blob: f5b977603d3585d892b87dea4696ff622200c560 [file] [log] [blame]
//
// Copyright 2018 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// vk_helpers:
// Helper utilitiy classes that manage Vulkan resources.
#include "libANGLE/renderer/vulkan/vk_helpers.h"
#include "common/utilities.h"
#include "image_util/loadimage.h"
#include "libANGLE/Context.h"
#include "libANGLE/renderer/renderer_utils.h"
#include "libANGLE/renderer/vulkan/BufferVk.h"
#include "libANGLE/renderer/vulkan/ContextVk.h"
#include "libANGLE/renderer/vulkan/DisplayVk.h"
#include "libANGLE/renderer/vulkan/FramebufferVk.h"
#include "libANGLE/renderer/vulkan/RenderTargetVk.h"
#include "libANGLE/renderer/vulkan/RendererVk.h"
#include "libANGLE/renderer/vulkan/vk_utils.h"
#include "libANGLE/trace.h"
namespace rx
{
namespace vk
{
namespace
{
// WebGL requires color textures to be initialized to transparent black.
constexpr VkClearColorValue kWebGLInitColorValue = {{0, 0, 0, 0}};
// When emulating a texture, we want the emulated channels to be 0, with alpha 1.
constexpr VkClearColorValue kEmulatedInitColorValue = {{0, 0, 0, 1.0f}};
// WebGL requires depth/stencil textures to be initialized to depth=1, stencil=0. We are fine with
// these values for emulated depth/stencil textures too.
constexpr VkClearDepthStencilValue kWebGLInitDepthStencilValue = {1.0f, 0};
constexpr VkBufferUsageFlags kLineLoopDynamicBufferUsage = VK_BUFFER_USAGE_INDEX_BUFFER_BIT |
VK_BUFFER_USAGE_TRANSFER_DST_BIT |
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
constexpr int kLineLoopDynamicBufferInitialSize = 1024 * 1024;
constexpr VkBufferUsageFlags kLineLoopDynamicIndirectBufferUsage =
VK_BUFFER_USAGE_INDIRECT_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT |
VK_BUFFER_USAGE_STORAGE_BUFFER_BIT;
constexpr int kLineLoopDynamicIndirectBufferInitialSize = sizeof(VkDrawIndirectCommand) * 16;
// This is an arbitrary max. We can change this later if necessary.
constexpr uint32_t kDefaultDescriptorPoolMaxSets = 128;
struct ImageMemoryBarrierData
{
// The Vk layout corresponding to the ImageLayout key.
VkImageLayout layout;
// The stage in which the image is used (or Bottom/Top if not using any specific stage). Unless
// Bottom/Top (Bottom used for transition to and Top used for transition from), the two values
// should match.
VkPipelineStageFlags dstStageMask;
VkPipelineStageFlags srcStageMask;
// Access mask when transitioning into this layout.
VkAccessFlags dstAccessMask;
// Access mask when transitioning out from this layout. Note that source access mask never
// needs a READ bit, as WAR hazards don't need memory barriers (just execution barriers).
VkAccessFlags srcAccessMask;
// If access is read-only, the memory barrier can be skipped altogether if retransitioning to
// the same layout. This is because read-after-read does not need an execution or memory
// barrier.
//
// Otherwise, some same-layout transitions require a memory barrier.
bool sameLayoutTransitionRequiresBarrier;
};
// clang-format off
constexpr angle::PackedEnumMap<ImageLayout, ImageMemoryBarrierData> kImageMemoryBarrierData = {
{
ImageLayout::Undefined,
{
VK_IMAGE_LAYOUT_UNDEFINED,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
// Transition to: we don't expect to transition into Undefined.
0,
// Transition from: there's no data in the image to care about.
0,
false,
},
},
{
ImageLayout::ExternalPreInitialized,
{
VK_IMAGE_LAYOUT_PREINITIALIZED,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VK_PIPELINE_STAGE_HOST_BIT | VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
// Transition to: we don't expect to transition into PreInitialized.
0,
// Transition from: all writes must finish before barrier.
VK_ACCESS_MEMORY_WRITE_BIT,
false,
},
},
{
ImageLayout::ExternalShadersReadOnly,
{
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
// Transition to: all reads must happen after barrier.
VK_ACCESS_SHADER_READ_BIT,
// Transition from: RAR and WAR don't need memory barrier.
0,
false,
},
},
{
ImageLayout::ExternalShadersWrite,
{
VK_IMAGE_LAYOUT_GENERAL,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
// Transition to: all reads and writes must happen after barrier.
VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT,
// Transition from: all writes must finish before barrier.
VK_ACCESS_SHADER_WRITE_BIT,
true,
},
},
{
ImageLayout::TransferSrc,
{
VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
// Transition to: all reads must happen after barrier.
VK_ACCESS_TRANSFER_READ_BIT,
// Transition from: RAR and WAR don't need memory barrier.
0,
false,
},
},
{
ImageLayout::TransferDst,
{
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL,
VK_PIPELINE_STAGE_TRANSFER_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT,
// Transition to: all writes must happen after barrier.
VK_ACCESS_TRANSFER_WRITE_BIT,
// Transition from: all writes must finish before barrier.
VK_ACCESS_TRANSFER_WRITE_BIT,
true,
},
},
{
ImageLayout::ComputeShaderReadOnly,
{
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
// Transition to: all reads must happen after barrier.
VK_ACCESS_SHADER_READ_BIT,
// Transition from: RAR and WAR don't need memory barrier.
0,
false,
},
},
{
ImageLayout::ComputeShaderWrite,
{
VK_IMAGE_LAYOUT_GENERAL,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
VK_PIPELINE_STAGE_COMPUTE_SHADER_BIT,
// Transition to: all reads and writes must happen after barrier.
VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT,
// Transition from: all writes must finish before barrier.
VK_ACCESS_SHADER_WRITE_BIT,
true,
},
},
{
ImageLayout::AllGraphicsShadersReadOnly,
{
VK_IMAGE_LAYOUT_SHADER_READ_ONLY_OPTIMAL,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
// Transition to: all reads must happen after barrier.
VK_ACCESS_SHADER_READ_BIT,
// Transition from: RAR and WAR don't need memory barrier.
0,
false,
},
},
{
ImageLayout::AllGraphicsShadersWrite,
{
VK_IMAGE_LAYOUT_GENERAL,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
VK_PIPELINE_STAGE_ALL_GRAPHICS_BIT,
// Transition to: all reads and writes must happen after barrier.
VK_ACCESS_SHADER_READ_BIT | VK_ACCESS_SHADER_WRITE_BIT,
// Transition from: all writes must finish before barrier.
VK_ACCESS_SHADER_WRITE_BIT,
true,
},
},
{
ImageLayout::ColorAttachment,
{
VK_IMAGE_LAYOUT_COLOR_ATTACHMENT_OPTIMAL,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
VK_PIPELINE_STAGE_COLOR_ATTACHMENT_OUTPUT_BIT,
// Transition to: all reads and writes must happen after barrier.
VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
// Transition from: all writes must finish before barrier.
VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT,
true,
},
},
{
ImageLayout::DepthStencilAttachment,
{
VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL,
VK_PIPELINE_STAGE_EARLY_FRAGMENT_TESTS_BIT,
VK_PIPELINE_STAGE_LATE_FRAGMENT_TESTS_BIT,
// Transition to: all reads and writes must happen after barrier.
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
// Transition from: all writes must finish before barrier.
VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT,
true,
},
},
{
ImageLayout::Present,
{
VK_IMAGE_LAYOUT_PRESENT_SRC_KHR,
VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT,
VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT,
// transition to: vkQueuePresentKHR automatically performs the appropriate memory barriers:
//
// > Any writes to memory backing the images referenced by the pImageIndices and
// > pSwapchains members of pPresentInfo, that are available before vkQueuePresentKHR
// > is executed, are automatically made visible to the read access performed by the
// > presentation engine.
0,
// Transition from: RAR and WAR don't need memory barrier.
0,
false,
},
},
};
// clang-format on
VkImageCreateFlags GetImageCreateFlags(gl::TextureType textureType)
{
switch (textureType)
{
case gl::TextureType::CubeMap:
return VK_IMAGE_CREATE_CUBE_COMPATIBLE_BIT;
case gl::TextureType::_3D:
return VK_IMAGE_CREATE_2D_ARRAY_COMPATIBLE_BIT;
default:
return 0;
}
}
void HandlePrimitiveRestart(gl::DrawElementsType glIndexType,
GLsizei indexCount,
const uint8_t *srcPtr,
uint8_t *outPtr)
{
switch (glIndexType)
{
case gl::DrawElementsType::UnsignedByte:
CopyLineLoopIndicesWithRestart<uint8_t, uint16_t>(indexCount, srcPtr, outPtr);
break;
case gl::DrawElementsType::UnsignedShort:
CopyLineLoopIndicesWithRestart<uint16_t, uint16_t>(indexCount, srcPtr, outPtr);
break;
case gl::DrawElementsType::UnsignedInt:
CopyLineLoopIndicesWithRestart<uint32_t, uint32_t>(indexCount, srcPtr, outPtr);
break;
default:
UNREACHABLE();
}
}
bool HasBothDepthAndStencilAspects(VkImageAspectFlags aspectFlags)
{
constexpr VkImageAspectFlags kDepthStencilAspects =
VK_IMAGE_ASPECT_STENCIL_BIT | VK_IMAGE_ASPECT_DEPTH_BIT;
return (aspectFlags & kDepthStencilAspects) == kDepthStencilAspects;
}
uint32_t GetImageLayerCountForView(const ImageHelper &image)
{
// Depth > 1 means this is a 3D texture and depth is our layer count
return image.getExtents().depth > 1 ? image.getExtents().depth : image.getLayerCount();
}
ImageView *GetLevelImageView(ImageViewVector *imageViews, uint32_t level, uint32_t levelCount)
{
// Lazily allocate the storage for image views. We allocate the full level count because we
// don't want to trigger any std::vecotr reallocations. Reallocations could invalidate our
// view pointers.
if (imageViews->empty())
{
imageViews->resize(levelCount);
}
ASSERT(imageViews->size() > level);
return &(*imageViews)[level];
}
// Special rules apply to VkBufferImageCopy with depth/stencil. The components are tightly packed
// into a depth or stencil section of the destination buffer. See the spec:
// https://www.khronos.org/registry/vulkan/specs/1.1-extensions/man/html/VkBufferImageCopy.html
const angle::Format &GetDepthStencilImageToBufferFormat(const angle::Format &imageFormat,
VkImageAspectFlagBits copyAspect)
{
if (copyAspect == VK_IMAGE_ASPECT_STENCIL_BIT)
{
ASSERT(imageFormat.id == angle::FormatID::D24_UNORM_S8_UINT ||
imageFormat.id == angle::FormatID::D32_FLOAT_S8X24_UINT ||
imageFormat.id == angle::FormatID::S8_UINT);
return angle::Format::Get(angle::FormatID::S8_UINT);
}
ASSERT(copyAspect == VK_IMAGE_ASPECT_DEPTH_BIT);
switch (imageFormat.id)
{
case angle::FormatID::D16_UNORM:
return imageFormat;
case angle::FormatID::D24_UNORM_X8_UINT:
return imageFormat;
case angle::FormatID::D24_UNORM_S8_UINT:
return angle::Format::Get(angle::FormatID::D24_UNORM_X8_UINT);
case angle::FormatID::D32_FLOAT:
return imageFormat;
case angle::FormatID::D32_FLOAT_S8X24_UINT:
return angle::Format::Get(angle::FormatID::D32_FLOAT);
default:
UNREACHABLE();
return imageFormat;
}
}
} // anonymous namespace
// DynamicBuffer implementation.
DynamicBuffer::DynamicBuffer()
: mUsage(0),
mHostVisible(false),
mInitialSize(0),
mBuffer(nullptr),
mNextAllocationOffset(0),
mLastFlushOrInvalidateOffset(0),
mSize(0),
mAlignment(0)
{}
DynamicBuffer::DynamicBuffer(DynamicBuffer &&other)
: mUsage(other.mUsage),
mHostVisible(other.mHostVisible),
mInitialSize(other.mInitialSize),
mBuffer(other.mBuffer),
mNextAllocationOffset(other.mNextAllocationOffset),
mLastFlushOrInvalidateOffset(other.mLastFlushOrInvalidateOffset),
mSize(other.mSize),
mAlignment(other.mAlignment),
mInFlightBuffers(std::move(other.mInFlightBuffers))
{
other.mBuffer = nullptr;
}
void DynamicBuffer::init(RendererVk *renderer,
VkBufferUsageFlags usage,
size_t alignment,
size_t initialSize,
bool hostVisible)
{
mUsage = usage;
mHostVisible = hostVisible;
// Check that we haven't overriden the initial size of the buffer in setMinimumSizeForTesting.
if (mInitialSize == 0)
{
mInitialSize = initialSize;
mSize = 0;
}
// Workaround for the mock ICD not supporting allocations greater than 0x1000.
// Could be removed if https://github.com/KhronosGroup/Vulkan-Tools/issues/84 is fixed.
if (renderer->isMockICDEnabled())
{
mSize = std::min<size_t>(mSize, 0x1000);
}
updateAlignment(renderer, alignment);
}
DynamicBuffer::~DynamicBuffer()
{
ASSERT(mBuffer == nullptr);
}
angle::Result DynamicBuffer::allocateNewBuffer(ContextVk *contextVk)
{
std::unique_ptr<BufferHelper> buffer = std::make_unique<BufferHelper>();
VkBufferCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
createInfo.flags = 0;
createInfo.size = mSize;
createInfo.usage = mUsage;
createInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
createInfo.queueFamilyIndexCount = 0;
createInfo.pQueueFamilyIndices = nullptr;
const VkMemoryPropertyFlags memoryProperty =
mHostVisible ? VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT : VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
ANGLE_TRY(buffer->init(contextVk, createInfo, memoryProperty));
ASSERT(!mBuffer);
mBuffer = buffer.release();
return angle::Result::Continue;
}
angle::Result DynamicBuffer::allocate(ContextVk *contextVk,
size_t sizeInBytes,
uint8_t **ptrOut,
VkBuffer *bufferOut,
VkDeviceSize *offsetOut,
bool *newBufferAllocatedOut)
{
size_t sizeToAllocate = roundUp(sizeInBytes, mAlignment);
angle::base::CheckedNumeric<size_t> checkedNextWriteOffset = mNextAllocationOffset;
checkedNextWriteOffset += sizeToAllocate;
if (!checkedNextWriteOffset.IsValid() || checkedNextWriteOffset.ValueOrDie() >= mSize)
{
if (mBuffer)
{
ANGLE_TRY(flush(contextVk));
mBuffer->unmap(contextVk->getDevice());
mInFlightBuffers.push_back(mBuffer);
mBuffer = nullptr;
}
if (sizeToAllocate > mSize)
{
mSize = std::max(mInitialSize, sizeToAllocate);
// Clear the free list since the free buffers are now too small.
for (BufferHelper *toFree : mBufferFreeList)
{
toFree->release(contextVk->getRenderer());
}
mBufferFreeList.clear();
}
// The front of the free list should be the oldest. Thus if it is in use the rest of the
// free list should be in use as well.
if (mBufferFreeList.empty() || mBufferFreeList.front()->isResourceInUse(contextVk))
{
ANGLE_TRY(allocateNewBuffer(contextVk));
}
else
{
mBuffer = mBufferFreeList.front();
mBufferFreeList.erase(mBufferFreeList.begin());
}
ASSERT(mBuffer->getSize() == mSize);
mNextAllocationOffset = 0;
mLastFlushOrInvalidateOffset = 0;
if (newBufferAllocatedOut != nullptr)
{
*newBufferAllocatedOut = true;
}
}
else if (newBufferAllocatedOut != nullptr)
{
*newBufferAllocatedOut = false;
}
ASSERT(mBuffer != nullptr);
if (bufferOut != nullptr)
{
*bufferOut = mBuffer->getBuffer().getHandle();
}
// Optionally map() the buffer if possible
if (ptrOut)
{
ASSERT(mHostVisible);
uint8_t *mappedMemory;
ANGLE_TRY(mBuffer->map(contextVk, &mappedMemory));
*ptrOut = mappedMemory + mNextAllocationOffset;
}
*offsetOut = static_cast<VkDeviceSize>(mNextAllocationOffset);
mNextAllocationOffset += static_cast<uint32_t>(sizeToAllocate);
return angle::Result::Continue;
}
angle::Result DynamicBuffer::flush(ContextVk *contextVk)
{
if (mHostVisible && (mNextAllocationOffset > mLastFlushOrInvalidateOffset))
{
ASSERT(mBuffer != nullptr);
ANGLE_TRY(mBuffer->flush(contextVk, mLastFlushOrInvalidateOffset,
mNextAllocationOffset - mLastFlushOrInvalidateOffset));
mLastFlushOrInvalidateOffset = mNextAllocationOffset;
}
return angle::Result::Continue;
}
angle::Result DynamicBuffer::invalidate(ContextVk *contextVk)
{
if (mHostVisible && (mNextAllocationOffset > mLastFlushOrInvalidateOffset))
{
ASSERT(mBuffer != nullptr);
ANGLE_TRY(mBuffer->invalidate(contextVk, mLastFlushOrInvalidateOffset,
mNextAllocationOffset - mLastFlushOrInvalidateOffset));
mLastFlushOrInvalidateOffset = mNextAllocationOffset;
}
return angle::Result::Continue;
}
void DynamicBuffer::releaseBufferListToRenderer(RendererVk *renderer,
std::vector<BufferHelper *> *buffers)
{
for (BufferHelper *toFree : *buffers)
{
toFree->release(renderer);
delete toFree;
}
buffers->clear();
}
void DynamicBuffer::destroyBufferList(VkDevice device, std::vector<BufferHelper *> *buffers)
{
for (BufferHelper *toFree : *buffers)
{
toFree->destroy(device);
delete toFree;
}
buffers->clear();
}
void DynamicBuffer::release(RendererVk *renderer)
{
reset();
releaseBufferListToRenderer(renderer, &mInFlightBuffers);
releaseBufferListToRenderer(renderer, &mBufferFreeList);
if (mBuffer)
{
mBuffer->release(renderer);
SafeDelete(mBuffer);
}
}
void DynamicBuffer::releaseInFlightBuffers(ContextVk *contextVk)
{
for (BufferHelper *toRelease : mInFlightBuffers)
{
// If the dynamic buffer was resized we cannot reuse the retained buffer.
if (toRelease->getSize() < mSize)
{
toRelease->release(contextVk->getRenderer());
}
else
{
mBufferFreeList.push_back(toRelease);
}
}
mInFlightBuffers.clear();
}
void DynamicBuffer::destroy(VkDevice device)
{
reset();
destroyBufferList(device, &mInFlightBuffers);
destroyBufferList(device, &mBufferFreeList);
if (mBuffer)
{
mBuffer->unmap(device);
mBuffer->destroy(device);
delete mBuffer;
mBuffer = nullptr;
}
}
void DynamicBuffer::updateAlignment(RendererVk *renderer, size_t alignment)
{
ASSERT(alignment > 0);
size_t atomSize =
static_cast<size_t>(renderer->getPhysicalDeviceProperties().limits.nonCoherentAtomSize);
// We need lcm(alignment, atomSize). Usually, one divides the other so std::max() could be used
// instead. Only known case where this assumption breaks is for 3-component types with 16- or
// 32-bit channels, so that's special-cased to avoid a full-fledged lcm implementation.
if (gl::isPow2(alignment))
{
ASSERT(alignment % atomSize == 0 || atomSize % alignment == 0);
ASSERT(gl::isPow2(atomSize));
alignment = std::max(alignment, atomSize);
}
else
{
ASSERT(gl::isPow2(atomSize));
ASSERT(alignment % 3 == 0);
ASSERT(gl::isPow2(alignment / 3));
alignment = std::max(alignment / 3, atomSize) * 3;
}
// If alignment has changed, make sure the next allocation is done at an aligned offset.
if (alignment != mAlignment)
{
mNextAllocationOffset = roundUp(mNextAllocationOffset, static_cast<uint32_t>(alignment));
}
mAlignment = alignment;
}
void DynamicBuffer::setMinimumSizeForTesting(size_t minSize)
{
// This will really only have an effect next time we call allocate.
mInitialSize = minSize;
// Forces a new allocation on the next allocate.
mSize = 0;
}
void DynamicBuffer::reset()
{
mSize = 0;
mNextAllocationOffset = 0;
mLastFlushOrInvalidateOffset = 0;
}
// DescriptorPoolHelper implementation.
DescriptorPoolHelper::DescriptorPoolHelper() : mFreeDescriptorSets(0) {}
DescriptorPoolHelper::~DescriptorPoolHelper() = default;
bool DescriptorPoolHelper::hasCapacity(uint32_t descriptorSetCount) const
{
return mFreeDescriptorSets >= descriptorSetCount;
}
angle::Result DescriptorPoolHelper::init(Context *context,
const std::vector<VkDescriptorPoolSize> &poolSizes,
uint32_t maxSets)
{
if (mDescriptorPool.valid())
{
// This could be improved by recycling the descriptor pool.
mDescriptorPool.destroy(context->getDevice());
}
VkDescriptorPoolCreateInfo descriptorPoolInfo = {};
descriptorPoolInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_POOL_CREATE_INFO;
descriptorPoolInfo.flags = 0;
descriptorPoolInfo.maxSets = maxSets;
descriptorPoolInfo.poolSizeCount = static_cast<uint32_t>(poolSizes.size());
descriptorPoolInfo.pPoolSizes = poolSizes.data();
mFreeDescriptorSets = maxSets;
ANGLE_VK_TRY(context, mDescriptorPool.init(context->getDevice(), descriptorPoolInfo));
return angle::Result::Continue;
}
void DescriptorPoolHelper::destroy(VkDevice device)
{
mDescriptorPool.destroy(device);
}
void DescriptorPoolHelper::release(ContextVk *contextVk)
{
contextVk->addGarbage(&mDescriptorPool);
}
angle::Result DescriptorPoolHelper::allocateSets(ContextVk *contextVk,
const VkDescriptorSetLayout *descriptorSetLayout,
uint32_t descriptorSetCount,
VkDescriptorSet *descriptorSetsOut)
{
VkDescriptorSetAllocateInfo allocInfo = {};
allocInfo.sType = VK_STRUCTURE_TYPE_DESCRIPTOR_SET_ALLOCATE_INFO;
allocInfo.descriptorPool = mDescriptorPool.getHandle();
allocInfo.descriptorSetCount = descriptorSetCount;
allocInfo.pSetLayouts = descriptorSetLayout;
ASSERT(mFreeDescriptorSets >= descriptorSetCount);
mFreeDescriptorSets -= descriptorSetCount;
ANGLE_VK_TRY(contextVk, mDescriptorPool.allocateDescriptorSets(contextVk->getDevice(),
allocInfo, descriptorSetsOut));
return angle::Result::Continue;
}
// DynamicDescriptorPool implementation.
DynamicDescriptorPool::DynamicDescriptorPool()
: mMaxSetsPerPool(kDefaultDescriptorPoolMaxSets), mCurrentPoolIndex(0)
{}
DynamicDescriptorPool::~DynamicDescriptorPool() = default;
angle::Result DynamicDescriptorPool::init(ContextVk *contextVk,
const VkDescriptorPoolSize *setSizes,
uint32_t setSizeCount)
{
ASSERT(mCurrentPoolIndex == 0);
ASSERT(mDescriptorPools.empty() || (mDescriptorPools.size() == 1 &&
mDescriptorPools[0]->get().hasCapacity(mMaxSetsPerPool)));
mPoolSizes.assign(setSizes, setSizes + setSizeCount);
for (uint32_t i = 0; i < setSizeCount; ++i)
{
mPoolSizes[i].descriptorCount *= mMaxSetsPerPool;
}
mDescriptorPools.push_back(new RefCountedDescriptorPoolHelper());
return mDescriptorPools[0]->get().init(contextVk, mPoolSizes, mMaxSetsPerPool);
}
void DynamicDescriptorPool::destroy(VkDevice device)
{
for (RefCountedDescriptorPoolHelper *pool : mDescriptorPools)
{
ASSERT(!pool->isReferenced());
pool->get().destroy(device);
delete pool;
}
mDescriptorPools.clear();
}
void DynamicDescriptorPool::release(ContextVk *contextVk)
{
for (RefCountedDescriptorPoolHelper *pool : mDescriptorPools)
{
ASSERT(!pool->isReferenced());
pool->get().release(contextVk);
delete pool;
}
mDescriptorPools.clear();
}
angle::Result DynamicDescriptorPool::allocateSetsAndGetInfo(
ContextVk *contextVk,
const VkDescriptorSetLayout *descriptorSetLayout,
uint32_t descriptorSetCount,
RefCountedDescriptorPoolBinding *bindingOut,
VkDescriptorSet *descriptorSetsOut,
bool *newPoolAllocatedOut)
{
*newPoolAllocatedOut = false;
if (!bindingOut->valid() || !bindingOut->get().hasCapacity(descriptorSetCount))
{
if (!mDescriptorPools[mCurrentPoolIndex]->get().hasCapacity(descriptorSetCount))
{
ANGLE_TRY(allocateNewPool(contextVk));
*newPoolAllocatedOut = true;
}
// Make sure the old binding knows the descriptor sets can still be in-use. We only need
// to update the serial when we move to a new pool. This is because we only check serials
// when we move to a new pool.
if (bindingOut->valid())
{
Serial currentSerial = contextVk->getCurrentQueueSerial();
bindingOut->get().updateSerial(currentSerial);
}
bindingOut->set(mDescriptorPools[mCurrentPoolIndex]);
}
return bindingOut->get().allocateSets(contextVk, descriptorSetLayout, descriptorSetCount,
descriptorSetsOut);
}
angle::Result DynamicDescriptorPool::allocateNewPool(ContextVk *contextVk)
{
bool found = false;
for (size_t poolIndex = 0; poolIndex < mDescriptorPools.size(); ++poolIndex)
{
if (!mDescriptorPools[poolIndex]->isReferenced() &&
!contextVk->isSerialInUse(mDescriptorPools[poolIndex]->get().getSerial()))
{
mCurrentPoolIndex = poolIndex;
found = true;
break;
}
}
if (!found)
{
mDescriptorPools.push_back(new RefCountedDescriptorPoolHelper());
mCurrentPoolIndex = mDescriptorPools.size() - 1;
static constexpr size_t kMaxPools = 99999;
ANGLE_VK_CHECK(contextVk, mDescriptorPools.size() < kMaxPools, VK_ERROR_TOO_MANY_OBJECTS);
}
return mDescriptorPools[mCurrentPoolIndex]->get().init(contextVk, mPoolSizes, mMaxSetsPerPool);
}
void DynamicDescriptorPool::setMaxSetsPerPoolForTesting(uint32_t maxSetsPerPool)
{
mMaxSetsPerPool = maxSetsPerPool;
}
// DynamicallyGrowingPool implementation
template <typename Pool>
DynamicallyGrowingPool<Pool>::DynamicallyGrowingPool()
: mPoolSize(0), mCurrentPool(0), mCurrentFreeEntry(0)
{}
template <typename Pool>
DynamicallyGrowingPool<Pool>::~DynamicallyGrowingPool() = default;
template <typename Pool>
angle::Result DynamicallyGrowingPool<Pool>::initEntryPool(Context *contextVk, uint32_t poolSize)
{
ASSERT(mPools.empty() && mPoolStats.empty());
mPoolSize = poolSize;
return angle::Result::Continue;
}
template <typename Pool>
void DynamicallyGrowingPool<Pool>::destroyEntryPool()
{
mPools.clear();
mPoolStats.clear();
}
template <typename Pool>
bool DynamicallyGrowingPool<Pool>::findFreeEntryPool(ContextVk *contextVk)
{
Serial lastCompletedQueueSerial = contextVk->getLastCompletedQueueSerial();
for (size_t i = 0; i < mPools.size(); ++i)
{
if (mPoolStats[i].freedCount == mPoolSize &&
mPoolStats[i].serial <= lastCompletedQueueSerial)
{
mCurrentPool = i;
mCurrentFreeEntry = 0;
mPoolStats[i].freedCount = 0;
return true;
}
}
return false;
}
template <typename Pool>
angle::Result DynamicallyGrowingPool<Pool>::allocateNewEntryPool(ContextVk *contextVk, Pool &&pool)
{
mPools.push_back(std::move(pool));
PoolStats poolStats = {0, Serial()};
mPoolStats.push_back(poolStats);
mCurrentPool = mPools.size() - 1;
mCurrentFreeEntry = 0;
return angle::Result::Continue;
}
template <typename Pool>
void DynamicallyGrowingPool<Pool>::onEntryFreed(ContextVk *contextVk, size_t poolIndex)
{
ASSERT(poolIndex < mPoolStats.size() && mPoolStats[poolIndex].freedCount < mPoolSize);
// Take note of the current serial to avoid reallocating a query in the same pool
mPoolStats[poolIndex].serial = contextVk->getCurrentQueueSerial();
++mPoolStats[poolIndex].freedCount;
}
// DynamicQueryPool implementation
DynamicQueryPool::DynamicQueryPool() = default;
DynamicQueryPool::~DynamicQueryPool() = default;
angle::Result DynamicQueryPool::init(ContextVk *contextVk, VkQueryType type, uint32_t poolSize)
{
ANGLE_TRY(initEntryPool(contextVk, poolSize));
mQueryType = type;
ANGLE_TRY(allocateNewPool(contextVk));
return angle::Result::Continue;
}
void DynamicQueryPool::destroy(VkDevice device)
{
for (QueryPool &queryPool : mPools)
{
queryPool.destroy(device);
}
destroyEntryPool();
}
angle::Result DynamicQueryPool::allocateQuery(ContextVk *contextVk, QueryHelper *queryOut)
{
ASSERT(!queryOut->getQueryPool());
size_t poolIndex = 0;
uint32_t queryIndex = 0;
ANGLE_TRY(allocateQuery(contextVk, &poolIndex, &queryIndex));
queryOut->init(this, poolIndex, queryIndex);
return angle::Result::Continue;
}
void DynamicQueryPool::freeQuery(ContextVk *contextVk, QueryHelper *query)
{
if (query->getQueryPool())
{
size_t poolIndex = query->getQueryPoolIndex();
ASSERT(query->getQueryPool()->valid());
freeQuery(contextVk, poolIndex, query->getQuery());
query->deinit();
}
}
angle::Result DynamicQueryPool::allocateQuery(ContextVk *contextVk,
size_t *poolIndex,
uint32_t *queryIndex)
{
if (mCurrentFreeEntry >= mPoolSize)
{
// No more queries left in this pool, create another one.
ANGLE_TRY(allocateNewPool(contextVk));
}
*poolIndex = mCurrentPool;
*queryIndex = mCurrentFreeEntry++;
return angle::Result::Continue;
}
void DynamicQueryPool::freeQuery(ContextVk *contextVk, size_t poolIndex, uint32_t queryIndex)
{
ANGLE_UNUSED_VARIABLE(queryIndex);
onEntryFreed(contextVk, poolIndex);
}
angle::Result DynamicQueryPool::allocateNewPool(ContextVk *contextVk)
{
if (findFreeEntryPool(contextVk))
{
return angle::Result::Continue;
}
VkQueryPoolCreateInfo queryPoolInfo = {};
queryPoolInfo.sType = VK_STRUCTURE_TYPE_QUERY_POOL_CREATE_INFO;
queryPoolInfo.flags = 0;
queryPoolInfo.queryType = mQueryType;
queryPoolInfo.queryCount = mPoolSize;
queryPoolInfo.pipelineStatistics = 0;
QueryPool queryPool;
ANGLE_VK_TRY(contextVk, queryPool.init(contextVk->getDevice(), queryPoolInfo));
return allocateNewEntryPool(contextVk, std::move(queryPool));
}
// QueryHelper implementation
QueryHelper::QueryHelper() : mDynamicQueryPool(nullptr), mQueryPoolIndex(0), mQuery(0) {}
QueryHelper::~QueryHelper() {}
void QueryHelper::init(const DynamicQueryPool *dynamicQueryPool,
const size_t queryPoolIndex,
uint32_t query)
{
mDynamicQueryPool = dynamicQueryPool;
mQueryPoolIndex = queryPoolIndex;
mQuery = query;
}
void QueryHelper::deinit()
{
mDynamicQueryPool = nullptr;
mQueryPoolIndex = 0;
mQuery = 0;
}
void QueryHelper::beginQuery(ContextVk *contextVk)
{
contextVk->getCommandGraph()->beginQuery(getQueryPool(), getQuery());
mMostRecentSerial = contextVk->getCurrentQueueSerial();
}
void QueryHelper::endQuery(ContextVk *contextVk)
{
contextVk->getCommandGraph()->endQuery(getQueryPool(), getQuery());
mMostRecentSerial = contextVk->getCurrentQueueSerial();
}
void QueryHelper::writeTimestamp(ContextVk *contextVk)
{
contextVk->getCommandGraph()->writeTimestamp(getQueryPool(), getQuery());
mMostRecentSerial = contextVk->getCurrentQueueSerial();
}
bool QueryHelper::hasPendingWork(ContextVk *contextVk)
{
// If the renderer has a queue serial higher than the stored one, the command buffers that
// recorded this query have already been submitted, so there is no pending work.
return mMostRecentSerial == contextVk->getCurrentQueueSerial();
}
// DynamicSemaphorePool implementation
DynamicSemaphorePool::DynamicSemaphorePool() = default;
DynamicSemaphorePool::~DynamicSemaphorePool() = default;
angle::Result DynamicSemaphorePool::init(ContextVk *contextVk, uint32_t poolSize)
{
ANGLE_TRY(initEntryPool(contextVk, poolSize));
ANGLE_TRY(allocateNewPool(contextVk));
return angle::Result::Continue;
}
void DynamicSemaphorePool::destroy(VkDevice device)
{
for (auto &semaphorePool : mPools)
{
for (Semaphore &semaphore : semaphorePool)
{
semaphore.destroy(device);
}
}
destroyEntryPool();
}
angle::Result DynamicSemaphorePool::allocateSemaphore(ContextVk *contextVk,
SemaphoreHelper *semaphoreOut)
{
ASSERT(!semaphoreOut->getSemaphore());
if (mCurrentFreeEntry >= mPoolSize)
{
// No more queries left in this pool, create another one.
ANGLE_TRY(allocateNewPool(contextVk));
}
semaphoreOut->init(mCurrentPool, &mPools[mCurrentPool][mCurrentFreeEntry++]);
return angle::Result::Continue;
}
void DynamicSemaphorePool::freeSemaphore(ContextVk *contextVk, SemaphoreHelper *semaphore)
{
if (semaphore->getSemaphore())
{
onEntryFreed(contextVk, semaphore->getSemaphorePoolIndex());
semaphore->deinit();
}
}
angle::Result DynamicSemaphorePool::allocateNewPool(ContextVk *contextVk)
{
if (findFreeEntryPool(contextVk))
{
return angle::Result::Continue;
}
std::vector<Semaphore> newPool(mPoolSize);
for (Semaphore &semaphore : newPool)
{
ANGLE_VK_TRY(contextVk, semaphore.init(contextVk->getDevice()));
}
// This code is safe as long as the growth of the outer vector in vector<vector<T>> is done by
// moving the inner vectors, making sure references to the inner vector remain intact.
Semaphore *assertMove = mPools.size() > 0 ? mPools[0].data() : nullptr;
ANGLE_TRY(allocateNewEntryPool(contextVk, std::move(newPool)));
ASSERT(assertMove == nullptr || assertMove == mPools[0].data());
return angle::Result::Continue;
}
// SemaphoreHelper implementation
SemaphoreHelper::SemaphoreHelper() : mSemaphorePoolIndex(0), mSemaphore(0) {}
SemaphoreHelper::~SemaphoreHelper() {}
SemaphoreHelper::SemaphoreHelper(SemaphoreHelper &&other)
: mSemaphorePoolIndex(other.mSemaphorePoolIndex), mSemaphore(other.mSemaphore)
{
other.mSemaphore = nullptr;
}
SemaphoreHelper &SemaphoreHelper::operator=(SemaphoreHelper &&other)
{
std::swap(mSemaphorePoolIndex, other.mSemaphorePoolIndex);
std::swap(mSemaphore, other.mSemaphore);
return *this;
}
void SemaphoreHelper::init(const size_t semaphorePoolIndex, const Semaphore *semaphore)
{
mSemaphorePoolIndex = semaphorePoolIndex;
mSemaphore = semaphore;
}
void SemaphoreHelper::deinit()
{
mSemaphorePoolIndex = 0;
mSemaphore = nullptr;
}
// LineLoopHelper implementation.
LineLoopHelper::LineLoopHelper(RendererVk *renderer)
{
// We need to use an alignment of the maximum size we're going to allocate, which is
// VK_INDEX_TYPE_UINT32. When we switch from a drawElement to a drawArray call, the allocations
// can vary in size. According to the Vulkan spec, when calling vkCmdBindIndexBuffer: 'The
// sum of offset and the address of the range of VkDeviceMemory object that is backing buffer,
// must be a multiple of the type indicated by indexType'.
mDynamicIndexBuffer.init(renderer, kLineLoopDynamicBufferUsage, sizeof(uint32_t),
kLineLoopDynamicBufferInitialSize, true);
mDynamicIndirectBuffer.init(renderer, kLineLoopDynamicIndirectBufferUsage, sizeof(uint32_t),
kLineLoopDynamicIndirectBufferInitialSize, true);
}
LineLoopHelper::~LineLoopHelper() = default;
angle::Result LineLoopHelper::getIndexBufferForDrawArrays(ContextVk *contextVk,
uint32_t clampedVertexCount,
GLint firstVertex,
BufferHelper **bufferOut,
VkDeviceSize *offsetOut)
{
uint32_t *indices = nullptr;
size_t allocateBytes = sizeof(uint32_t) * (static_cast<size_t>(clampedVertexCount) + 1);
mDynamicIndexBuffer.releaseInFlightBuffers(contextVk);
ANGLE_TRY(mDynamicIndexBuffer.allocate(contextVk, allocateBytes,
reinterpret_cast<uint8_t **>(&indices), nullptr,
offsetOut, nullptr));
*bufferOut = mDynamicIndexBuffer.getCurrentBuffer();
// Note: there could be an overflow in this addition.
uint32_t unsignedFirstVertex = static_cast<uint32_t>(firstVertex);
uint32_t vertexCount = (clampedVertexCount + unsignedFirstVertex);
for (uint32_t vertexIndex = unsignedFirstVertex; vertexIndex < vertexCount; vertexIndex++)
{
*indices++ = vertexIndex;
}
*indices = unsignedFirstVertex;
// Since we are not using the VK_MEMORY_PROPERTY_HOST_COHERENT_BIT flag when creating the
// device memory in the StreamingBuffer, we always need to make sure we flush it after
// writing.
ANGLE_TRY(mDynamicIndexBuffer.flush(contextVk));
return angle::Result::Continue;
}
angle::Result LineLoopHelper::getIndexBufferForElementArrayBuffer(ContextVk *contextVk,
BufferVk *elementArrayBufferVk,
gl::DrawElementsType glIndexType,
int indexCount,
intptr_t elementArrayOffset,
BufferHelper **bufferOut,
VkDeviceSize *bufferOffsetOut,
uint32_t *indexCountOut)
{
if (glIndexType == gl::DrawElementsType::UnsignedByte ||
contextVk->getState().isPrimitiveRestartEnabled())
{
ANGLE_TRACE_EVENT0("gpu.angle", "LineLoopHelper::getIndexBufferForElementArrayBuffer");
void *srcDataMapping = nullptr;
ANGLE_TRY(elementArrayBufferVk->mapImpl(contextVk, &srcDataMapping));
ANGLE_TRY(streamIndices(contextVk, glIndexType, indexCount,
static_cast<const uint8_t *>(srcDataMapping) + elementArrayOffset,
bufferOut, bufferOffsetOut, indexCountOut));
elementArrayBufferVk->unmapImpl(contextVk);
return angle::Result::Continue;
}
*indexCountOut = indexCount + 1;
VkIndexType indexType = gl_vk::kIndexTypeMap[glIndexType];
ASSERT(indexType == VK_INDEX_TYPE_UINT16 || indexType == VK_INDEX_TYPE_UINT32);
uint32_t *indices = nullptr;
auto unitSize = (indexType == VK_INDEX_TYPE_UINT16 ? sizeof(uint16_t) : sizeof(uint32_t));
size_t allocateBytes = unitSize * (indexCount + 1) + 1;
mDynamicIndexBuffer.releaseInFlightBuffers(contextVk);
ANGLE_TRY(mDynamicIndexBuffer.allocate(contextVk, allocateBytes,
reinterpret_cast<uint8_t **>(&indices), nullptr,
bufferOffsetOut, nullptr));
*bufferOut = mDynamicIndexBuffer.getCurrentBuffer();
VkDeviceSize sourceOffset = static_cast<VkDeviceSize>(elementArrayOffset);
uint64_t unitCount = static_cast<VkDeviceSize>(indexCount);
angle::FixedVector<VkBufferCopy, 3> copies = {
{sourceOffset, *bufferOffsetOut, unitCount * unitSize},
{sourceOffset, *bufferOffsetOut + unitCount * unitSize, unitSize},
};
if (contextVk->getRenderer()->getFeatures().extraCopyBufferRegion.enabled)
copies.push_back({sourceOffset, *bufferOffsetOut + (unitCount + 1) * unitSize, 1});
ANGLE_TRY(elementArrayBufferVk->copyToBuffer(
contextVk, *bufferOut, static_cast<uint32_t>(copies.size()), copies.data()));
ANGLE_TRY(mDynamicIndexBuffer.flush(contextVk));
return angle::Result::Continue;
}
angle::Result LineLoopHelper::streamIndices(ContextVk *contextVk,
gl::DrawElementsType glIndexType,
GLsizei indexCount,
const uint8_t *srcPtr,
BufferHelper **bufferOut,
VkDeviceSize *bufferOffsetOut,
uint32_t *indexCountOut)
{
VkIndexType indexType = gl_vk::kIndexTypeMap[glIndexType];
uint8_t *indices = nullptr;
auto unitSize = (indexType == VK_INDEX_TYPE_UINT16 ? sizeof(uint16_t) : sizeof(uint32_t));
uint32_t numOutIndices = indexCount + 1;
if (contextVk->getState().isPrimitiveRestartEnabled())
{
numOutIndices = GetLineLoopWithRestartIndexCount(glIndexType, indexCount, srcPtr);
}
*indexCountOut = numOutIndices;
size_t allocateBytes = unitSize * numOutIndices;
ANGLE_TRY(mDynamicIndexBuffer.allocate(contextVk, allocateBytes,
reinterpret_cast<uint8_t **>(&indices), nullptr,
bufferOffsetOut, nullptr));
*bufferOut = mDynamicIndexBuffer.getCurrentBuffer();
if (contextVk->getState().isPrimitiveRestartEnabled())
{
HandlePrimitiveRestart(glIndexType, indexCount, srcPtr, indices);
}
else
{
if (glIndexType == gl::DrawElementsType::UnsignedByte)
{
// Vulkan doesn't support uint8 index types, so we need to emulate it.
ASSERT(indexType == VK_INDEX_TYPE_UINT16);
uint16_t *indicesDst = reinterpret_cast<uint16_t *>(indices);
for (int i = 0; i < indexCount; i++)
{
indicesDst[i] = srcPtr[i];
}
indicesDst[indexCount] = srcPtr[0];
}
else
{
memcpy(indices, srcPtr, unitSize * indexCount);
memcpy(indices + unitSize * indexCount, srcPtr, unitSize);
}
}
ANGLE_TRY(mDynamicIndexBuffer.flush(contextVk));
return angle::Result::Continue;
}
angle::Result LineLoopHelper::streamIndicesIndirect(ContextVk *contextVk,
gl::DrawElementsType glIndexType,
BufferHelper *indexBuffer,
BufferHelper *indirectBuffer,
VkDeviceSize indirectBufferOffset,
BufferHelper **indexBufferOut,
VkDeviceSize *indexBufferOffsetOut,
BufferHelper **indirectBufferOut,
VkDeviceSize *indirectBufferOffsetOut)
{
VkIndexType indexType = gl_vk::kIndexTypeMap[glIndexType];
auto unitSize = (indexType == VK_INDEX_TYPE_UINT16 ? sizeof(uint16_t) : sizeof(uint32_t));
size_t allocateBytes = static_cast<size_t>(indexBuffer->getSize() + unitSize);
if (contextVk->getState().isPrimitiveRestartEnabled())
{
// If primitive restart, new index buffer is 135% the size of the original index buffer. The
// smallest lineloop with primitive restart is 3 indices (point 1, point 2 and restart
// value) when converted to linelist becomes 4 vertices. Expansion of 4/3. Any larger
// lineloops would have less overhead and require less extra space. Any incomplete
// primitives can be dropped or left incomplete and thus not increase the size of the
// destination index buffer. Since we don't know the number of indices being used we'll use
// the size of the index buffer as allocated as the index count.
size_t numInputIndices = static_cast<size_t>(indexBuffer->getSize() / unitSize);
size_t numNewInputIndices = ((numInputIndices * 4) / 3) + 1;
allocateBytes = static_cast<size_t>(numNewInputIndices * unitSize);
}
mDynamicIndexBuffer.releaseInFlightBuffers(contextVk);
mDynamicIndirectBuffer.releaseInFlightBuffers(contextVk);
ANGLE_TRY(mDynamicIndexBuffer.allocate(contextVk, allocateBytes, nullptr, nullptr,
indexBufferOffsetOut, nullptr));
*indexBufferOut = mDynamicIndexBuffer.getCurrentBuffer();
ANGLE_TRY(mDynamicIndirectBuffer.allocate(contextVk, sizeof(VkDrawIndexedIndirectCommand),
nullptr, nullptr, indirectBufferOffsetOut, nullptr));
*indirectBufferOut = mDynamicIndirectBuffer.getCurrentBuffer();
BufferHelper *destIndexBuffer = mDynamicIndexBuffer.getCurrentBuffer();
BufferHelper *destIndirectBuffer = mDynamicIndirectBuffer.getCurrentBuffer();
// Copy relevant section of the source into destination at allocated offset. Note that the
// offset returned by allocate() above is in bytes. As is the indices offset pointer.
UtilsVk::ConvertLineLoopIndexIndirectParameters params = {};
params.indirectBufferOffset = static_cast<uint32_t>(indirectBufferOffset);
params.dstIndirectBufferOffset = static_cast<uint32_t>(*indirectBufferOffsetOut);
params.dstIndexBufferOffset = static_cast<uint32_t>(*indexBufferOffsetOut);
params.is32Bit = unitSize == 4;
ANGLE_TRY(contextVk->getUtils().convertLineLoopIndexIndirectBuffer(
contextVk, indirectBuffer, destIndirectBuffer, destIndexBuffer, indexBuffer, params));
return angle::Result::Continue;
}
angle::Result LineLoopHelper::streamArrayIndirect(ContextVk *contextVk,
size_t vertexCount,
BufferHelper *arrayIndirectBuffer,
VkDeviceSize arrayIndirectBufferOffset,
BufferHelper **indexBufferOut,
VkDeviceSize *indexBufferOffsetOut,
BufferHelper **indexIndirectBufferOut,
VkDeviceSize *indexIndirectBufferOffsetOut)
{
auto unitSize = sizeof(uint32_t);
size_t allocateBytes = static_cast<size_t>((vertexCount + 1) * unitSize);
mDynamicIndexBuffer.releaseInFlightBuffers(contextVk);
mDynamicIndirectBuffer.releaseInFlightBuffers(contextVk);
ANGLE_TRY(mDynamicIndexBuffer.allocate(contextVk, allocateBytes, nullptr, nullptr,
indexBufferOffsetOut, nullptr));
*indexBufferOut = mDynamicIndexBuffer.getCurrentBuffer();
ANGLE_TRY(mDynamicIndirectBuffer.allocate(contextVk, sizeof(VkDrawIndexedIndirectCommand),
nullptr, nullptr, indexIndirectBufferOffsetOut,
nullptr));
*indexIndirectBufferOut = mDynamicIndirectBuffer.getCurrentBuffer();
BufferHelper *destIndexBuffer = mDynamicIndexBuffer.getCurrentBuffer();
BufferHelper *destIndirectBuffer = mDynamicIndirectBuffer.getCurrentBuffer();
// Copy relevant section of the source into destination at allocated offset. Note that the
// offset returned by allocate() above is in bytes. As is the indices offset pointer.
UtilsVk::ConvertLineLoopArrayIndirectParameters params = {};
params.indirectBufferOffset = static_cast<uint32_t>(arrayIndirectBufferOffset);
params.dstIndirectBufferOffset = static_cast<uint32_t>(*indexIndirectBufferOffsetOut);
params.dstIndexBufferOffset = static_cast<uint32_t>(*indexBufferOffsetOut);
ANGLE_TRY(contextVk->getUtils().convertLineLoopArrayIndirectBuffer(
contextVk, arrayIndirectBuffer, destIndirectBuffer, destIndexBuffer, params));
return angle::Result::Continue;
}
void LineLoopHelper::release(ContextVk *contextVk)
{
mDynamicIndexBuffer.release(contextVk->getRenderer());
mDynamicIndirectBuffer.release(contextVk->getRenderer());
}
void LineLoopHelper::destroy(VkDevice device)
{
mDynamicIndexBuffer.destroy(device);
mDynamicIndirectBuffer.destroy(device);
}
// static
void LineLoopHelper::Draw(uint32_t count, uint32_t baseVertex, CommandBuffer *commandBuffer)
{
// Our first index is always 0 because that's how we set it up in createIndexBuffer*.
commandBuffer->drawIndexedBaseVertex(count, baseVertex);
}
// BufferHelper implementation.
BufferHelper::BufferHelper()
: CommandGraphResource(CommandGraphResourceType::Buffer),
mMemoryPropertyFlags{},
mSize(0),
mMappedMemory(nullptr),
mViewFormat(nullptr),
mCurrentQueueFamilyIndex(std::numeric_limits<uint32_t>::max()),
mCurrentWriteAccess(0),
mCurrentReadAccess(0)
{}
BufferHelper::~BufferHelper() = default;
angle::Result BufferHelper::init(ContextVk *contextVk,
const VkBufferCreateInfo &createInfo,
VkMemoryPropertyFlags memoryPropertyFlags)
{
// TODO: Remove with anglebug.com/2162: Vulkan: Implement device memory sub-allocation
// Check if we have too many resources allocated already and need to free some before allocating
// more and (possibly) exceeding the device's limits.
if (contextVk->shouldFlush())
{
ANGLE_TRY(contextVk->flushImpl(nullptr));
}
mSize = createInfo.size;
ANGLE_VK_TRY(contextVk, mBuffer.init(contextVk->getDevice(), createInfo));
ANGLE_TRY(AllocateBufferMemory(contextVk, memoryPropertyFlags, &mMemoryPropertyFlags, nullptr,
&mBuffer, &mDeviceMemory));
mCurrentQueueFamilyIndex = contextVk->getRenderer()->getQueueFamilyIndex();
return angle::Result::Continue;
}
void BufferHelper::destroy(VkDevice device)
{
unmap(device);
mSize = 0;
mViewFormat = nullptr;
mBuffer.destroy(device);
mBufferView.destroy(device);
mDeviceMemory.destroy(device);
}
void BufferHelper::release(RendererVk *renderer)
{
unmap(renderer->getDevice());
mSize = 0;
mViewFormat = nullptr;
renderer->collectGarbageAndReinit(&mUse, &mBuffer, &mBufferView, &mDeviceMemory);
}
bool BufferHelper::needsOnWriteBarrier(VkAccessFlags readAccessType,
VkAccessFlags writeAccessType,
VkAccessFlags *barrierSrcOut,
VkAccessFlags *barrierDstOut)
{
bool needsBarrier = mCurrentReadAccess != 0 || mCurrentWriteAccess != 0;
// Note: mCurrentReadAccess is not part of barrier src flags as "anything-after-read" is
// satisified by execution barriers alone.
*barrierSrcOut = mCurrentWriteAccess;
*barrierDstOut = readAccessType | writeAccessType;
mCurrentWriteAccess = writeAccessType;
mCurrentReadAccess = readAccessType;
return needsBarrier;
}
void BufferHelper::onWriteAccess(ContextVk *contextVk,
VkAccessFlags readAccessType,
VkAccessFlags writeAccessType)
{
VkAccessFlags barrierSrc, barrierDst;
if (needsOnWriteBarrier(readAccessType, writeAccessType, &barrierSrc, &barrierDst))
{
addGlobalMemoryBarrier(barrierSrc, barrierDst, VK_PIPELINE_STAGE_ALL_COMMANDS_BIT);
}
bool hostVisible = mMemoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
if (hostVisible && writeAccessType != VK_ACCESS_HOST_WRITE_BIT)
{
contextVk->onHostVisibleBufferWrite();
}
}
angle::Result BufferHelper::copyFromBuffer(ContextVk *contextVk,
const Buffer &buffer,
VkAccessFlags bufferAccessType,
const VkBufferCopy &copyRegion)
{
// 'recordCommands' will implicitly stop any reads from using the old buffer data.
CommandBuffer *commandBuffer = nullptr;
ANGLE_TRY(recordCommands(contextVk, &commandBuffer));
if (mCurrentReadAccess != 0 || mCurrentWriteAccess != 0 || bufferAccessType != 0)
{
// Insert a barrier to ensure reads/writes are complete.
// Use a global memory barrier to keep things simple.
VkMemoryBarrier memoryBarrier = {};
memoryBarrier.sType = VK_STRUCTURE_TYPE_MEMORY_BARRIER;
memoryBarrier.srcAccessMask = mCurrentReadAccess | mCurrentWriteAccess | bufferAccessType;
memoryBarrier.dstAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
commandBuffer->pipelineBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_TRANSFER_BIT, 0, 1, &memoryBarrier, 0,
nullptr, 0, nullptr);
}
mCurrentWriteAccess = VK_ACCESS_TRANSFER_WRITE_BIT;
mCurrentReadAccess = 0;
commandBuffer->copyBuffer(buffer, mBuffer, 1, &copyRegion);
return angle::Result::Continue;
}
angle::Result BufferHelper::initBufferView(ContextVk *contextVk, const Format &format)
{
ASSERT(format.valid());
if (mBufferView.valid())
{
ASSERT(mViewFormat->vkBufferFormat == format.vkBufferFormat);
return angle::Result::Continue;
}
VkBufferViewCreateInfo viewCreateInfo = {};
viewCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_VIEW_CREATE_INFO;
viewCreateInfo.buffer = mBuffer.getHandle();
viewCreateInfo.format = format.vkBufferFormat;
viewCreateInfo.offset = 0;
viewCreateInfo.range = mSize;
ANGLE_VK_TRY(contextVk, mBufferView.init(contextVk->getDevice(), viewCreateInfo));
mViewFormat = &format;
return angle::Result::Continue;
}
angle::Result BufferHelper::mapImpl(ContextVk *contextVk)
{
ANGLE_VK_TRY(contextVk, mDeviceMemory.map(contextVk->getDevice(), 0, mSize, 0, &mMappedMemory));
return angle::Result::Continue;
}
void BufferHelper::unmap(VkDevice device)
{
if (mMappedMemory)
{
mDeviceMemory.unmap(device);
mMappedMemory = nullptr;
}
}
angle::Result BufferHelper::flush(ContextVk *contextVk, VkDeviceSize offset, VkDeviceSize size)
{
bool hostVisible = mMemoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
bool hostCoherent = mMemoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
if (hostVisible && !hostCoherent)
{
VkMappedMemoryRange range = {};
range.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range.memory = mDeviceMemory.getHandle();
range.offset = offset;
range.size = size;
ANGLE_VK_TRY(contextVk, vkFlushMappedMemoryRanges(contextVk->getDevice(), 1, &range));
}
return angle::Result::Continue;
}
angle::Result BufferHelper::invalidate(ContextVk *contextVk, VkDeviceSize offset, VkDeviceSize size)
{
bool hostVisible = mMemoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
bool hostCoherent = mMemoryPropertyFlags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
if (hostVisible && !hostCoherent)
{
VkMappedMemoryRange range = {};
range.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
range.memory = mDeviceMemory.getHandle();
range.offset = offset;
range.size = size;
ANGLE_VK_TRY(contextVk, vkInvalidateMappedMemoryRanges(contextVk->getDevice(), 1, &range));
}
return angle::Result::Continue;
}
void BufferHelper::changeQueue(uint32_t newQueueFamilyIndex, CommandBuffer *commandBuffer)
{
VkBufferMemoryBarrier bufferMemoryBarrier = {};
bufferMemoryBarrier.sType = VK_STRUCTURE_TYPE_BUFFER_MEMORY_BARRIER;
bufferMemoryBarrier.srcAccessMask = 0;
bufferMemoryBarrier.dstAccessMask = 0;
bufferMemoryBarrier.srcQueueFamilyIndex = mCurrentQueueFamilyIndex;
bufferMemoryBarrier.dstQueueFamilyIndex = newQueueFamilyIndex;
bufferMemoryBarrier.buffer = mBuffer.getHandle();
bufferMemoryBarrier.offset = 0;
bufferMemoryBarrier.size = VK_WHOLE_SIZE;
commandBuffer->bufferBarrier(VK_PIPELINE_STAGE_ALL_COMMANDS_BIT,
VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, &bufferMemoryBarrier);
mCurrentQueueFamilyIndex = newQueueFamilyIndex;
}
// ImageHelper implementation.
ImageHelper::ImageHelper()
: CommandGraphResource(CommandGraphResourceType::Image),
mFormat(nullptr),
mSamples(0),
mCurrentLayout(ImageLayout::Undefined),
mCurrentQueueFamilyIndex(std::numeric_limits<uint32_t>::max()),
mBaseLevel(0),
mMaxLevel(0),
mLayerCount(0),
mLevelCount(0)
{}
ImageHelper::ImageHelper(ImageHelper &&other)
: CommandGraphResource(CommandGraphResourceType::Image),
mImage(std::move(other.mImage)),
mDeviceMemory(std::move(other.mDeviceMemory)),
mExtents(other.mExtents),
mFormat(other.mFormat),
mSamples(other.mSamples),
mCurrentLayout(other.mCurrentLayout),
mCurrentQueueFamilyIndex(other.mCurrentQueueFamilyIndex),
mBaseLevel(other.mBaseLevel),
mMaxLevel(other.mMaxLevel),
mLayerCount(other.mLayerCount),
mLevelCount(other.mLevelCount),
mStagingBuffer(std::move(other.mStagingBuffer)),
mSubresourceUpdates(std::move(other.mSubresourceUpdates))
{
ASSERT(this != &other);
other.mCurrentLayout = ImageLayout::Undefined;
other.mBaseLevel = 0;
other.mMaxLevel = 0;
other.mLayerCount = 0;
other.mLevelCount = 0;
}
ImageHelper::~ImageHelper()
{
ASSERT(!valid());
}
void ImageHelper::initStagingBuffer(RendererVk *renderer,
const Format &format,
VkBufferUsageFlags usageFlags,
size_t initialSize)
{
mStagingBuffer.init(renderer, usageFlags, format.getImageCopyBufferAlignment(), initialSize,
true);
}
angle::Result ImageHelper::init(Context *context,
gl::TextureType textureType,
const VkExtent3D &extents,
const Format &format,
GLint samples,
VkImageUsageFlags usage,
uint32_t baseLevel,
uint32_t maxLevel,
uint32_t mipLevels,
uint32_t layerCount)
{
return initExternal(context, textureType, extents, format, samples, usage,
ImageLayout::Undefined, nullptr, baseLevel, maxLevel, mipLevels,
layerCount);
}
angle::Result ImageHelper::initExternal(Context *context,
gl::TextureType textureType,
const VkExtent3D &extents,
const Format &format,
GLint samples,
VkImageUsageFlags usage,
ImageLayout initialLayout,
const void *externalImageCreateInfo,
uint32_t baseLevel,
uint32_t maxLevel,
uint32_t mipLevels,
uint32_t layerCount)
{
ASSERT(!valid());
mExtents = extents;
mFormat = &format;
mSamples = samples;
mBaseLevel = baseLevel;
mMaxLevel = maxLevel;
mLevelCount = mipLevels;
mLayerCount = layerCount;
// Validate that mLayerCount is compatible with the texture type
ASSERT(textureType != gl::TextureType::_3D || mLayerCount == 1);
ASSERT(textureType != gl::TextureType::_2DArray || mExtents.depth == 1);
ASSERT(textureType != gl::TextureType::External || mLayerCount == 1);
ASSERT(textureType != gl::TextureType::Rectangle || mLayerCount == 1);
ASSERT(textureType != gl::TextureType::CubeMap || mLayerCount == gl::kCubeFaceCount);
VkImageCreateInfo imageInfo = {};
imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageInfo.pNext = externalImageCreateInfo;
imageInfo.flags = GetImageCreateFlags(textureType);
imageInfo.imageType = gl_vk::GetImageType(textureType);
imageInfo.format = format.vkImageFormat;
imageInfo.extent = mExtents;
imageInfo.mipLevels = mipLevels;
imageInfo.arrayLayers = mLayerCount;
imageInfo.samples = gl_vk::GetSamples(samples);
imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageInfo.usage = usage;
imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageInfo.queueFamilyIndexCount = 0;
imageInfo.pQueueFamilyIndices = nullptr;
imageInfo.initialLayout = kImageMemoryBarrierData[initialLayout].layout;
mCurrentLayout = initialLayout;
ANGLE_VK_TRY(context, mImage.init(context->getDevice(), imageInfo));
return angle::Result::Continue;
}
void ImageHelper::releaseImage(RendererVk *renderer)
{
renderer->collectGarbageAndReinit(&mUse, &mImage, &mDeviceMemory);
}
void ImageHelper::releaseStagingBuffer(RendererVk *renderer)
{
// Remove updates that never made it to the texture.
for (SubresourceUpdate &update : mSubresourceUpdates)
{
update.release(renderer);
}
mStagingBuffer.release(renderer);
mSubresourceUpdates.clear();
}
void ImageHelper::resetImageWeakReference()
{
mImage.reset();
}
angle::Result ImageHelper::initMemory(Context *context,
const MemoryProperties &memoryProperties,
VkMemoryPropertyFlags flags)
{
// TODO(jmadill): Memory sub-allocation. http://anglebug.com/2162
ANGLE_TRY(AllocateImageMemory(context, flags, nullptr, &mImage, &mDeviceMemory));
mCurrentQueueFamilyIndex = context->getRenderer()->getQueueFamilyIndex();
return angle::Result::Continue;
}
angle::Result ImageHelper::initExternalMemory(Context *context,
const MemoryProperties &memoryProperties,
const VkMemoryRequirements &memoryRequirements,
const void *extraAllocationInfo,
uint32_t currentQueueFamilyIndex,
VkMemoryPropertyFlags flags)
{
// TODO(jmadill): Memory sub-allocation. http://anglebug.com/2162
ANGLE_TRY(AllocateImageMemoryWithRequirements(context, flags, memoryRequirements,
extraAllocationInfo, &mImage, &mDeviceMemory));
mCurrentQueueFamilyIndex = currentQueueFamilyIndex;
return angle::Result::Continue;
}
angle::Result ImageHelper::initImageView(Context *context,
gl::TextureType textureType,
VkImageAspectFlags aspectMask,
const gl::SwizzleState &swizzleMap,
ImageView *imageViewOut,
uint32_t baseMipLevel,
uint32_t levelCount)
{
return initLayerImageView(context, textureType, aspectMask, swizzleMap, imageViewOut,
baseMipLevel, levelCount, 0, mLayerCount);
}
angle::Result ImageHelper::initLayerImageView(Context *context,
gl::TextureType textureType,
VkImageAspectFlags aspectMask,
const gl::SwizzleState &swizzleMap,
ImageView *imageViewOut,
uint32_t baseMipLevel,
uint32_t levelCount,
uint32_t baseArrayLayer,
uint32_t layerCount) const
{
VkImageViewCreateInfo viewInfo = {};
viewInfo.sType = VK_STRUCTURE_TYPE_IMAGE_VIEW_CREATE_INFO;
viewInfo.flags = 0;
viewInfo.image = mImage.getHandle();
viewInfo.viewType = gl_vk::GetImageViewType(textureType);
viewInfo.format = mFormat->vkImageFormat;
if (swizzleMap.swizzleRequired())
{
viewInfo.components.r = gl_vk::GetSwizzle(swizzleMap.swizzleRed);
viewInfo.components.g = gl_vk::GetSwizzle(swizzleMap.swizzleGreen);
viewInfo.components.b = gl_vk::GetSwizzle(swizzleMap.swizzleBlue);
viewInfo.components.a = gl_vk::GetSwizzle(swizzleMap.swizzleAlpha);
}
else
{
viewInfo.components.r = VK_COMPONENT_SWIZZLE_IDENTITY;
viewInfo.components.g = VK_COMPONENT_SWIZZLE_IDENTITY;
viewInfo.components.b = VK_COMPONENT_SWIZZLE_IDENTITY;
viewInfo.components.a = VK_COMPONENT_SWIZZLE_IDENTITY;
}
viewInfo.subresourceRange.aspectMask = aspectMask;
viewInfo.subresourceRange.baseMipLevel = baseMipLevel;
viewInfo.subresourceRange.levelCount = levelCount;
viewInfo.subresourceRange.baseArrayLayer = baseArrayLayer;
viewInfo.subresourceRange.layerCount = layerCount;
ANGLE_VK_TRY(context, imageViewOut->init(context->getDevice(), viewInfo));
return angle::Result::Continue;
}
void ImageHelper::destroy(VkDevice device)
{
mImage.destroy(device);
mDeviceMemory.destroy(device);
mStagingBuffer.destroy(device);
mCurrentLayout = ImageLayout::Undefined;
mLayerCount = 0;
mLevelCount = 0;
}
void ImageHelper::init2DWeakReference(VkImage handle,
const gl::Extents &glExtents,
const Format &format,
GLint samples)
{
ASSERT(!valid());
gl_vk::GetExtent(glExtents, &mExtents);
mFormat = &format;
mSamples = samples;
mCurrentLayout = ImageLayout::Undefined;
mLayerCount = 1;
mLevelCount = 1;
mImage.setHandle(handle);
}
angle::Result ImageHelper::init2DStaging(Context *context,
const MemoryProperties &memoryProperties,
const gl::Extents &glExtents,
const Format &format,
VkImageUsageFlags usage,
uint32_t layerCount)
{
ASSERT(!valid());
gl_vk::GetExtent(glExtents, &mExtents);
mFormat = &format;
mSamples = 1;
mLayerCount = layerCount;
mLevelCount = 1;
mCurrentLayout = ImageLayout::Undefined;
VkImageCreateInfo imageInfo = {};
imageInfo.sType = VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO;
imageInfo.flags = 0;
imageInfo.imageType = VK_IMAGE_TYPE_2D;
imageInfo.format = format.vkImageFormat;
imageInfo.extent = mExtents;
imageInfo.mipLevels = 1;
imageInfo.arrayLayers = mLayerCount;
imageInfo.samples = gl_vk::GetSamples(mSamples);
imageInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
imageInfo.usage = usage;
imageInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
imageInfo.queueFamilyIndexCount = 0;
imageInfo.pQueueFamilyIndices = nullptr;
imageInfo.initialLayout = getCurrentLayout();
ANGLE_VK_TRY(context, mImage.init(context->getDevice(), imageInfo));
// Allocate and bind device-local memory.
VkMemoryPropertyFlags memoryPropertyFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
ANGLE_TRY(initMemory(context, memoryProperties, memoryPropertyFlags));
return angle::Result::Continue;
}
VkImageAspectFlags ImageHelper::getAspectFlags() const
{
return GetFormatAspectFlags(mFormat->actualImageFormat());
}
bool ImageHelper::isCombinedDepthStencilFormat() const
{
return ((VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT) & getAspectFlags()) ==
(VK_IMAGE_ASPECT_DEPTH_BIT | VK_IMAGE_ASPECT_STENCIL_BIT);
}
VkImageLayout ImageHelper::getCurrentLayout() const
{
return kImageMemoryBarrierData[mCurrentLayout].layout;
}
gl::Extents ImageHelper::getLevelExtents2D(uint32_t level) const
{
uint32_t width = std::max(mExtents.width >> level, 1u);
uint32_t height = std::max(mExtents.height >> level, 1u);
return gl::Extents(width, height, 1);
}
bool ImageHelper::isLayoutChangeNecessary(ImageLayout newLayout) const
{
const ImageMemoryBarrierData &layoutData = kImageMemoryBarrierData[mCurrentLayout];
// If transitioning to the same layout, we don't need a barrier if the layout is read-only as
// RAR (read-after-read) doesn't need a barrier. WAW (write-after-write) does require a memory
// barrier though.
bool sameLayoutAndNoNeedForBarrier =
mCurrentLayout == newLayout && !layoutData.sameLayoutTransitionRequiresBarrier;
return !sameLayoutAndNoNeedForBarrier;
}
void ImageHelper::changeLayout(VkImageAspectFlags aspectMask,
ImageLayout newLayout,
CommandBuffer *commandBuffer)
{
if (!isLayoutChangeNecessary(newLayout))
{
return;
}
forceChangeLayoutAndQueue(aspectMask, newLayout, mCurrentQueueFamilyIndex, commandBuffer);
}
void ImageHelper::changeLayoutAndQueue(VkImageAspectFlags aspectMask,
ImageLayout newLayout,
uint32_t newQueueFamilyIndex,
CommandBuffer *commandBuffer)
{
ASSERT(isQueueChangeNeccesary(newQueueFamilyIndex));
forceChangeLayoutAndQueue(aspectMask, newLayout, newQueueFamilyIndex, commandBuffer);
}
void ImageHelper::onExternalLayoutChange(ImageLayout newLayout)
{
mCurrentLayout = newLayout;
// The image must have already been owned by EXTERNAL. If this is not the case, it's an
// application bug, so ASSERT might eventually need to change to a warning.
ASSERT(mCurrentQueueFamilyIndex == VK_QUEUE_FAMILY_EXTERNAL);
}
uint32_t ImageHelper::getBaseLevel()
{
return mBaseLevel;
}
void ImageHelper::setBaseAndMaxLevels(uint32_t baseLevel, uint32_t maxLevel)
{
mBaseLevel = baseLevel;
mMaxLevel = maxLevel;
}
void ImageHelper::forceChangeLayoutAndQueue(VkImageAspectFlags aspectMask,
ImageLayout newLayout,
uint32_t newQueueFamilyIndex,
CommandBuffer *commandBuffer)
{
const ImageMemoryBarrierData &transitionFrom = kImageMemoryBarrierData[mCurrentLayout];
const ImageMemoryBarrierData &transitionTo = kImageMemoryBarrierData[newLayout];
VkImageMemoryBarrier imageMemoryBarrier = {};
imageMemoryBarrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
imageMemoryBarrier.srcAccessMask = transitionFrom.srcAccessMask;
imageMemoryBarrier.dstAccessMask = transitionTo.dstAccessMask;
imageMemoryBarrier.oldLayout = transitionFrom.layout;
imageMemoryBarrier.newLayout = transitionTo.layout;
imageMemoryBarrier.srcQueueFamilyIndex = mCurrentQueueFamilyIndex;
imageMemoryBarrier.dstQueueFamilyIndex = newQueueFamilyIndex;
imageMemoryBarrier.image = mImage.getHandle();
// TODO(jmadill): Is this needed for mipped/layer images?
imageMemoryBarrier.subresourceRange.aspectMask = aspectMask;
imageMemoryBarrier.subresourceRange.baseMipLevel = 0;
imageMemoryBarrier.subresourceRange.levelCount = mLevelCount;
imageMemoryBarrier.subresourceRange.baseArrayLayer = 0;
imageMemoryBarrier.subresourceRange.layerCount = mLayerCount;
commandBuffer->imageBarrier(transitionFrom.srcStageMask, transitionTo.dstStageMask,
&imageMemoryBarrier);
mCurrentLayout = newLayout;
mCurrentQueueFamilyIndex = newQueueFamilyIndex;
}
void ImageHelper::clearColor(const VkClearColorValue &color,
uint32_t baseMipLevel,
uint32_t levelCount,
uint32_t baseArrayLayer,
uint32_t layerCount,
CommandBuffer *commandBuffer)
{
ASSERT(valid());
ASSERT(mCurrentLayout == ImageLayout::TransferDst);
VkImageSubresourceRange range = {};
range.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
range.baseMipLevel = baseMipLevel;
range.levelCount = levelCount;
range.baseArrayLayer = baseArrayLayer;
range.layerCount = layerCount;
commandBuffer->clearColorImage(mImage, getCurrentLayout(), color, 1, &range);
}
void ImageHelper::clearDepthStencil(VkImageAspectFlags imageAspectFlags,
VkImageAspectFlags clearAspectFlags,
const VkClearDepthStencilValue &depthStencil,
uint32_t baseMipLevel,
uint32_t levelCount,
uint32_t baseArrayLayer,
uint32_t layerCount,
CommandBuffer *commandBuffer)
{
ASSERT(valid());
ASSERT(mCurrentLayout == ImageLayout::TransferDst);
VkImageSubresourceRange clearRange = {
/*aspectMask*/ clearAspectFlags,
/*baseMipLevel*/ baseMipLevel,
/*levelCount*/ levelCount,
/*baseArrayLayer*/ baseArrayLayer,
/*layerCount*/ layerCount,
};
commandBuffer->clearDepthStencilImage(mImage, getCurrentLayout(), depthStencil, 1, &clearRange);
}
void ImageHelper::clear(const VkClearValue &value,
uint32_t mipLevel,
uint32_t baseArrayLayer,
uint32_t layerCount,
CommandBuffer *commandBuffer)
{
const angle::Format &angleFormat = mFormat->intendedFormat();
bool isDepthStencil = angleFormat.depthBits > 0 || angleFormat.stencilBits > 0;
if (isDepthStencil)
{
const VkImageAspectFlags aspect = GetDepthStencilAspectFlags(mFormat->actualImageFormat());
clearDepthStencil(aspect, aspect, value.depthStencil, mipLevel, 1, baseArrayLayer,
layerCount, commandBuffer);
}
else
{
clearColor(value.color, mipLevel, 1, baseArrayLayer, layerCount, commandBuffer);
}
}
gl::Extents ImageHelper::getSize(const gl::ImageIndex &index) const
{
GLint mipLevel = index.getLevelIndex();
// Level 0 should be the size of the extents, after that every time you increase a level
// you shrink the extents by half.
return gl::Extents(std::max(1u, mExtents.width >> mipLevel),
std::max(1u, mExtents.height >> mipLevel), mExtents.depth);
}
// static
void ImageHelper::Copy(ImageHelper *srcImage,
ImageHelper *dstImage,
const gl::Offset &srcOffset,
const gl::Offset &dstOffset,
const gl::Extents &copySize,
const VkImageSubresourceLayers &srcSubresource,
const VkImageSubresourceLayers &dstSubresource,
CommandBuffer *commandBuffer)
{
ASSERT(commandBuffer->valid() && srcImage->valid() && dstImage->valid());
ASSERT(srcImage->getCurrentLayout() == VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL);
ASSERT(dstImage->getCurrentLayout() == VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL);
VkImageCopy region = {};
region.srcSubresource = srcSubresource;
region.srcOffset.x = srcOffset.x;
region.srcOffset.y = srcOffset.y;
region.srcOffset.z = srcOffset.z;
region.dstSubresource = dstSubresource;
region.dstOffset.x = dstOffset.x;
region.dstOffset.y = dstOffset.y;
region.dstOffset.z = dstOffset.z;
region.extent.width = copySize.width;
region.extent.height = copySize.height;
region.extent.depth = copySize.depth;
commandBuffer->copyImage(srcImage->getImage(), srcImage->getCurrentLayout(),
dstImage->getImage(), dstImage->getCurrentLayout(), 1, &region);
}
angle::Result ImageHelper::generateMipmapsWithBlit(ContextVk *contextVk, GLuint maxLevel)
{
CommandBuffer *commandBuffer = nullptr;
ANGLE_TRY(recordCommands(contextVk, &commandBuffer));
changeLayout(VK_IMAGE_ASPECT_COLOR_BIT, ImageLayout::TransferDst, commandBuffer);
// We are able to use blitImage since the image format we are using supports it. This
// is a faster way we can generate the mips.
int32_t mipWidth = mExtents.width;
int32_t mipHeight = mExtents.height;
// Manually manage the image memory barrier because it uses a lot more parameters than our
// usual one.
VkImageMemoryBarrier barrier = {};
barrier.sType = VK_STRUCTURE_TYPE_IMAGE_MEMORY_BARRIER;
barrier.image = mImage.getHandle();
barrier.srcQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.dstQueueFamilyIndex = VK_QUEUE_FAMILY_IGNORED;
barrier.subresourceRange.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
barrier.subresourceRange.baseArrayLayer = 0;
barrier.subresourceRange.layerCount = mLayerCount;
barrier.subresourceRange.levelCount = 1;
for (uint32_t mipLevel = 1; mipLevel <= maxLevel; mipLevel++)
{
int32_t nextMipWidth = std::max<int32_t>(1, mipWidth >> 1);
int32_t nextMipHeight = std::max<int32_t>(1, mipHeight >> 1);
barrier.subresourceRange.baseMipLevel = mipLevel - 1;
barrier.oldLayout = getCurrentLayout();
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
barrier.srcAccessMask = VK_ACCESS_TRANSFER_WRITE_BIT;
barrier.dstAccessMask = VK_ACCESS_TRANSFER_READ_BIT;
// We can do it for all layers at once.
commandBuffer->imageBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
&barrier);
VkImageBlit blit = {};
blit.srcOffsets[0] = {0, 0, 0};
blit.srcOffsets[1] = {mipWidth, mipHeight, 1};
blit.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit.srcSubresource.mipLevel = mipLevel - 1;
blit.srcSubresource.baseArrayLayer = 0;
blit.srcSubresource.layerCount = mLayerCount;
blit.dstOffsets[0] = {0, 0, 0};
blit.dstOffsets[1] = {nextMipWidth, nextMipHeight, 1};
blit.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
blit.dstSubresource.mipLevel = mipLevel;
blit.dstSubresource.baseArrayLayer = 0;
blit.dstSubresource.layerCount = mLayerCount;
mipWidth = nextMipWidth;
mipHeight = nextMipHeight;
bool formatSupportsLinearFiltering = contextVk->getRenderer()->hasImageFormatFeatureBits(
getFormat().vkImageFormat, VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT);
commandBuffer->blitImage(
mImage, VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, mImage,
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit,
formatSupportsLinearFiltering ? VK_FILTER_LINEAR : VK_FILTER_NEAREST);
}
// Transition the last mip level to the same layout as all the other ones, so we can declare
// our whole image layout to be SRC_OPTIMAL.
barrier.subresourceRange.baseMipLevel = maxLevel;
barrier.oldLayout = VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL;
barrier.newLayout = VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL;
// We can do it for all layers at once.
commandBuffer->imageBarrier(VK_PIPELINE_STAGE_TRANSFER_BIT, VK_PIPELINE_STAGE_TRANSFER_BIT,
&barrier);
// This is just changing the internal state of the image helper so that the next call
// to changeLayout will use this layout as the "oldLayout" argument.
mCurrentLayout = ImageLayout::TransferSrc;
return angle::Result::Continue;
}
void ImageHelper::resolve(ImageHelper *dest,
const VkImageResolve &region,
CommandBuffer *commandBuffer)
{
ASSERT(mCurrentLayout == ImageLayout::TransferSrc);
dest->changeLayout(region.dstSubresource.aspectMask, ImageLayout::TransferDst, commandBuffer);
commandBuffer->resolveImage(getImage(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL, dest->getImage(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &region);
}
void ImageHelper::removeStagedUpdates(ContextVk *contextVk, const gl::ImageIndex &index)
{
// Find any staged updates for this index and removes them from the pending list.
uint32_t levelIndex = index.getLevelIndex();
uint32_t layerIndex = index.hasLayer() ? index.getLayerIndex() : 0;
for (size_t index = 0; index < mSubresourceUpdates.size();)
{
auto update = mSubresourceUpdates.begin() + index;
if (update->isUpdateToLayerLevel(layerIndex, levelIndex))
{
update->release(contextVk->getRenderer());
mSubresourceUpdates.erase(update);
}
else
{
index++;
}
}
}
angle::Result ImageHelper::stageSubresourceUpdateImpl(ContextVk *contextVk,
const gl::ImageIndex &index,
const gl::Extents &glExtents,
const gl::Offset &offset,
const gl::InternalFormat &formatInfo,
const gl::PixelUnpackState &unpack,
GLenum type,
const uint8_t *pixels,
const Format &vkFormat,
const GLuint inputRowPitch,
const GLuint inputDepthPitch,
const GLuint inputSkipBytes)
{
const angle::Format &storageFormat = vkFormat.actualImageFormat();
size_t outputRowPitch;
size_t outputDepthPitch;
size_t stencilAllocationSize = 0;
uint32_t bufferRowLength;
uint32_t bufferImageHeight;
size_t allocationSize;
LoadImageFunctionInfo loadFunctionInfo = vkFormat.textureLoadFunctions(type);
LoadImageFunction stencilLoadFunction = nullptr;
if (storageFormat.isBlock)
{
const gl::InternalFormat &storageFormatInfo = vkFormat.getInternalFormatInfo(type);
GLuint rowPitch;
GLuint depthPitch;
GLuint totalSize;
ANGLE_VK_CHECK_MATH(contextVk, storageFormatInfo.computeCompressedImageSize(
gl::Extents(glExtents.width, 1, 1), &rowPitch));
ANGLE_VK_CHECK_MATH(contextVk,
storageFormatInfo.computeCompressedImageSize(
gl::Extents(glExtents.width, glExtents.height, 1), &depthPitch));
ANGLE_VK_CHECK_MATH(contextVk,
storageFormatInfo.computeCompressedImageSize(glExtents, &totalSize));
outputRowPitch = rowPitch;
outputDepthPitch = depthPitch;
angle::CheckedNumeric<uint32_t> checkedRowLength =
rx::CheckedRoundUp<uint32_t>(glExtents.width, storageFormatInfo.compressedBlockWidth);
angle::CheckedNumeric<uint32_t> checkedImageHeight =
rx::CheckedRoundUp<uint32_t>(glExtents.height, storageFormatInfo.compressedBlockHeight);
ANGLE_VK_CHECK_MATH(contextVk, checkedRowLength.IsValid());
ANGLE_VK_CHECK_MATH(contextVk, checkedImageHeight.IsValid());
bufferRowLength = checkedRowLength.ValueOrDie();
bufferImageHeight = checkedImageHeight.ValueOrDie();
allocationSize = totalSize;
}
else
{
ASSERT(storageFormat.pixelBytes != 0);
if (storageFormat.id == angle::FormatID::D24_UNORM_S8_UINT)
{
stencilLoadFunction = angle::LoadX24S8ToS8;
}
if (storageFormat.id == angle::FormatID::D32_FLOAT_S8X24_UINT)
{
// If depth is D32FLOAT_S8, we must pack D32F tightly (no stencil) for CopyBufferToImage
outputRowPitch = sizeof(float) * glExtents.width;
// The generic load functions don't handle tightly packing D32FS8 to D32F & S8 so call
// special case load functions.
switch (type)
{
case GL_UNSIGNED_INT:
loadFunctionInfo.loadFunction = angle::LoadD32ToD32F;
stencilLoadFunction = nullptr;
break;
case GL_DEPTH32F_STENCIL8:
case GL_FLOAT_32_UNSIGNED_INT_24_8_REV:
loadFunctionInfo.loadFunction = angle::LoadD32FS8X24ToD32F;
stencilLoadFunction = angle::LoadX32S8ToS8;
break;
case GL_UNSIGNED_INT_24_8_OES:
loadFunctionInfo.loadFunction = angle::LoadD24S8ToD32F;
stencilLoadFunction = angle::LoadX24S8ToS8;
break;
default:
UNREACHABLE();
}
}
else
{
outputRowPitch = storageFormat.pixelBytes * glExtents.width;
}
outputDepthPitch = outputRowPitch * glExtents.height;
bufferRowLength = glExtents.width;
bufferImageHeight = glExtents.height;
allocationSize = outputDepthPitch * glExtents.depth;
// Note: because the LoadImageFunctionInfo functions are limited to copying a single
// component, we have to special case packed depth/stencil use and send the stencil as a
// separate chunk.
if (storageFormat.depthBits > 0 && storageFormat.stencilBits > 0 &&
formatInfo.depthBits > 0 && formatInfo.stencilBits > 0)
{
// Note: Stencil is always one byte
stencilAllocationSize = glExtents.width * glExtents.height * glExtents.depth;
allocationSize += stencilAllocationSize;
}
}
VkBuffer bufferHandle = VK_NULL_HANDLE;
uint8_t *stagingPointer = nullptr;
VkDeviceSize stagingOffset = 0;
ANGLE_TRY(mStagingBuffer.allocate(contextVk, allocationSize, &stagingPointer, &bufferHandle,
&stagingOffset, nullptr));
const uint8_t *source = pixels + static_cast<ptrdiff_t>(inputSkipBytes);
loadFunctionInfo.loadFunction(glExtents.width, glExtents.height, glExtents.depth, source,
inputRowPitch, inputDepthPitch, stagingPointer, outputRowPitch,
outputDepthPitch);
VkBufferImageCopy copy = {};
VkImageAspectFlags aspectFlags = GetFormatAspectFlags(vkFormat.actualImageFormat());
copy.bufferOffset = stagingOffset;
copy.bufferRowLength = bufferRowLength;
copy.bufferImageHeight = bufferImageHeight;
copy.imageSubresource.mipLevel = index.getLevelIndex();
copy.imageSubresource.layerCount = index.getLayerCount();
gl_vk::GetOffset(offset, &copy.imageOffset);
gl_vk::GetExtent(glExtents, &copy.imageExtent);
if (gl::IsArrayTextureType(index.getType()))
{
copy.imageSubresource.baseArrayLayer = offset.z;
copy.imageOffset.z = 0;
copy.imageExtent.depth = 1;
}
else
{
copy.imageSubresource.baseArrayLayer = index.hasLayer() ? index.getLayerIndex() : 0;
}
if (stencilAllocationSize > 0)
{
// Note: Stencil is always one byte
ASSERT((aspectFlags & VK_IMAGE_ASPECT_STENCIL_BIT) != 0);
// Skip over depth data.
stagingPointer += outputDepthPitch * glExtents.depth;
stagingOffset += outputDepthPitch * glExtents.depth;
// recompute pitch for stencil data
outputRowPitch = glExtents.width;
outputDepthPitch = outputRowPitch * glExtents.height;
ASSERT(stencilLoadFunction != nullptr);
stencilLoadFunction(glExtents.width, glExtents.height, glExtents.depth, source,
inputRowPitch, inputDepthPitch, stagingPointer, outputRowPitch,
outputDepthPitch);
VkBufferImageCopy stencilCopy = {};
stencilCopy.bufferOffset = stagingOffset;
stencilCopy.bufferRowLength = bufferRowLength;
stencilCopy.bufferImageHeight = bufferImageHeight;
stencilCopy.imageSubresource.mipLevel = copy.imageSubresource.mipLevel;
stencilCopy.imageSubresource.baseArrayLayer = copy.imageSubresource.baseArrayLayer;
stencilCopy.imageSubresource.layerCount = copy.imageSubresource.layerCount;
stencilCopy.imageOffset = copy.imageOffset;
stencilCopy.imageExtent = copy.imageExtent;
stencilCopy.imageSubresource.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
mSubresourceUpdates.emplace_back(mStagingBuffer.getCurrentBuffer(), stencilCopy);
aspectFlags &= ~VK_IMAGE_ASPECT_STENCIL_BIT;
}
if (IsMaskFlagSet(aspectFlags, static_cast<VkImageAspectFlags>(VK_IMAGE_ASPECT_STENCIL_BIT |
VK_IMAGE_ASPECT_DEPTH_BIT)))
{
// We still have both depth and stencil aspect bits set. That means we have a destination
// buffer that is packed depth stencil and that the application is only loading one aspect.
// Figure out which aspect the user is touching and remove the unused aspect bit.
if (formatInfo.stencilBits > 0)
{
aspectFlags &= ~VK_IMAGE_ASPECT_DEPTH_BIT;
}
else
{
aspectFlags &= ~VK_IMAGE_ASPECT_STENCIL_BIT;
}
}
if (aspectFlags)
{
copy.imageSubresource.aspectMask = aspectFlags;
mSubresourceUpdates.emplace_back(mStagingBuffer.getCurrentBuffer(), copy);
}
return angle::Result::Continue;
}
angle::Result ImageHelper::CalculateBufferInfo(ContextVk *contextVk,
const gl::Extents &glExtents,
const gl::InternalFormat &formatInfo,
const gl::PixelUnpackState &unpack,
GLenum type,
bool is3D,
GLuint *inputRowPitch,
GLuint *inputDepthPitch,
GLuint *inputSkipBytes)
{
ANGLE_VK_CHECK_MATH(contextVk,
formatInfo.computeRowPitch(type, glExtents.width, unpack.alignment,
unpack.rowLength, inputRowPitch));
ANGLE_VK_CHECK_MATH(contextVk,
formatInfo.computeDepthPitch(glExtents.height, unpack.imageHeight,
*inputRowPitch, inputDepthPitch));
ANGLE_VK_CHECK_MATH(
contextVk, formatInfo.computeSkipBytes(type, *inputRowPitch, *inputDepthPitch, unpack, is3D,
inputSkipBytes));
return angle::Result::Continue;
}
angle::Result ImageHelper::stageSubresourceUpdate(ContextVk *contextVk,
const gl::ImageIndex &index,
const gl::Extents &glExtents,
const gl::Offset &offset,
const gl::InternalFormat &formatInfo,
const gl::PixelUnpackState &unpack,
GLenum type,
const uint8_t *pixels,
const Format &vkFormat)
{
GLuint inputRowPitch = 0;
GLuint inputDepthPitch = 0;
GLuint inputSkipBytes = 0;
ANGLE_TRY(CalculateBufferInfo(contextVk, glExtents, formatInfo, unpack, type, index.usesTex3D(),
&inputRowPitch, &inputDepthPitch, &inputSkipBytes));
ANGLE_TRY(stageSubresourceUpdateImpl(contextVk, index, glExtents, offset, formatInfo, unpack,
type, pixels, vkFormat, inputRowPitch, inputDepthPitch,
inputSkipBytes));
return angle::Result::Continue;
}
angle::Result ImageHelper::stageSubresourceUpdateAndGetData(ContextVk *contextVk,
size_t allocationSize,
const gl::ImageIndex &imageIndex,
const gl::Extents &glExtents,
const gl::Offset &offset,
uint8_t **destData)
{
VkBuffer bufferHandle;
VkDeviceSize stagingOffset = 0;
ANGLE_TRY(mStagingBuffer.allocate(contextVk, allocationSize, destData, &bufferHandle,
&stagingOffset, nullptr));
VkBufferImageCopy copy = {};
copy.bufferOffset = stagingOffset;
copy.bufferRowLength = glExtents.width;
copy.bufferImageHeight = glExtents.height;
copy.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy.imageSubresource.mipLevel = imageIndex.getLevelIndex();
copy.imageSubresource.baseArrayLayer = imageIndex.hasLayer() ? imageIndex.getLayerIndex() : 0;
copy.imageSubresource.layerCount = imageIndex.getLayerCount();
// Note: Only support color now
ASSERT(getAspectFlags() == VK_IMAGE_ASPECT_COLOR_BIT);
gl_vk::GetOffset(offset, &copy.imageOffset);
gl_vk::GetExtent(glExtents, &copy.imageExtent);
mSubresourceUpdates.emplace_back(mStagingBuffer.getCurrentBuffer(), copy);
return angle::Result::Continue;
}
angle::Result ImageHelper::stageSubresourceUpdateFromBuffer(ContextVk *contextVk,
size_t allocationSize,
uint32_t mipLevel,
uint32_t baseArrayLayer,
uint32_t layerCount,
const VkExtent3D &extent,
const VkOffset3D &offset,
BufferHelper *bufferHelper,
StagingBufferOffsetArray stagingOffsets)
{
// This function stages an update from explicitly provided handle and offset
// It is used when the texture base level has changed, and we need to propagate data
VkBufferImageCopy copy[2] = {};
copy[0].bufferOffset = stagingOffsets[0];
copy[0].bufferRowLength = extent.width;
copy[0].bufferImageHeight = extent.height;
copy[0].imageSubresource.aspectMask = getAspectFlags();
copy[0].imageSubresource.mipLevel = mipLevel;
copy[0].imageSubresource.baseArrayLayer = baseArrayLayer;
copy[0].imageSubresource.layerCount = layerCount;
copy[0].imageOffset = offset;
copy[0].imageExtent = extent;
if (isCombinedDepthStencilFormat())
{
// Force aspect to depth for first copy
copy[0].imageSubresource.aspectMask = VK_IMAGE_ASPECT_DEPTH_BIT;
// Copy stencil aspect separately
copy[1].bufferOffset = stagingOffsets[1];
copy[1].bufferRowLength = extent.width;
copy[1].bufferImageHeight = extent.height;
copy[1].imageSubresource.aspectMask = VK_IMAGE_ASPECT_STENCIL_BIT;
copy[1].imageSubresource.mipLevel = mipLevel;
copy[1].imageSubresource.baseArrayLayer = baseArrayLayer;
copy[1].imageSubresource.layerCount = layerCount;
copy[1].imageOffset = offset;
copy[1].imageExtent = extent;
mSubresourceUpdates.emplace_back(bufferHelper, copy[1]);
}
mSubresourceUpdates.emplace_back(bufferHelper, copy[0]);
return angle::Result::Continue;
}
angle::Result ImageHelper::stageSubresourceUpdateFromFramebuffer(
const gl::Context *context,
const gl::ImageIndex &index,
const gl::Rectangle &sourceArea,
const gl::Offset &dstOffset,
const gl::Extents &dstExtent,
const gl::InternalFormat &formatInfo,
FramebufferVk *framebufferVk)
{
ContextVk *contextVk = GetImpl(context);
// If the extents and offset is outside the source image, we need to clip.
gl::Rectangle clippedRectangle;
const gl::Extents readExtents = framebufferVk->getReadImageExtents();
if (!ClipRectangle(sourceArea, gl::Rectangle(0, 0, readExtents.width, readExtents.height),
&clippedRectangle))
{
// Empty source area, nothing to do.
return angle::Result::Continue;
}
bool isViewportFlipEnabled = contextVk->isViewportFlipEnabledForDrawFBO();
if (isViewportFlipEnabled)
{
clippedRectangle.y = readExtents.height - clippedRectangle.y - clippedRectangle.height;
}
// 1- obtain a buffer handle to copy to
RendererVk *renderer = contextVk->getRenderer();
const Format &vkFormat = renderer->getFormat(formatInfo.sizedInternalFormat);
const angle::Format &storageFormat = vkFormat.actualImageFormat();
LoadImageFunctionInfo loadFunction = vkFormat.textureLoadFunctions(formatInfo.type);
size_t outputRowPitch = storageFormat.pixelBytes * clippedRectangle.width;
size_t outputDepthPitch = outputRowPitch * clippedRectangle.height;
VkBuffer bufferHandle = VK_NULL_HANDLE;
uint8_t *stagingPointer = nullptr;
VkDeviceSize stagingOffset = 0;
// The destination is only one layer deep.
size_t allocationSize = outputDepthPitch;
ANGLE_TRY(mStagingBuffer.allocate(contextVk, allocationSize, &stagingPointer, &bufferHandle,
&stagingOffset, nullptr));
const angle::Format &copyFormat =
GetFormatFromFormatType(formatInfo.internalFormat, formatInfo.type);
PackPixelsParams params(clippedRectangle, copyFormat, static_cast<GLuint>(outputRowPitch),
isViewportFlipEnabled, nullptr, 0);
RenderTargetVk *readRenderTarget = framebufferVk->getColorReadRenderTarget();
// 2- copy the source image region to the pixel buffer using a cpu readback
if (loadFunction.requiresConversion)
{
// When a conversion is required, we need to use the loadFunction to read from a temporary
// buffer instead so its an even slower path.
size_t bufferSize =
storageFormat.pixelBytes * clippedRectangle.width * clippedRectangle.height;
angle::MemoryBuffer *memoryBuffer = nullptr;
ANGLE_VK_CHECK_ALLOC(contextVk, context->getScratchBuffer(bufferSize, &memoryBuffer));
// Read into the scratch buffer
ANGLE_TRY(framebufferVk->readPixelsImpl(contextVk, clippedRectangle, params,
VK_IMAGE_ASPECT_COLOR_BIT, readRenderTarget,
memoryBuffer->data()));
// Load from scratch buffer to our pixel buffer
loadFunction.loadFunction(clippedRectangle.width, clippedRectangle.height, 1,
memoryBuffer->data(), outputRowPitch, 0, stagingPointer,
outputRowPitch, 0);
}
else
{