ShaderType::Vertex] =
caps->maxCombinedAtomicCounterBuffers;
caps->maxShaderAtomicCounterBuffers[gl::ShaderType::Geometry] =
caps->maxCombinedAtomicCounterBuffers;
caps->maxShaderImageUniforms[gl::ShaderType::Vertex] =
caps->maxCombinedShaderOutputResources;
caps->maxShaderStorageBlocks[gl::ShaderType::Vertex] =
caps->maxCombinedShaderOutputResources;
caps->maxShaderImageUniforms[gl::ShaderType::Geometry] =
caps->maxCombinedShaderOutputResources;
caps->maxShaderStorageBlocks[gl::ShaderType::Geometry] =
caps->maxCombinedShaderOutputResources;
}
}
int GetMinimumTexelOffset(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_COMMONSHADER_TEXEL_OFFSET_MAX_NEGATIVE;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_COMMONSHADER_TEXEL_OFFSET_MAX_NEGATIVE;
// Sampling functions with offsets are not available below shader model 4.0.
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 0;
default:
UNREACHABLE();
return 0;
}
}
int GetMaximumTexelOffset(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_COMMONSHADER_TEXEL_OFFSET_MAX_POSITIVE;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D11_COMMONSHADER_TEXEL_OFFSET_MAX_POSITIVE;
// Sampling functions with offsets are not available below shader model 4.0.
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 0;
default:
UNREACHABLE();
return 0;
}
}
int GetMinimumTextureGatherOffset(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
// https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/gather4-po--sm5---asm-
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return -32;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 0;
default:
UNREACHABLE();
return 0;
}
}
int GetMaximumTextureGatherOffset(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
// https://docs.microsoft.com/en-us/windows/desktop/direct3dhlsl/gather4-po--sm5---asm-
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return 31;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 0;
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumConstantBufferSize(D3D_FEATURE_LEVEL featureLevel)
{
// Returns a size_t despite the limit being a GLuint64 because size_t is the maximum
// size of
// any buffer that could be allocated.
const size_t bytesPerComponent = 4 * sizeof(float);
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_REQ_CONSTANT_BUFFER_ELEMENT_COUNT * bytesPerComponent;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_REQ_CONSTANT_BUFFER_ELEMENT_COUNT * bytesPerComponent;
// Limits from http://msdn.microsoft.com/en-us/library/windows/desktop/ff476501.aspx
// remarks section
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 4096 * bytesPerComponent;
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumStreamOutputBuffers(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_SO_BUFFER_SLOT_COUNT;
case D3D_FEATURE_LEVEL_10_1:
return D3D10_1_SO_BUFFER_SLOT_COUNT;
case D3D_FEATURE_LEVEL_10_0:
return D3D10_SO_BUFFER_SLOT_COUNT;
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 0;
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumStreamOutputInterleavedComponents(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return GetMaximumVertexOutputVectors(featureLevel) * 4;
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 0;
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumStreamOutputSeparateComponents(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return GetMaximumStreamOutputInterleavedComponents(featureLevel) /
GetMaximumStreamOutputBuffers(featureLevel);
// D3D 10 and 10.1 only allow one output per output slot if an output slot other
// than zero is used.
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return 4;
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 0;
default:
UNREACHABLE();
return 0;
}
}
size_t GetMaximumRenderToBufferWindowSize(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_REQ_RENDER_TO_BUFFER_WINDOW_WIDTH;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return D3D10_REQ_RENDER_TO_BUFFER_WINDOW_WIDTH;
// REQ_RENDER_TO_BUFFER_WINDOW_WIDTH not supported on D3D11 Feature Level 9,
// use the maximum texture sizes
case D3D_FEATURE_LEVEL_9_3:
return D3D_FL9_3_REQ_TEXTURE2D_U_OR_V_DIMENSION;
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return D3D_FL9_1_REQ_TEXTURE2D_U_OR_V_DIMENSION;
default:
UNREACHABLE();
return 0;
}
}
IntelDriverVersion GetIntelDriverVersion(const Optional<LARGE_INTEGER> driverVersion)
{
if (!driverVersion.valid())
return IntelDriverVersion(0);
// According to http://www.intel.com/content/www/us/en/support/graphics-drivers/000005654.html,
// only the fourth part is necessary since it stands for the driver specific unique version
// number.
WORD part = LOWORD(driverVersion.value().LowPart);
return IntelDriverVersion(part);
}
} // anonymous namespace
unsigned int GetReservedVertexUniformVectors(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return 0;
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 3; // dx_ViewAdjust, dx_ViewCoords and dx_ViewScale
default:
UNREACHABLE();
return 0;
}
}
unsigned int GetReservedFragmentUniformVectors(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return 0;
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 3;
default:
UNREACHABLE();
return 0;
}
}
gl::Version GetMaximumClientVersion(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return gl::Version(3, 1);
case D3D_FEATURE_LEVEL_10_1:
return gl::Version(3, 0);
case D3D_FEATURE_LEVEL_10_0:
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return gl::Version(2, 0);
default:
UNREACHABLE();
return gl::Version(0, 0);
}
}
D3D_FEATURE_LEVEL GetMinimumFeatureLevelForES31()
{
return kMinimumFeatureLevelForES31;
}
unsigned int GetMaxViewportAndScissorRectanglesPerPipeline(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return D3D11_VIEWPORT_AND_SCISSORRECT_OBJECT_COUNT_PER_PIPELINE;
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 1;
default:
UNREACHABLE();
return 0;
}
}
bool IsMultiviewSupported(D3D_FEATURE_LEVEL featureLevel)
{
// The ANGLE_multiview extension can always be supported in D3D11 through geometry shaders.
switch (featureLevel)
{
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
return true;
default:
return false;
}
}
unsigned int GetMaxSampleMaskWords(D3D_FEATURE_LEVEL featureLevel)
{
switch (featureLevel)
{
// D3D10+ only allows 1 sample mask.
case D3D_FEATURE_LEVEL_11_1:
case D3D_FEATURE_LEVEL_11_0:
case D3D_FEATURE_LEVEL_10_1:
case D3D_FEATURE_LEVEL_10_0:
return 1u;
case D3D_FEATURE_LEVEL_9_3:
case D3D_FEATURE_LEVEL_9_2:
case D3D_FEATURE_LEVEL_9_1:
return 0u;
default:
UNREACHABLE();
return 0u;
}
}
void GenerateCaps(ID3D11Device *device,
ID3D11DeviceContext *deviceContext,
const Renderer11DeviceCaps &renderer11DeviceCaps,
const angle::WorkaroundsD3D &workarounds,
gl::Caps *caps,
gl::TextureCapsMap *textureCapsMap,
gl::Extensions *extensions,
gl::Limitations *limitations)
{
D3D_FEATURE_LEVEL featureLevel = renderer11DeviceCaps.featureLevel;
const gl::FormatSet &allFormats = gl::GetAllSizedInternalFormats();
for (GLenum internalFormat : allFormats)
{
gl::TextureCaps textureCaps = GenerateTextureFormatCaps(
GetMaximumClientVersion(featureLevel), internalFormat, device, renderer11DeviceCaps);
textureCapsMap->insert(internalFormat, textureCaps);
if (gl::GetSizedInternalFormatInfo(internalFormat).compressed)
{
caps->compressedTextureFormats.push_back(internalFormat);
}
}
// GL core feature limits
// Reserve MAX_UINT for D3D11's primitive restart.
caps->maxElementIndex = static_cast<GLint64>(std::numeric_limits<unsigned int>::max() - 1);
caps->max3DTextureSize = static_cast<GLuint>(GetMaximum3DTextureSize(featureLevel));
caps->max2DTextureSize = static_cast<GLuint>(GetMaximum2DTextureSize(featureLevel));
caps->maxCubeMapTextureSize = static_cast<GLuint>(GetMaximumCubeMapTextureSize(featureLevel));
caps->maxArrayTextureLayers = static_cast<GLuint>(GetMaximum2DTextureArraySize(featureLevel));
// Unimplemented, set to minimum required
caps->maxLODBias = 2.0f;
// No specific limits on render target size, maximum 2D texture size is equivalent
caps->maxRenderbufferSize = caps->max2DTextureSize;
// Maximum draw buffers and color attachments are the same, max color attachments could
// eventually be increased to 16
caps->maxDrawBuffers = static_cast<GLuint>(GetMaximumSimultaneousRenderTargets(featureLevel));
caps->maxColorAttachments =
static_cast<GLuint>(GetMaximumSimultaneousRenderTargets(featureLevel));
// D3D11 has the same limit for viewport width and height
caps->maxViewportWidth = static_cast<GLuint>(GetMaximumViewportSize(featureLevel));
caps->maxViewportHeight = caps->maxViewportWidth;
// Choose a reasonable maximum, enforced in the shader.
caps->minAliasedPointSize = 1.0f;
caps->maxAliasedPointSize = 1024.0f;
// Wide lines not supported
caps->minAliasedLineWidth = 1.0f;
caps->maxAliasedLineWidth = 1.0f;
// Primitive count limits
caps->maxElementsIndices = static_cast<GLuint>(GetMaximumDrawIndexedIndexCount(featureLevel));
caps->maxElementsVertices = static_cast<GLuint>(GetMaximumDrawVertexCount(featureLevel));
// Program and shader binary formats (no supported shader binary formats)
caps->programBinaryFormats.push_back(GL_PROGRAM_BINARY_ANGLE);
caps->vertexHighpFloat.setIEEEFloat();
caps->vertexMediumpFloat.setIEEEFloat();
caps->vertexLowpFloat.setIEEEFloat();
caps->fragmentHighpFloat.setIEEEFloat();
caps->fragmentMediumpFloat.setIEEEFloat();
caps->fragmentLowpFloat.setIEEEFloat();
// 32-bit integers are natively supported
caps->vertexHighpInt.setTwosComplementInt(32);
caps->vertexMediumpInt.setTwosComplementInt(32);
caps->vertexLowpInt.setTwosComplementInt(32);
caps->fragmentHighpInt.setTwosComplementInt(32);
caps->fragmentMediumpInt.setTwosComplementInt(32);
caps->fragmentLowpInt.setTwosComplementInt(32);
// We do not wait for server fence objects internally, so report a max timeout of zero.
caps->maxServerWaitTimeout = 0;
// Vertex shader limits
caps->maxVertexAttributes = static_cast<GLuint>(GetMaximumVertexInputSlots(featureLevel));
caps->maxVertexUniformVectors =
static_cast<GLuint>(GetMaximumVertexUniformVectors(featureLevel));
if (workarounds.skipVSConstantRegisterZero)
{
caps->maxVertexUniformVectors -= 1;
}
caps->maxShaderUniformComponents[gl::ShaderType::Vertex] = caps->maxVertexUniformVectors * 4;
caps->maxShaderUniformBlocks[gl::ShaderType::Vertex] =
static_cast<GLuint>(GetMaximumVertexUniformBlocks(featureLevel));
caps->maxVertexOutputComponents =
static_cast<GLuint>(GetMaximumVertexOutputVectors(featureLevel)) * 4;
caps->maxShaderTextureImageUnits[gl::ShaderType::Vertex] =
static_cast<GLuint>(GetMaximumVertexTextureUnits(featureLevel));
// Vertex Attribute Bindings are emulated on D3D11.
caps->maxVertexAttribBindings = caps->maxVertexAttributes;
// Experimental testing confirmed there is no explicit limit on maximum buffer offset in D3D11.
caps->maxVertexAttribRelativeOffset = std::numeric_limits<GLint>::max();
// Experimental testing confirmed 2048 is the maximum stride that D3D11 can support on all
// platforms.
caps->maxVertexAttribStride = 2048;
// Fragment shader limits
caps->maxFragmentUniformVectors =
static_cast<GLuint>(GetMaximumPixelUniformVectors(featureLevel));
caps->maxShaderUniformComponents[gl::ShaderType::Fragment] =
caps->maxFragmentUniformVectors * 4;
caps->maxShaderUniformBlocks[gl::ShaderType::Fragment] =
static_cast<GLuint>(GetMaximumPixelUniformBlocks(featureLevel));
caps->maxFragmentInputComponents =
static_cast<GLuint>(GetMaximumPixelInputVectors(featureLevel)) * 4;
caps->maxShaderTextureImageUnits[gl::ShaderType::Fragment] =
static_cast<GLuint>(GetMaximumPixelTextureUnits(featureLevel));
caps->minProgramTexelOffset = GetMinimumTexelOffset(featureLevel);
caps->maxProgramTexelOffset = GetMaximumTexelOffset(featureLevel);
// Compute shader limits
caps->maxComputeWorkGroupCount = GetMaxComputeWorkGroupCount(featureLevel);
caps->maxComputeWorkGroupSize = GetMaxComputeWorkGroupSize(featureLevel);
caps->maxComputeWorkGroupInvocations =
static_cast<GLuint>(GetMaxComputeWorkGroupInvocations(featureLevel));
caps->maxShaderUniformComponents[gl::ShaderType::Compute] =
static_cast<GLuint>(GetMaximumComputeUniformVectors(featureLevel)) * 4;
caps->maxShaderUniformBlocks[gl::ShaderType::Compute] =
static_cast<GLuint>(GetMaximumComputeUniformBlocks(featureLevel));
caps->maxShaderTextureImageUnits[gl::ShaderType::Compute] =
static_cast<GLuint>(GetMaximumComputeTextureUnits(featureLevel));
SetUAVRelatedResourceLimits(featureLevel, caps);
// Aggregate shader limits
caps->maxUniformBufferBindings = caps->maxShaderUniformBlocks[gl::ShaderType::Vertex] +
caps->maxShaderUniformBlocks[gl::ShaderType::Fragment];
caps->maxUniformBlockSize = GetMaximumConstantBufferSize(featureLevel);
// TODO(oetuaho): Get a more accurate limit. For now using the minimum requirement for GLES 3.1.
caps->maxUniformLocations = 1024;
// With DirectX 11.1, constant buffer offset and size must be a multiple of 16 constants of 16
// bytes each.
// https://msdn.microsoft.com/en-us/library/windows/desktop/hh404649%28v=vs.85%29.aspx
// With DirectX 11.0, we emulate UBO offsets using copies of ranges of the UBO however
// we still keep the same alignment as 11.1 for consistency.
caps->uniformBufferOffsetAlignment = 256;
caps->maxCombinedUniformBlocks = caps->maxShaderUniformBlocks[gl::ShaderType::Vertex] +
caps->maxShaderUniformBlocks[gl::ShaderType::Fragment];
// A shader storage block will be translated to a structure in HLSL. So We reference the HLSL
// structure packing rules
// https://msdn.microsoft.com/en-us/library/windows/desktop/bb509632(v=vs.85).aspx. The
// resulting size of any structure will always be evenly divisible by sizeof(four-component
// vector).
caps->shaderStorageBufferOffsetAlignment = 16;
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
caps->maxCombinedShaderUniformComponents[shaderType] =
static_cast<GLint64>(caps->maxShaderUniformBlocks[shaderType]) *
static_cast<GLint64>(caps->maxUniformBlockSize / 4) +
static_cast<GLint64>(caps->maxShaderUniformComponents[shaderType]);
}
caps->maxVaryingComponents =
static_cast<GLuint>(GetMaximumVertexOutputVectors(featureLevel)) * 4;
caps->maxVaryingVectors = static_cast<GLuint>(GetMaximumVertexOutputVectors(featureLevel));
caps->maxCombinedTextureImageUnits = caps->maxShaderTextureImageUnits[gl::ShaderType::Vertex] +
caps->maxShaderTextureImageUnits[gl::ShaderType::Fragment];
// Transform feedback limits
caps->maxTransformFeedbackInterleavedComponents =
static_cast<GLuint>(GetMaximumStreamOutputInterleavedComponents(featureLevel));
caps->maxTransformFeedbackSeparateAttributes =
static_cast<GLuint>(GetMaximumStreamOutputBuffers(featureLevel));
caps->maxTransformFeedbackSeparateComponents =
static_cast<GLuint>(GetMaximumStreamOutputSeparateComponents(featureLevel));
// Defer the computation of multisample limits to Context::updateCaps() where max*Samples values
// are determined according to available sample counts for each individual format.
caps->maxSamples = std::numeric_limits<GLint>::max();
caps->maxColorTextureSamples = std::numeric_limits<GLint>::max();
caps->maxDepthTextureSamples = std::numeric_limits<GLint>::max();
caps->maxIntegerSamples = std::numeric_limits<GLint>::max();
// Sample mask words limits
caps->maxSampleMaskWords = GetMaxSampleMaskWords(featureLevel);
// Framebuffer limits
caps->maxFramebufferSamples = std::numeric_limits<GLint>::max();
caps->maxFramebufferWidth =
static_cast<GLuint>(GetMaximumRenderToBufferWindowSize(featureLevel));
caps->maxFramebufferHeight = caps->maxFramebufferWidth;
// Texture gather offset limits
caps->minProgramTextureGatherOffset = GetMinimumTextureGatherOffset(featureLevel);
caps->maxProgramTextureGatherOffset = GetMaximumTextureGatherOffset(featureLevel);
// GL extension support
extensions->setTextureExtensionSupport(*textureCapsMap);
extensions->elementIndexUint = true;
extensions->getProgramBinary = true;
extensions->rgb8rgba8 = true;
extensions->readFormatBGRA = true;
extensions->pixelBufferObject = true;
extensions->mapBuffer = true;
extensions->mapBufferRange = true;
extensions->textureNPOT = GetNPOTTextureSupport(featureLevel);
extensions->drawBuffers = GetMaximumSimultaneousRenderTargets(featureLevel) > 1;
extensions->textureStorage = true;
extensions->textureFilterAnisotropic = true;
extensions->maxTextureAnisotropy = GetMaximumAnisotropy(featureLevel);
extensions->occlusionQueryBoolean = GetOcclusionQuerySupport(featureLevel);
extensions->fence = GetEventQuerySupport(featureLevel);
extensions->disjointTimerQuery = true;
extensions->queryCounterBitsTimeElapsed = 64;
extensions->queryCounterBitsTimestamp =
0; // Timestamps cannot be supported due to D3D11 limitations
extensions->robustness = true;
// Direct3D guarantees to return zero for any resource that is accessed out of bounds.
// See https://msdn.microsoft.com/en-us/library/windows/desktop/ff476332(v=vs.85).aspx
// and https://msdn.microsoft.com/en-us/library/windows/desktop/ff476900(v=vs.85).aspx
extensions->robustBufferAccessBehavior = true;
extensions->blendMinMax = true;
extensions->framebufferBlit = GetFramebufferBlitSupport(featureLevel);
extensions->framebufferMultisample = GetFramebufferMultisampleSupport(featureLevel);
extensions->instancedArrays = GetInstancingSupport(featureLevel);
extensions->packReverseRowOrder = true;
extensions->standardDerivatives = GetDerivativeInstructionSupport(featureLevel);
extensions->shaderTextureLOD = GetShaderTextureLODSupport(featureLevel);
extensions->fragDepth = true;
extensions->multiview = IsMultiviewSupported(featureLevel);
if (extensions->multiview)
{
extensions->maxViews =
std::min(static_cast<GLuint>(gl::IMPLEMENTATION_ANGLE_MULTIVIEW_MAX_VIEWS),
std::min(static_cast<GLuint>(GetMaximum2DTextureArraySize(featureLevel)),
GetMaxViewportAndScissorRectanglesPerPipeline(featureLevel)));
}
extensions->textureUsage = true; // This could be false since it has no effect in D3D11
extensions->discardFramebuffer = true;
extensions->translatedShaderSource = true;
extensions->fboRenderMipmap = false;
extensions->debugMarker = true;
extensions->eglImage = true;
extensions->eglImageExternal = true;
extensions->eglImageExternalEssl3 = true;
extensions->eglStreamConsumerExternal = true;
extensions->unpackSubimage = true;
extensions->packSubimage = true;
extensions->lossyETCDecode = true;
extensions->syncQuery = GetEventQuerySupport(featureLevel);
extensions->copyTexture = true;
extensions->copyCompressedTexture = true;
extensions->textureStorageMultisample2DArray = true;
extensions->multiviewMultisample =
(extensions->multiview && extensions->textureStorageMultisample2DArray);
extensions->copyTexture3d = true;
extensions->textureBorderClamp = true;
extensions->textureMultisample = true;
extensions->provokingVertex = true;
// D3D11 Feature Level 10_0+ uses SV_IsFrontFace in HLSL to emulate gl_FrontFacing.
// D3D11 Feature Level 9_3 doesn't support SV_IsFrontFace, and has no equivalent, so can't
// support gl_FrontFacing.
limitations->noFrontFacingSupport =
(renderer11DeviceCaps.featureLevel <= D3D_FEATURE_LEVEL_9_3);
// D3D11 Feature Level 9_3 doesn't support alpha-to-coverage
limitations->noSampleAlphaToCoverageSupport =
(renderer11DeviceCaps.featureLevel <= D3D_FEATURE_LEVEL_9_3);
// D3D11 Feature Levels 9_3 and below do not support non-constant loop indexing and require
// additional
// pre-validation of the shader at compile time to produce a better error message.
limitations->shadersRequireIndexedLoopValidation =
(renderer11DeviceCaps.featureLevel <= D3D_FEATURE_LEVEL_9_3);
// D3D11 has no concept of separate masks and refs for front and back faces in the depth stencil
// state.
limitations->noSeparateStencilRefsAndMasks = true;
// D3D11 cannot support constant color and alpha blend funcs together
limitations->noSimultaneousConstantColorAndAlphaBlendFunc = true;
// D3D11 does not support multiple transform feedback outputs writing to the same buffer.
limitations->noDoubleBoundTransformFeedbackBuffers = true;
#ifdef ANGLE_ENABLE_WINDOWS_STORE
// Setting a non-zero divisor on attribute zero doesn't work on certain Windows Phone 8-era
// devices. We should prevent developers from doing this on ALL Windows Store devices. This will
// maintain consistency across all Windows devices. We allow non-zero divisors on attribute zero
// if the Client Version >= 3, since devices affected by this issue don't support ES3+.
limitations->attributeZeroRequiresZeroDivisorInEXT = true;
#endif
}
void GetSamplePosition(GLsizei sampleCount, size_t index, GLfloat *xy)
{
size_t indexKey = static_cast<size_t>(ceil(log2(sampleCount)));
ASSERT(indexKey < kSamplePositions.size() &&
(2 * index + 1) < kSamplePositions[indexKey].size());
xy[0] = kSamplePositions[indexKey][2 * index];
xy[1] = kSamplePositions[indexKey][2 * index + 1];
}
} // namespace d3d11_gl
namespace gl_d3d11
{
D3D11_BLEND ConvertBlendFunc(GLenum glBlend, bool isAlpha)
{
D3D11_BLEND d3dBlend = D3D11_BLEND_ZERO;
switch (glBlend)
{
case GL_ZERO:
d3dBlend = D3D11_BLEND_ZERO;
break;
case GL_ONE:
d3dBlend = D3D11_BLEND_ONE;
break;
case GL_SRC_COLOR:
d3dBlend = (isAlpha ? D3D11_BLEND_SRC_ALPHA : D3D11_BLEND_SRC_COLOR);
break;
case GL_ONE_MINUS_SRC_COLOR:
d3dBlend = (isAlpha ? D3D11_BLEND_INV_SRC_ALPHA : D3D11_BLEND_INV_SRC_COLOR);
break;
case GL_DST_COLOR:
d3dBlend = (isAlpha ? D3D11_BLEND_DEST_ALPHA : D3D11_BLEND_DEST_COLOR);
break;
case GL_ONE_MINUS_DST_COLOR:
d3dBlend = (isAlpha ? D3D11_BLEND_INV_DEST_ALPHA : D3D11_BLEND_INV_DEST_COLOR);
break;
case GL_SRC_ALPHA:
d3dBlend = D3D11_BLEND_SRC_ALPHA;
break;
case GL_ONE_MINUS_SRC_ALPHA:
d3dBlend = D3D11_BLEND_INV_SRC_ALPHA;
break;
case GL_DST_ALPHA:
d3dBlend = D3D11_BLEND_DEST_ALPHA;
break;
case GL_ONE_MINUS_DST_ALPHA:
d3dBlend = D3D11_BLEND_INV_DEST_ALPHA;
break;
case GL_CONSTANT_COLOR:
d3dBlend = D3D11_BLEND_BLEND_FACTOR;
break;
case GL_ONE_MINUS_CONSTANT_COLOR:
d3dBlend = D3D11_BLEND_INV_BLEND_FACTOR;
break;
case GL_CONSTANT_ALPHA:
d3dBlend = D3D11_BLEND_BLEND_FACTOR;
break;
case GL_ONE_MINUS_CONSTANT_ALPHA:
d3dBlend = D3D11_BLEND_INV_BLEND_FACTOR;
break;
case GL_SRC_ALPHA_SATURATE:
d3dBlend = D3D11_BLEND_SRC_ALPHA_SAT;
break;
default:
UNREACHABLE();
}
return d3dBlend;
}
D3D11_BLEND_OP ConvertBlendOp(GLenum glBlendOp)
{
D3D11_BLEND_OP d3dBlendOp = D3D11_BLEND_OP_ADD;
switch (glBlendOp)
{
case GL_FUNC_ADD:
d3dBlendOp = D3D11_BLEND_OP_ADD;
break;
case GL_FUNC_SUBTRACT:
d3dBlendOp = D3D11_BLEND_OP_SUBTRACT;
break;
case GL_FUNC_REVERSE_SUBTRACT:
d3dBlendOp = D3D11_BLEND_OP_REV_SUBTRACT;
break;
case GL_MIN:
d3dBlendOp = D3D11_BLEND_OP_MIN;
break;
case GL_MAX:
d3dBlendOp = D3D11_BLEND_OP_MAX;
break;
default:
UNREACHABLE();
}
return d3dBlendOp;
}
UINT8 ConvertColorMask(bool red, bool green, bool blue, bool alpha)
{
UINT8 mask = 0;
if (red)
{
mask |= D3D11_COLOR_WRITE_ENABLE_RED;
}
if (green)
{
mask |= D3D11_COLOR_WRITE_ENABLE_GREEN;
}
if (blue)
{
mask |= D3D11_COLOR_WRITE_ENABLE_BLUE;
}
if (alpha)
{
mask |= D3D11_COLOR_WRITE_ENABLE_ALPHA;
}
return mask;
}
D3D11_CULL_MODE ConvertCullMode(bool cullEnabled, gl::CullFaceMode cullMode)
{
D3D11_CULL_MODE cull = D3D11_CULL_NONE;
if (cullEnabled)
{
switch (cullMode)
{
case gl::CullFaceMode::Front:
cull = D3D11_CULL_FRONT;
break;
case gl::CullFaceMode::Back:
cull = D3D11_CULL_BACK;
break;
case gl::CullFaceMode::FrontAndBack:
cull = D3D11_CULL_NONE;
break;
default:
UNREACHABLE();
}
}
else
{
cull = D3D11_CULL_NONE;
}
return cull;
}
D3D11_COMPARISON_FUNC ConvertComparison(GLenum comparison)
{
D3D11_COMPARISON_FUNC d3dComp = D3D11_COMPARISON_NEVER;
switch (comparison)
{
case GL_NEVER:
d3dComp = D3D11_COMPARISON_NEVER;
break;
case GL_ALWAYS:
d3dComp = D3D11_COMPARISON_ALWAYS;
break;
case GL_LESS:
d3dComp = D3D11_COMPARISON_LESS;
break;
case GL_LEQUAL:
d3dComp = D3D11_COMPARISON_LESS_EQUAL;
break;
case GL_EQUAL:
d3dComp = D3D11_COMPARISON_EQUAL;
break;
case GL_GREATER:
d3dComp = D3D11_COMPARISON_GREATER;
break;
case GL_GEQUAL:
d3dComp = D3D11_COMPARISON_GREATER_EQUAL;
break;
case GL_NOTEQUAL:
d3dComp = D3D11_COMPARISON_NOT_EQUAL;
break;
default:
UNREACHABLE();
}
return d3dComp;
}
D3D11_DEPTH_WRITE_MASK ConvertDepthMask(bool depthWriteEnabled)
{
return depthWriteEnabled ? D3D11_DEPTH_WRITE_MASK_ALL : D3D11_DEPTH_WRITE_MASK_ZERO;
}
UINT8 ConvertStencilMask(GLuint stencilmask)
{
return static_cast<UINT8>(stencilmask);
}
D3D11_STENCIL_OP ConvertStencilOp(GLenum stencilOp)
{
D3D11_STENCIL_OP d3dStencilOp = D3D11_STENCIL_OP_KEEP;
switch (stencilOp)
{
case GL_ZERO:
d3dStencilOp = D3D11_STENCIL_OP_ZERO;
break;
case GL_KEEP:
d3dStencilOp = D3D11_STENCIL_OP_KEEP;
break;
case GL_REPLACE:
d3dStencilOp = D3D11_STENCIL_OP_REPLACE;
break;
case GL_INCR:
d3dStencilOp = D3D11_STENCIL_OP_INCR_SAT;
break;
case GL_DECR:
d3dStencilOp = D3D11_STENCIL_OP_DECR_SAT;
break;
case GL_INVERT:
d3dStencilOp = D3D11_STENCIL_OP_INVERT;
break;
case GL_INCR_WRAP:
d3dStencilOp = D3D11_STENCIL_OP_INCR;
break;
case GL_DECR_WRAP:
d3dStencilOp = D3D11_STENCIL_OP_DECR;
break;
default:
UNREACHABLE();
}
return d3dStencilOp;
}
D3D11_FILTER ConvertFilter(GLenum minFilter,
GLenum magFilter,
float maxAnisotropy,
GLenum comparisonMode)
{
bool comparison = comparisonMode != GL_NONE;
if (maxAnisotropy > 1.0f)
{
return D3D11_ENCODE_ANISOTROPIC_FILTER(static_cast<D3D11_COMPARISON_FUNC>(comparison));
}
else
{
D3D11_FILTER_TYPE dxMin = D3D11_FILTER_TYPE_POINT;
D3D11_FILTER_TYPE dxMip = D3D11_FILTER_TYPE_POINT;
switch (minFilter)
{
case GL_NEAREST:
dxMin = D3D11_FILTER_TYPE_POINT;
dxMip = D3D11_FILTER_TYPE_POINT;
break;
case GL_LINEAR:
dxMin = D3D11_FILTER_TYPE_LINEAR;
dxMip = D3D11_FILTER_TYPE_POINT;
break;
case GL_NEAREST_MIPMAP_NEAREST:
dxMin = D3D11_FILTER_TYPE_POINT;
dxMip = D3D11_FILTER_TYPE_POINT;
break;
case GL_LINEAR_MIPMAP_NEAREST:
dxMin = D3D11_FILTER_TYPE_LINEAR;
dxMip = D3D11_FILTER_TYPE_POINT;
break;
case GL_NEAREST_MIPMAP_LINEAR:
dxMin = D3D11_FILTER_TYPE_POINT;
dxMip = D3D11_FILTER_TYPE_LINEAR;
break;
case GL_LINEAR_MIPMAP_LINEAR:
dxMin = D3D11_FILTER_TYPE_LINEAR;
dxMip = D3D11_FILTER_TYPE_LINEAR;
break;
default:
UNREACHABLE();
}
D3D11_FILTER_TYPE dxMag = D3D11_FILTER_TYPE_POINT;
switch (magFilter)
{
case GL_NEAREST:
dxMag = D3D11_FILTER_TYPE_POINT;
break;
case GL_LINEAR:
dxMag = D3D11_FILTER_TYPE_LINEAR;
break;
default:
UNREACHABLE();
}
return D3D11_ENCODE_BASIC_FILTER(dxMin, dxMag, dxMip,
static_cast<D3D11_COMPARISON_FUNC>(comparison));
}
}
D3D11_TEXTURE_ADDRESS_MODE ConvertTextureWrap(GLenum wrap)
{
switch (wrap)
{
case GL_REPEAT:
return D3D11_TEXTURE_ADDRESS_WRAP;
case GL_CLAMP_TO_EDGE:
return D3D11_TEXTURE_ADDRESS_CLAMP;
case GL_CLAMP_TO_BORDER:
return D3D11_TEXTURE_ADDRESS_BORDER;
case GL_MIRRORED_REPEAT:
return D3D11_TEXTURE_ADDRESS_MIRROR;
default:
UNREACHABLE();
}
return D3D11_TEXTURE_ADDRESS_WRAP;
}
UINT ConvertMaxAnisotropy(float maxAnisotropy, D3D_FEATURE_LEVEL featureLevel)
{
return static_cast<UINT>(std::min(maxAnisotropy, d3d11_gl::GetMaximumAnisotropy(featureLevel)));
}
D3D11_QUERY ConvertQueryType(gl::QueryType type)
{
switch (type)
{
case gl::QueryType::AnySamples:
case gl::QueryType::AnySamplesConservative:
return D3D11_QUERY_OCCLUSION;
case gl::QueryType::TransformFeedbackPrimitivesWritten:
return D3D11_QUERY_SO_STATISTICS;
case gl::QueryType::TimeElapsed:
// Two internal queries are also created for begin/end timestamps
return D3D11_QUERY_TIMESTAMP_DISJOINT;
case gl::QueryType::CommandsCompleted:
return D3D11_QUERY_EVENT;
default:
UNREACHABLE();
return D3D11_QUERY_EVENT;
}
}
// Get the D3D11 write mask covering all color channels of a given format
UINT8 GetColorMask(const gl::InternalFormat &format)
{
return ConvertColorMask(format.redBits > 0, format.greenBits > 0, format.blueBits > 0,
format.alphaBits > 0);
}
} // namespace gl_d3d11
namespace d3d11
{
ANGLED3D11DeviceType GetDeviceType(ID3D11Device *device)
{
// Note that this function returns an ANGLED3D11DeviceType rather than a D3D_DRIVER_TYPE value,
// since it is difficult to tell Software and Reference devices apart
IDXGIDevice *dxgiDevice = nullptr;
IDXGIAdapter *dxgiAdapter = nullptr;
IDXGIAdapter2 *dxgiAdapter2 = nullptr;
ANGLED3D11DeviceType retDeviceType = ANGLE_D3D11_DEVICE_TYPE_UNKNOWN;
HRESULT hr = device->QueryInterface(__uuidof(IDXGIDevice), (void **)&dxgiDevice);
if (SUCCEEDED(hr))
{
hr = dxgiDevice->GetParent(__uuidof(IDXGIAdapter), (void **)&dxgiAdapter);
if (SUCCEEDED(hr))
{
std::wstring adapterString;
HRESULT adapter2hr =
dxgiAdapter->QueryInterface(__uuidof(dxgiAdapter2), (void **)&dxgiAdapter2);
if (SUCCEEDED(adapter2hr))
{
// On D3D_FEATURE_LEVEL_9_*, IDXGIAdapter::GetDesc returns "Software Adapter"
// for the description string. Try to use IDXGIAdapter2::GetDesc2 to get the
// actual hardware values if possible.
DXGI_ADAPTER_DESC2 adapterDesc2;
dxgiAdapter2->GetDesc2(&adapterDesc2);
adapterString = std::wstring(adapterDesc2.Description);
}
else
{
DXGI_ADAPTER_DESC adapterDesc;
dxgiAdapter->GetDesc(&adapterDesc);
adapterString = std::wstring(adapterDesc.Description);
}
// Both Reference and Software adapters will be 'Software Adapter'
const bool isSoftwareDevice =
(adapterString.find(std::wstring(L"Software Adapter")) != std::string::npos);
const bool isNullDevice = (adapterString == L"");
const bool isWARPDevice =
(adapterString.find(std::wstring(L"Basic Render")) != std::string::npos);
if (isSoftwareDevice || isNullDevice)
{
ASSERT(!isWARPDevice);
retDeviceType = ANGLE_D3D11_DEVICE_TYPE_SOFTWARE_REF_OR_NULL;
}
else if (isWARPDevice)
{
retDeviceType = ANGLE_D3D11_DEVICE_TYPE_WARP;
}
else
{
retDeviceType = ANGLE_D3D11_DEVICE_TYPE_HARDWARE;
}
}
}
SafeRelease(dxgiDevice);
SafeRelease(dxgiAdapter);
SafeRelease(dxgiAdapter2);
return retDeviceType;
}
void MakeValidSize(bool isImage,
DXGI_FORMAT format,
GLsizei *requestWidth,
GLsizei *requestHeight,
int *levelOffset)
{
const DXGIFormatSize &dxgiFormatInfo = d3d11::GetDXGIFormatSizeInfo(format);
int upsampleCount = 0;
// Don't expand the size of full textures that are at least (blockWidth x blockHeight) already.
if (isImage || *requestWidth < static_cast<GLsizei>(dxgiFormatInfo.blockWidth) ||
*requestHeight < static_cast<GLsizei>(dxgiFormatInfo.blockHeight))
{
while (*requestWidth % dxgiFormatInfo.blockWidth != 0 ||
*requestHeight % dxgiFormatInfo.blockHeight != 0)
{
*requestWidth <<= 1;
*requestHeight <<= 1;
upsampleCount++;
}
}
if (levelOffset)
{
*levelOffset = upsampleCount;
}
}
angle::Result GenerateInitialTextureData(
const gl::Context *context,
GLint internalFormat,
const Renderer11DeviceCaps &renderer11DeviceCaps,
GLuint width,
GLuint height,
GLuint depth,
GLuint mipLevels,
gl::TexLevelArray<D3D11_SUBRESOURCE_DATA> *outSubresourceData)
{
const d3d11::Format &d3dFormatInfo = d3d11::Format::Get(internalFormat, renderer11DeviceCaps);
ASSERT(d3dFormatInfo.dataInitializerFunction != nullptr);
const d3d11::DXGIFormatSize &dxgiFormatInfo =
d3d11::GetDXGIFormatSizeInfo(d3dFormatInfo.texFormat);
unsigned int rowPitch = dxgiFormatInfo.pixelBytes * width;
unsigned int depthPitch = rowPitch * height;
unsigned int maxImageSize = depthPitch * depth;
angle::MemoryBuffer *scratchBuffer = nullptr;
ANGLE_CHECK_GL_ALLOC(GetImplAs<Context11>(context),
context->getScratchBuffer(maxImageSize, &scratchBuffer));
d3dFormatInfo.dataInitializerFunction(width, height, depth, scratchBuffer->data(), rowPitch,
depthPitch);
for (unsigned int i = 0; i < mipLevels; i++)
{
unsigned int mipWidth = std::max(width >> i, 1U);
unsigned int mipHeight = std::max(height >> i, 1U);
unsigned int mipRowPitch = dxgiFormatInfo.pixelBytes * mipWidth;
unsigned int mipDepthPitch = mipRowPitch * mipHeight;
outSubresourceData->at(i).pSysMem = scratchBuffer->data();
outSubresourceData->at(i).SysMemPitch = mipRowPitch;
outSubresourceData->at(i).SysMemSlicePitch = mipDepthPitch;
}
return angle::Result::Continue;
}
UINT GetPrimitiveRestartIndex()
{
return std::numeric_limits<UINT>::max();
}
void SetPositionTexCoordVertex(PositionTexCoordVertex *vertex, float x, float y, float u, float v)
{
vertex->x = x;
vertex->y = y;
vertex->u = u;
vertex->v = v;
}
void SetPositionLayerTexCoord3DVertex(PositionLayerTexCoord3DVertex *vertex,
float x,
float y,
unsigned int layer,
float u,
float v,
float s)
{
vertex->x = x;
vertex->y = y;
vertex->l = layer;
vertex->u = u;
vertex->v = v;
vertex->s = s;
}
BlendStateKey::BlendStateKey()
{
memset(this, 0, sizeof(BlendStateKey));
}
bool operator==(const BlendStateKey &a, const BlendStateKey &b)
{
return memcmp(&a, &b, sizeof(BlendStateKey)) == 0;
}
bool operator!=(const BlendStateKey &a, const BlendStateKey &b)
{
return !(a == b);
}
RasterizerStateKey::RasterizerStateKey()
{
memset(this, 0, sizeof(RasterizerStateKey));
}
bool operator==(const RasterizerStateKey &a, const RasterizerStateKey &b)
{
return memcmp(&a, &b, sizeof(RasterizerStateKey)) == 0;
}
bool operator!=(const RasterizerStateKey &a, const RasterizerStateKey &b)
{
return !(a == b);
}
HRESULT SetDebugName(ID3D11DeviceChild *resource, const char *name)
{
#if defined(_DEBUG)
UINT existingDataSize = 0;
resource->GetPrivateData(WKPDID_D3DDebugObjectName, &existingDataSize, nullptr);
// Don't check the HRESULT- if it failed then that probably just means that no private data
// exists yet
if (existingDataSize > 0)
{
// In some cases, ANGLE will try to apply two names to one object, which causes
// a D3D SDK Layers warning. This can occur if, for example, you 'create' two objects
// (e.g.Rasterizer States) with identical DESCs on the same device. D3D11 will optimize
// these calls and return the same object both times.
static const char *multipleNamesUsed = "Multiple names set by ANGLE";
// Remove the existing name
HRESULT hr = resource->SetPrivateData(WKPDID_D3DDebugObjectName, 0, nullptr);
if (FAILED(hr))
{
return hr;
}
// Apply the new name
return resource->SetPrivateData(WKPDID_D3DDebugObjectName,
static_cast<unsigned int>(strlen(multipleNamesUsed)),
multipleNamesUsed);
}
else
{
return resource->SetPrivateData(WKPDID_D3DDebugObjectName,
static_cast<unsigned int>(strlen(name)), name);
}
#else
return S_OK;
#endif
}
// Keep this in cpp file where it has visibility of Renderer11.h, otherwise calling
// allocateResource is only compatible with Clang and MSVS, which support calling a
// method on a forward declared class in a template.
template <ResourceType ResourceT>
angle::Result LazyResource<ResourceT>::resolveImpl(d3d::Context *context,
Renderer11 *renderer,
const GetDescType<ResourceT> &desc,
GetInitDataType<ResourceT> *initData,
const char *name)
{
if (!mResource.valid())
{
ANGLE_TRY(renderer->allocateResource(context, desc, initData, &mResource));
mResource.setDebugName(name);
}
return angle::Result::Continue;
}
template angle::Result LazyResource<ResourceType::BlendState>::resolveImpl(
d3d::Context *context,
Renderer11 *renderer,
const D3D11_BLEND_DESC &desc,
void *initData,
const char *name);
template angle::Result LazyResource<ResourceType::ComputeShader>::resolveImpl(
d3d::Context *context,
Renderer11 *renderer,
const ShaderData &desc,
void *initData,
const char *name);
template angle::Result LazyResource<ResourceType::GeometryShader>::resolveImpl(
d3d::Context *context,
Renderer11 *renderer,
const ShaderData &desc,
const std::vector<D3D11_SO_DECLARATION_ENTRY> *initData,
const char *name);
template angle::Result LazyResource<ResourceType::InputLayout>::resolveImpl(
d3d::Context *context,
Renderer11 *renderer,
const InputElementArray &desc,
const ShaderData *initData,
const char *name);
template angle::Result LazyResource<ResourceType::PixelShader>::resolveImpl(d3d::Context *context,
Renderer11 *renderer,
const ShaderData &desc,
void *initData,
const char *name);
template angle::Result LazyResource<ResourceType::VertexShader>::resolveImpl(d3d::Context *context,
Renderer11 *renderer,
const ShaderData &desc,
void *initData,
const char *name);
LazyInputLayout::LazyInputLayout(const D3D11_INPUT_ELEMENT_DESC *inputDesc,
size_t inputDescLen,
const BYTE *byteCode,
size_t byteCodeLen,
const char *debugName)
: mInputDesc(inputDesc, inputDescLen), mByteCode(byteCode, byteCodeLen), mDebugName(debugName)
{}
LazyInputLayout::~LazyInputLayout() {}
angle::Result LazyInputLayout::resolve(d3d::Context *context, Renderer11 *renderer)
{
return resolveImpl(context, renderer, mInputDesc, &mByteCode, mDebugName);
}
LazyBlendState::LazyBlendState(const D3D11_BLEND_DESC &desc, const char *debugName)
: mDesc(desc), mDebugName(debugName)
{}
angle::Result LazyBlendState::resolve(d3d::Context *context, Renderer11 *renderer)
{
return resolveImpl(context, renderer, mDesc, nullptr, mDebugName);
}
angle::WorkaroundsD3D GenerateWorkarounds(const Renderer11DeviceCaps &deviceCaps,
const DXGI_ADAPTER_DESC &adapterDesc)
{
bool is9_3 = (deviceCaps.featureLevel <= D3D_FEATURE_LEVEL_9_3);
angle::WorkaroundsD3D workarounds;
workarounds.mrtPerfWorkaround = true;
workarounds.setDataFasterThanImageUpload = true;
workarounds.zeroMaxLodWorkaround = is9_3;
workarounds.useInstancedPointSpriteEmulation = is9_3;
// TODO(jmadill): Narrow problematic driver range.
if (IsNvidia(adapterDesc.VendorId))
{
if (deviceCaps.driverVersion.valid())
{
WORD part1 = HIWORD(deviceCaps.driverVersion.value().LowPart);
WORD part2 = LOWORD(deviceCaps.driverVersion.value().LowPart);
// Disable the workaround to fix a second driver bug on newer NVIDIA.
workarounds.depthStencilBlitExtraCopy = (part1 <= 13u && part2 < 6881);
}
else
{
workarounds.depthStencilBlitExtraCopy = true;
}
}
// TODO(jmadill): Disable workaround when we have a fixed compiler DLL.
workarounds.expandIntegerPowExpressions = true;
workarounds.flushAfterEndingTransformFeedback = IsNvidia(adapterDesc.VendorId);
workarounds.getDimensionsIgnoresBaseLevel = IsNvidia(adapterDesc.VendorId);
workarounds.skipVSConstantRegisterZero = IsNvidia(adapterDesc.VendorId);
if (IsIntel(adapterDesc.VendorId))
{
IntelDriverVersion capsVersion = d3d11_gl::GetIntelDriverVersion(deviceCaps.driverVersion);
workarounds.preAddTexelFetchOffsets = true;
workarounds.useSystemMemoryForConstantBuffers = true;
workarounds.disableB5G6R5Support = capsVersion < IntelDriverVersion(4539);
workarounds.addDummyTextureNoRenderTarget = capsVersion < IntelDriverVersion(4815);
if (IsSkylake(adapterDesc.DeviceId))
{
workarounds.callClearTwice = capsVersion < IntelDriverVersion(4771);
workarounds.emulateIsnanFloat = capsVersion < IntelDriverVersion(4542);
}
else if (IsBroadwell(adapterDesc.DeviceId) || IsHaswell(adapterDesc.DeviceId))
{
workarounds.rewriteUnaryMinusOperator = capsVersion < IntelDriverVersion(4624);
}
}
// TODO(jmadill): Disable when we have a fixed driver version.
workarounds.emulateTinyStencilTextures = IsAMD(adapterDesc.VendorId);
// The tiny stencil texture workaround involves using CopySubresource or UpdateSubresource on a
// depth stencil texture. This is not allowed until feature level 10.1 but since it is not
// possible to support ES3 on these devices, there is no need for the workaround to begin with
// (anglebug.com/1572).
if (deviceCaps.featureLevel < D3D_FEATURE_LEVEL_10_1)
{
workarounds.emulateTinyStencilTextures = false;
}
// If the VPAndRTArrayIndexFromAnyShaderFeedingRasterizer feature is not available, we have to
// select the viewport / RT array index in the geometry shader.
workarounds.selectViewInGeometryShader =
(deviceCaps.supportsVpRtIndexWriteFromVertexShader == false);
// Call platform hooks for testing overrides.
auto *platform = ANGLEPlatformCurrent();
platform->overrideWorkaroundsD3D(platform, &workarounds);
return workarounds;
}
void InitConstantBufferDesc(D3D11_BUFFER_DESC *constantBufferDescription, size_t byteWidth)
{
constantBufferDescription->ByteWidth = static_cast<UINT>(byteWidth);
constantBufferDescription->Usage = D3D11_USAGE_DYNAMIC;
constantBufferDescription->BindFlags = D3D11_BIND_CONSTANT_BUFFER;
constantBufferDescription->CPUAccessFlags = D3D11_CPU_ACCESS_WRITE;
constantBufferDescription->MiscFlags = 0;
constantBufferDescription->StructureByteStride = 0;
}
} // namespace d3d11
// TextureHelper11 implementation.
TextureHelper11::TextureHelper11() : mFormatSet(nullptr), mSampleCount(0) {}
TextureHelper11::TextureHelper11(TextureHelper11 &&toCopy) : TextureHelper11()
{
*this = std::move(toCopy);
}
TextureHelper11::TextureHelper11(const TextureHelper11 &other)
: mFormatSet(other.mFormatSet), mExtents(other.mExtents), mSampleCount(other.mSampleCount)
{
mData = other.mData;
}
TextureHelper11::~TextureHelper11() {}
void TextureHelper11::getDesc(D3D11_TEXTURE2D_DESC *desc) const
{
static_cast<ID3D11Texture2D *>(mData->object)->GetDesc(desc);
}
void TextureHelper11::getDesc(D3D11_TEXTURE3D_DESC *desc) const
{
static_cast<ID3D11Texture3D *>(mData->object)->GetDesc(desc);
}
void TextureHelper11::initDesc(const D3D11_TEXTURE2D_DESC &desc2D)
{
mData->resourceType = ResourceType::Texture2D;
mExtents.width = static_cast<int>(desc2D.Width);
mExtents.height = static_cast<int>(desc2D.Height);
mExtents.depth = 1;
mSampleCount = desc2D.SampleDesc.Count;
}
void TextureHelper11::initDesc(const D3D11_TEXTURE3D_DESC &desc3D)
{
mData->resourceType = ResourceType::Texture3D;
mExtents.width = static_cast<int>(desc3D.Width);
mExtents.height = static_cast<int>(desc3D.Height);
mExtents.depth = static_cast<int>(desc3D.Depth);
mSampleCount = 1;
}
TextureHelper11 &TextureHelper11::operator=(TextureHelper11 &&other)
{
std::swap(mData, other.mData);
std::swap(mExtents, other.mExtents);
std::swap(mFormatSet, other.mFormatSet);
std::swap(mSampleCount, other.mSampleCount);
return *this;
}
TextureHelper11 &TextureHelper11::operator=(const TextureHelper11 &other)
{
mData = other.mData;
mExtents = other.mExtents;
mFormatSet = other.mFormatSet;
mSampleCount = other.mSampleCount;
return *this;
}
bool TextureHelper11::operator==(const TextureHelper11 &other) const
{
return mData->object == other.mData->object;
}
bool TextureHelper11::operator!=(const TextureHelper11 &other) const
{
return mData->object != other.mData->object;
}
bool UsePresentPathFast(const Renderer11 *renderer,
const gl::FramebufferAttachment *framebufferAttachment)
{
if (framebufferAttachment == nullptr)
{
return false;
}
return (framebufferAttachment->type() == GL_FRAMEBUFFER_DEFAULT &&
renderer->presentPathFastEnabled());
}
bool UsePrimitiveRestartWorkaround(bool primitiveRestartFixedIndexEnabled,
gl::DrawElementsType type)
{
// We should never have to deal with primitive restart workaround issue with GL_UNSIGNED_INT
// indices, since we restrict it via MAX_ELEMENT_INDEX.
return (!primitiveRestartFixedIndexEnabled && type == gl::DrawElementsType::UnsignedShort);
}
IndexStorageType ClassifyIndexStorage(const gl::State &glState,
const gl::Buffer *elementArrayBuffer,
gl::DrawElementsType elementType,
gl::DrawElementsType destElementType,
unsigned int offset)
{
// No buffer bound means we are streaming from a client pointer.
if (!elementArrayBuffer || !IsOffsetAligned(elementType, offset))
{
return IndexStorageType::Dynamic;
}
// The buffer can be used directly if the storage supports it and no translation needed.
BufferD3D *bufferD3D = GetImplAs<BufferD3D>(elementArrayBuffer);
if (bufferD3D->supportsDirectBinding() && destElementType == elementType)
{
return IndexStorageType::Direct;
}
// Use a static copy when available.
StaticIndexBufferInterface *staticBuffer = bufferD3D->getStaticIndexBuffer();
if (staticBuffer != nullptr)
{
return IndexStorageType::Static;
}
// Static buffer not available, fall back to streaming.
return IndexStorageType::Dynamic;
}
} // namespace rx