blob: f13379cbc0a531aaf23d456cf0e4b1665cd5c526 [file] [log] [blame]
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// SurfaceVk.cpp:
// Implements the class methods for SurfaceVk.
//
#include "libANGLE/renderer/vulkan/SurfaceVk.h"
#include "common/debug.h"
#include "libANGLE/Context.h"
#include "libANGLE/Display.h"
#include "libANGLE/Surface.h"
#include "libANGLE/renderer/vulkan/ContextVk.h"
#include "libANGLE/renderer/vulkan/DisplayVk.h"
#include "libANGLE/renderer/vulkan/FramebufferVk.h"
#include "libANGLE/renderer/vulkan/RendererVk.h"
#include "libANGLE/renderer/vulkan/vk_format_utils.h"
#include "third_party/trace_event/trace_event.h"
namespace rx
{
namespace
{
GLint GetSampleCount(DisplayVk *displayVk, const egl::Config *config)
{
GLint samples = 1;
if (config->sampleBuffers && config->samples > 1)
{
samples = config->samples;
}
return samples;
}
VkPresentModeKHR GetDesiredPresentMode(const std::vector<VkPresentModeKHR> &presentModes,
EGLint interval)
{
ASSERT(!presentModes.empty());
// If v-sync is enabled, use FIFO, which throttles you to the display rate and is guaranteed to
// always be supported.
if (interval > 0)
{
return VK_PRESENT_MODE_FIFO_KHR;
}
// Otherwise, choose either of the following, if available, in order specified here:
//
// - Mailbox is similar to triple-buffering.
// - Immediate is similar to single-buffering.
//
// If neither is supported, we fallback to FIFO.
bool mailboxAvailable = false;
bool immediateAvailable = false;
for (VkPresentModeKHR presentMode : presentModes)
{
switch (presentMode)
{
case VK_PRESENT_MODE_MAILBOX_KHR:
mailboxAvailable = true;
break;
case VK_PRESENT_MODE_IMMEDIATE_KHR:
immediateAvailable = true;
break;
default:
break;
}
}
// Note again that VK_PRESENT_MODE_FIFO_KHR is guaranteed to be available.
return mailboxAvailable
? VK_PRESENT_MODE_MAILBOX_KHR
: immediateAvailable ? VK_PRESENT_MODE_IMMEDIATE_KHR : VK_PRESENT_MODE_FIFO_KHR;
}
constexpr VkImageUsageFlags kSurfaceVKImageUsageFlags =
VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_TRANSFER_SRC_BIT;
constexpr VkImageUsageFlags kSurfaceVKColorImageUsageFlags =
kSurfaceVKImageUsageFlags | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
constexpr VkImageUsageFlags kSurfaceVKDepthStencilImageUsageFlags =
kSurfaceVKImageUsageFlags | VK_IMAGE_USAGE_DEPTH_STENCIL_ATTACHMENT_BIT;
} // namespace
OffscreenSurfaceVk::AttachmentImage::AttachmentImage()
{
renderTarget.init(&image, &imageView, 0, 0, nullptr);
}
OffscreenSurfaceVk::AttachmentImage::~AttachmentImage() = default;
angle::Result OffscreenSurfaceVk::AttachmentImage::initialize(DisplayVk *displayVk,
EGLint width,
EGLint height,
const vk::Format &vkFormat,
GLint samples)
{
RendererVk *renderer = displayVk->getRenderer();
const angle::Format &textureFormat = vkFormat.imageFormat();
bool isDepthOrStencilFormat = textureFormat.depthBits > 0 || textureFormat.stencilBits > 0;
const VkImageUsageFlags usage = isDepthOrStencilFormat ? kSurfaceVKDepthStencilImageUsageFlags
: kSurfaceVKColorImageUsageFlags;
gl::Extents extents(std::max(static_cast<int>(width), 1), std::max(static_cast<int>(height), 1),
1);
ANGLE_TRY(image.init(displayVk, gl::TextureType::_2D, extents, vkFormat, samples, usage, 1, 1));
VkMemoryPropertyFlags flags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
ANGLE_TRY(image.initMemory(displayVk, renderer->getMemoryProperties(), flags));
VkImageAspectFlags aspect = vk::GetFormatAspectFlags(textureFormat);
ANGLE_TRY(image.initImageView(displayVk, gl::TextureType::_2D, aspect, gl::SwizzleState(),
&imageView, 0, 1));
// Clear the image if it has emulated channels.
ANGLE_TRY(image.clearIfEmulatedFormat(displayVk, gl::ImageIndex::Make2D(0), vkFormat));
return angle::Result::Continue;
}
void OffscreenSurfaceVk::AttachmentImage::destroy(const egl::Display *display)
{
const DisplayVk *displayVk = vk::GetImpl(display);
RendererVk *renderer = displayVk->getRenderer();
image.releaseImage(renderer);
image.releaseStagingBuffer(renderer);
renderer->releaseObject(renderer->getCurrentQueueSerial(), &imageView);
}
OffscreenSurfaceVk::OffscreenSurfaceVk(const egl::SurfaceState &surfaceState,
EGLint width,
EGLint height)
: SurfaceImpl(surfaceState), mWidth(width), mHeight(height)
{}
OffscreenSurfaceVk::~OffscreenSurfaceVk() {}
egl::Error OffscreenSurfaceVk::initialize(const egl::Display *display)
{
DisplayVk *displayVk = vk::GetImpl(display);
angle::Result result = initializeImpl(displayVk);
return angle::ToEGL(result, displayVk, EGL_BAD_SURFACE);
}
angle::Result OffscreenSurfaceVk::initializeImpl(DisplayVk *displayVk)
{
RendererVk *renderer = displayVk->getRenderer();
const egl::Config *config = mState.config;
GLint samples = GetSampleCount(displayVk, mState.config);
ANGLE_VK_CHECK(displayVk, samples > 0, VK_ERROR_INITIALIZATION_FAILED);
if (config->renderTargetFormat != GL_NONE)
{
ANGLE_TRY(mColorAttachment.initialize(
displayVk, mWidth, mHeight, renderer->getFormat(config->renderTargetFormat), samples));
}
if (config->depthStencilFormat != GL_NONE)
{
ANGLE_TRY(mDepthStencilAttachment.initialize(
displayVk, mWidth, mHeight, renderer->getFormat(config->depthStencilFormat), samples));
}
return angle::Result::Continue;
}
void OffscreenSurfaceVk::destroy(const egl::Display *display)
{
mColorAttachment.destroy(display);
mDepthStencilAttachment.destroy(display);
}
FramebufferImpl *OffscreenSurfaceVk::createDefaultFramebuffer(const gl::Context *context,
const gl::FramebufferState &state)
{
RendererVk *renderer = vk::GetImpl(context)->getRenderer();
// Use a user FBO for an offscreen RT.
return FramebufferVk::CreateUserFBO(renderer, state);
}
egl::Error OffscreenSurfaceVk::swap(const gl::Context *context)
{
return egl::NoError();
}
egl::Error OffscreenSurfaceVk::postSubBuffer(const gl::Context * /*context*/,
EGLint /*x*/,
EGLint /*y*/,
EGLint /*width*/,
EGLint /*height*/)
{
return egl::NoError();
}
egl::Error OffscreenSurfaceVk::querySurfacePointerANGLE(EGLint /*attribute*/, void ** /*value*/)
{
UNREACHABLE();
return egl::EglBadCurrentSurface();
}
egl::Error OffscreenSurfaceVk::bindTexImage(const gl::Context * /*context*/,
gl::Texture * /*texture*/,
EGLint /*buffer*/)
{
return egl::NoError();
}
egl::Error OffscreenSurfaceVk::releaseTexImage(const gl::Context * /*context*/, EGLint /*buffer*/)
{
return egl::NoError();
}
egl::Error OffscreenSurfaceVk::getSyncValues(EGLuint64KHR * /*ust*/,
EGLuint64KHR * /*msc*/,
EGLuint64KHR * /*sbc*/)
{
UNIMPLEMENTED();
return egl::EglBadAccess();
}
void OffscreenSurfaceVk::setSwapInterval(EGLint /*interval*/) {}
EGLint OffscreenSurfaceVk::getWidth() const
{
return mWidth;
}
EGLint OffscreenSurfaceVk::getHeight() const
{
return mHeight;
}
EGLint OffscreenSurfaceVk::isPostSubBufferSupported() const
{
return EGL_FALSE;
}
EGLint OffscreenSurfaceVk::getSwapBehavior() const
{
return EGL_BUFFER_DESTROYED;
}
angle::Result OffscreenSurfaceVk::getAttachmentRenderTarget(
const gl::Context *context,
GLenum binding,
const gl::ImageIndex &imageIndex,
FramebufferAttachmentRenderTarget **rtOut)
{
if (binding == GL_BACK)
{
*rtOut = &mColorAttachment.renderTarget;
}
else
{
ASSERT(binding == GL_DEPTH || binding == GL_STENCIL || binding == GL_DEPTH_STENCIL);
*rtOut = &mDepthStencilAttachment.renderTarget;
}
return angle::Result::Continue;
}
angle::Result OffscreenSurfaceVk::initializeContents(const gl::Context *context,
const gl::ImageIndex &imageIndex)
{
ContextVk *contextVk = vk::GetImpl(context);
if (mColorAttachment.image.valid())
{
mColorAttachment.image.stageSubresourceRobustClear(
imageIndex, mColorAttachment.image.getFormat().angleFormat());
ANGLE_TRY(mColorAttachment.image.flushAllStagedUpdates(contextVk));
}
if (mDepthStencilAttachment.image.valid())
{
mDepthStencilAttachment.image.stageSubresourceRobustClear(
imageIndex, mDepthStencilAttachment.image.getFormat().angleFormat());
ANGLE_TRY(mDepthStencilAttachment.image.flushAllStagedUpdates(contextVk));
}
return angle::Result::Continue;
}
vk::ImageHelper *OffscreenSurfaceVk::getColorAttachmentImage()
{
return &mColorAttachment.image;
}
WindowSurfaceVk::SwapchainImage::SwapchainImage() = default;
WindowSurfaceVk::SwapchainImage::~SwapchainImage() = default;
WindowSurfaceVk::SwapchainImage::SwapchainImage(SwapchainImage &&other)
: image(std::move(other.image)),
imageView(std::move(other.imageView)),
framebuffer(std::move(other.framebuffer))
{}
WindowSurfaceVk::SwapHistory::SwapHistory() = default;
WindowSurfaceVk::SwapHistory::SwapHistory(SwapHistory &&other)
{
*this = std::move(other);
}
WindowSurfaceVk::SwapHistory &WindowSurfaceVk::SwapHistory::operator=(SwapHistory &&other)
{
std::swap(sharedFence, other.sharedFence);
std::swap(semaphores, other.semaphores);
std::swap(swapchain, other.swapchain);
return *this;
}
WindowSurfaceVk::SwapHistory::~SwapHistory() = default;
void WindowSurfaceVk::SwapHistory::destroy(VkDevice device)
{
if (swapchain != VK_NULL_HANDLE)
{
vkDestroySwapchainKHR(device, swapchain, nullptr);
swapchain = VK_NULL_HANDLE;
}
sharedFence.reset(device);
for (vk::Semaphore &semaphore : semaphores)
{
semaphore.destroy(device);
}
semaphores.clear();
}
angle::Result WindowSurfaceVk::SwapHistory::waitFence(DisplayVk *displayVk)
{
if (sharedFence.isReferenced())
{
ANGLE_VK_TRY(displayVk, sharedFence.get().wait(displayVk->getDevice(),
std::numeric_limits<uint64_t>::max()));
}
return angle::Result::Continue;
}
WindowSurfaceVk::WindowSurfaceVk(const egl::SurfaceState &surfaceState,
EGLNativeWindowType window,
EGLint width,
EGLint height)
: SurfaceImpl(surfaceState),
mNativeWindowType(window),
mSurface(VK_NULL_HANDLE),
mInstance(VK_NULL_HANDLE),
mSwapchain(VK_NULL_HANDLE),
mSwapchainPresentMode(VK_PRESENT_MODE_FIFO_KHR),
mDesiredSwapchainPresentMode(VK_PRESENT_MODE_FIFO_KHR),
mMinImageCount(0),
mPreTransform(VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR),
mCompositeAlpha(VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR),
mCurrentSwapchainImageIndex(0),
mCurrentSwapHistoryIndex(0)
{
mDepthStencilRenderTarget.init(&mDepthStencilImage, &mDepthStencilImageView, 0, 0, nullptr);
// Initialize the color render target with the multisampled targets. If not multisampled, the
// render target will be updated to refer to a swapchain image on every acquire.
mColorRenderTarget.init(&mColorImageMS, &mColorImageViewMS, 0, 0, nullptr);
}
WindowSurfaceVk::~WindowSurfaceVk()
{
ASSERT(mSurface == VK_NULL_HANDLE);
ASSERT(mSwapchain == VK_NULL_HANDLE);
}
void WindowSurfaceVk::destroy(const egl::Display *display)
{
DisplayVk *displayVk = vk::GetImpl(display);
RendererVk *renderer = displayVk->getRenderer();
VkDevice device = renderer->getDevice();
VkInstance instance = renderer->getInstance();
// We might not need to flush the pipe here.
(void)renderer->finish(displayVk, nullptr, nullptr);
releaseSwapchainImages(renderer);
for (SwapHistory &swap : mSwapHistory)
{
swap.destroy(device);
}
if (mSwapchain)
{
vkDestroySwapchainKHR(device, mSwapchain, nullptr);
mSwapchain = VK_NULL_HANDLE;
}
if (mSurface)
{
vkDestroySurfaceKHR(instance, mSurface, nullptr);
mSurface = VK_NULL_HANDLE;
}
for (vk::Semaphore &flushSemaphore : mFlushSemaphoreChain)
{
flushSemaphore.destroy(device);
}
mFlushSemaphoreChain.clear();
}
egl::Error WindowSurfaceVk::initialize(const egl::Display *display)
{
DisplayVk *displayVk = vk::GetImpl(display);
angle::Result result = initializeImpl(displayVk);
return angle::ToEGL(result, displayVk, EGL_BAD_SURFACE);
}
angle::Result WindowSurfaceVk::initializeImpl(DisplayVk *displayVk)
{
RendererVk *renderer = displayVk->getRenderer();
gl::Extents windowSize;
ANGLE_TRY(createSurfaceVk(displayVk, &windowSize));
uint32_t presentQueue = 0;
ANGLE_TRY(renderer->selectPresentQueueForSurface(displayVk, mSurface, &presentQueue));
ANGLE_UNUSED_VARIABLE(presentQueue);
const VkPhysicalDevice &physicalDevice = renderer->getPhysicalDevice();
ANGLE_VK_TRY(displayVk, vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, mSurface,
&mSurfaceCaps));
// Adjust width and height to the swapchain if necessary.
uint32_t width = mSurfaceCaps.currentExtent.width;
uint32_t height = mSurfaceCaps.currentExtent.height;
// TODO(jmadill): Support devices which don't support copy. We use this for ReadPixels.
ANGLE_VK_CHECK(displayVk,
(mSurfaceCaps.supportedUsageFlags & kSurfaceVKColorImageUsageFlags) ==
kSurfaceVKColorImageUsageFlags,
VK_ERROR_INITIALIZATION_FAILED);
EGLAttrib attribWidth = mState.attributes.get(EGL_WIDTH, 0);
EGLAttrib attribHeight = mState.attributes.get(EGL_HEIGHT, 0);
if (mSurfaceCaps.currentExtent.width == 0xFFFFFFFFu)
{
ASSERT(mSurfaceCaps.currentExtent.height == 0xFFFFFFFFu);
width = (attribWidth != 0) ? static_cast<uint32_t>(attribWidth) : windowSize.width;
height = (attribHeight != 0) ? static_cast<uint32_t>(attribHeight) : windowSize.height;
}
gl::Extents extents(static_cast<int>(width), static_cast<int>(height), 1);
uint32_t presentModeCount = 0;
ANGLE_VK_TRY(displayVk, vkGetPhysicalDeviceSurfacePresentModesKHR(physicalDevice, mSurface,
&presentModeCount, nullptr));
ASSERT(presentModeCount > 0);
mPresentModes.resize(presentModeCount);
ANGLE_VK_TRY(displayVk, vkGetPhysicalDeviceSurfacePresentModesKHR(
physicalDevice, mSurface, &presentModeCount, mPresentModes.data()));
// Select appropriate present mode based on vsync parameter. Default to 1 (FIFO), though it
// will get clamped to the min/max values specified at display creation time.
setSwapInterval(renderer->getFeatures().disableFifoPresentMode.enabled ? 0 : 1);
// Default to identity transform.
mPreTransform = VK_SURFACE_TRANSFORM_IDENTITY_BIT_KHR;
if ((mSurfaceCaps.supportedTransforms & mPreTransform) == 0)
{
mPreTransform = mSurfaceCaps.currentTransform;
}
uint32_t surfaceFormatCount = 0;
ANGLE_VK_TRY(displayVk, vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, mSurface,
&surfaceFormatCount, nullptr));
std::vector<VkSurfaceFormatKHR> surfaceFormats(surfaceFormatCount);
ANGLE_VK_TRY(displayVk,
vkGetPhysicalDeviceSurfaceFormatsKHR(physicalDevice, mSurface, &surfaceFormatCount,
surfaceFormats.data()));
const vk::Format &format = renderer->getFormat(mState.config->renderTargetFormat);
VkFormat nativeFormat = format.vkImageFormat;
if (surfaceFormatCount == 1u && surfaceFormats[0].format == VK_FORMAT_UNDEFINED)
{
// This is fine.
}
else
{
bool foundFormat = false;
for (const VkSurfaceFormatKHR &surfaceFormat : surfaceFormats)
{
if (surfaceFormat.format == nativeFormat)
{
foundFormat = true;
break;
}
}
ANGLE_VK_CHECK(displayVk, foundFormat, VK_ERROR_INITIALIZATION_FAILED);
}
mCompositeAlpha = VK_COMPOSITE_ALPHA_OPAQUE_BIT_KHR;
if ((mSurfaceCaps.supportedCompositeAlpha & mCompositeAlpha) == 0)
{
mCompositeAlpha = VK_COMPOSITE_ALPHA_INHERIT_BIT_KHR;
}
ANGLE_VK_CHECK(displayVk, (mSurfaceCaps.supportedCompositeAlpha & mCompositeAlpha) != 0,
VK_ERROR_INITIALIZATION_FAILED);
ANGLE_TRY(recreateSwapchain(displayVk, extents, mCurrentSwapHistoryIndex));
// Get the first available swapchain iamge.
return nextSwapchainImage(displayVk);
}
angle::Result WindowSurfaceVk::recreateSwapchain(DisplayVk *displayVk,
const gl::Extents &extents,
uint32_t swapHistoryIndex)
{
RendererVk *renderer = displayVk->getRenderer();
VkDevice device = renderer->getDevice();
VkSwapchainKHR oldSwapchain = mSwapchain;
mSwapchain = VK_NULL_HANDLE;
if (oldSwapchain)
{
// Note: the old swapchain must be destroyed regardless of whether creating the new
// swapchain succeeds. We can only destroy the swapchain once rendering to all its images
// have finished. We therefore store the handle to the swapchain being destroyed in the
// swap history (alongside the serial of the last submission) so it can be destroyed once we
// wait on that serial as part of the CPU throttling.
mSwapHistory[swapHistoryIndex].swapchain = oldSwapchain;
}
releaseSwapchainImages(renderer);
const vk::Format &format = renderer->getFormat(mState.config->renderTargetFormat);
VkFormat nativeFormat = format.vkImageFormat;
// We need transfer src for reading back from the backbuffer.
constexpr VkImageUsageFlags kImageUsageFlags = kSurfaceVKColorImageUsageFlags;
VkSwapchainCreateInfoKHR swapchainInfo = {};
swapchainInfo.sType = VK_STRUCTURE_TYPE_SWAPCHAIN_CREATE_INFO_KHR;
swapchainInfo.flags = 0;
swapchainInfo.surface = mSurface;
swapchainInfo.minImageCount = mMinImageCount;
swapchainInfo.imageFormat = nativeFormat;
swapchainInfo.imageColorSpace = VK_COLORSPACE_SRGB_NONLINEAR_KHR;
// Note: Vulkan doesn't allow 0-width/height swapchains.
swapchainInfo.imageExtent.width = std::max(extents.width, 1);
swapchainInfo.imageExtent.height = std::max(extents.height, 1);
swapchainInfo.imageArrayLayers = 1;
swapchainInfo.imageUsage = kImageUsageFlags;
swapchainInfo.imageSharingMode = VK_SHARING_MODE_EXCLUSIVE;
swapchainInfo.queueFamilyIndexCount = 0;
swapchainInfo.pQueueFamilyIndices = nullptr;
swapchainInfo.preTransform = mPreTransform;
swapchainInfo.compositeAlpha = mCompositeAlpha;
swapchainInfo.presentMode = mDesiredSwapchainPresentMode;
swapchainInfo.clipped = VK_TRUE;
swapchainInfo.oldSwapchain = oldSwapchain;
// TODO(syoussefi): Once EGL_SWAP_BEHAVIOR_PRESERVED_BIT is supported, the contents of the old
// swapchain need to carry over to the new one. http://anglebug.com/2942
ANGLE_VK_TRY(displayVk, vkCreateSwapchainKHR(device, &swapchainInfo, nullptr, &mSwapchain));
mSwapchainPresentMode = mDesiredSwapchainPresentMode;
// Intialize the swapchain image views.
uint32_t imageCount = 0;
ANGLE_VK_TRY(displayVk, vkGetSwapchainImagesKHR(device, mSwapchain, &imageCount, nullptr));
std::vector<VkImage> swapchainImages(imageCount);
ANGLE_VK_TRY(displayVk,
vkGetSwapchainImagesKHR(device, mSwapchain, &imageCount, swapchainImages.data()));
// If multisampling is enabled, create a multisampled image which gets resolved just prior to
// present.
GLint samples = GetSampleCount(displayVk, mState.config);
ANGLE_VK_CHECK(displayVk, samples > 0, VK_ERROR_INITIALIZATION_FAILED);
if (samples > 1)
{
const VkImageUsageFlags usage = kSurfaceVKColorImageUsageFlags;
ANGLE_TRY(mColorImageMS.init(displayVk, gl::TextureType::_2D, extents, format, samples,
usage, 1, 1));
ANGLE_TRY(mColorImageMS.initMemory(displayVk, renderer->getMemoryProperties(),
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT));
ANGLE_TRY(mColorImageMS.initImageView(displayVk, gl::TextureType::_2D,
VK_IMAGE_ASPECT_COLOR_BIT, gl::SwizzleState(),
&mColorImageViewMS, 0, 1));
// Clear the image if it has emulated channels.
ANGLE_TRY(
mColorImageMS.clearIfEmulatedFormat(displayVk, gl::ImageIndex::Make2D(0), format));
}
mSwapchainImages.resize(imageCount);
for (uint32_t imageIndex = 0; imageIndex < imageCount; ++imageIndex)
{
SwapchainImage &member = mSwapchainImages[imageIndex];
member.image.init2DWeakReference(swapchainImages[imageIndex], extents, format, 1);
if (!mColorImageMS.valid())
{
// If the multisampled image is used, we don't need a view on the swapchain image, as
// it's only used as a resolve destination. This has the added benefit that we can't
// accidentally use this image.
ANGLE_TRY(member.image.initImageView(displayVk, gl::TextureType::_2D,
VK_IMAGE_ASPECT_COLOR_BIT, gl::SwizzleState(),
&member.imageView, 0, 1));
// Clear the image if it has emulated channels. If a multisampled image exists, this
// image will be unused until a pre-present resolve, at which point it will be fully
// initialized and wouldn't need a clear.
ANGLE_TRY(
member.image.clearIfEmulatedFormat(displayVk, gl::ImageIndex::Make2D(0), format));
}
}
// Initialize depth/stencil if requested.
if (mState.config->depthStencilFormat != GL_NONE)
{
const vk::Format &dsFormat = renderer->getFormat(mState.config->depthStencilFormat);
const VkImageUsageFlags dsUsage = kSurfaceVKDepthStencilImageUsageFlags;
ANGLE_TRY(mDepthStencilImage.init(displayVk, gl::TextureType::_2D, extents, dsFormat,
samples, dsUsage, 1, 1));
ANGLE_TRY(mDepthStencilImage.initMemory(displayVk, renderer->getMemoryProperties(),
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT));
const VkImageAspectFlags aspect = vk::GetDepthStencilAspectFlags(dsFormat.imageFormat());
ANGLE_TRY(mDepthStencilImage.initImageView(displayVk, gl::TextureType::_2D, aspect,
gl::SwizzleState(), &mDepthStencilImageView, 0,
1));
// We will need to pass depth/stencil image views to the RenderTargetVk in the future.
// Clear the image if it has emulated channels.
ANGLE_TRY(mDepthStencilImage.clearIfEmulatedFormat(displayVk, gl::ImageIndex::Make2D(0),
dsFormat));
}
return angle::Result::Continue;
}
bool WindowSurfaceVk::isMultiSampled() const
{
return mColorImageMS.valid();
}
angle::Result WindowSurfaceVk::checkForOutOfDateSwapchain(DisplayVk *displayVk,
uint32_t swapHistoryIndex,
bool presentOutOfDate)
{
bool swapIntervalChanged = mSwapchainPresentMode != mDesiredSwapchainPresentMode;
// Check for window resize and recreate swapchain if necessary.
gl::Extents currentExtents;
ANGLE_TRY(getCurrentWindowSize(displayVk, &currentExtents));
gl::Extents swapchainExtents(getWidth(), getHeight(), 0);
// If window size has changed, check with surface capabilities. It has been observed on
// Android that `getCurrentWindowSize()` returns 1920x1080 for example, while surface
// capabilities returns the size the surface was created with.
if (currentExtents != swapchainExtents)
{
const VkPhysicalDevice &physicalDevice = displayVk->getRenderer()->getPhysicalDevice();
ANGLE_VK_TRY(displayVk, vkGetPhysicalDeviceSurfaceCapabilitiesKHR(physicalDevice, mSurface,
&mSurfaceCaps));
uint32_t width = mSurfaceCaps.currentExtent.width;
uint32_t height = mSurfaceCaps.currentExtent.height;
if (width != 0xFFFFFFFFu)
{
ASSERT(height != 0xFFFFFFFFu);
currentExtents.width = width;
currentExtents.height = height;
}
}
// If anything has changed, recreate the swapchain.
if (presentOutOfDate || swapIntervalChanged || currentExtents != swapchainExtents)
{
ANGLE_TRY(recreateSwapchain(displayVk, currentExtents, swapHistoryIndex));
}
return angle::Result::Continue;
}
void WindowSurfaceVk::releaseSwapchainImages(RendererVk *renderer)
{
if (mDepthStencilImage.valid())
{
Serial depthStencilSerial = mDepthStencilImage.getStoredQueueSerial();
mDepthStencilImage.releaseImage(renderer);
mDepthStencilImage.releaseStagingBuffer(renderer);
if (mDepthStencilImageView.valid())
{
renderer->releaseObject(depthStencilSerial, &mDepthStencilImageView);
}
}
if (mColorImageMS.valid())
{
Serial serial = mColorImageMS.getStoredQueueSerial();
mColorImageMS.releaseImage(renderer);
mColorImageMS.releaseStagingBuffer(renderer);
renderer->releaseObject(serial, &mColorImageViewMS);
renderer->releaseObject(serial, &mFramebufferMS);
}
for (SwapchainImage &swapchainImage : mSwapchainImages)
{
Serial imageSerial = swapchainImage.image.getStoredQueueSerial();
// We don't own the swapchain image handles, so we just remove our reference to it.
swapchainImage.image.resetImageWeakReference();
swapchainImage.image.destroy(renderer->getDevice());
if (swapchainImage.imageView.valid())
{
renderer->releaseObject(imageSerial, &swapchainImage.imageView);
}
if (swapchainImage.framebuffer.valid())
{
renderer->releaseObject(imageSerial, &swapchainImage.framebuffer);
}
}
mSwapchainImages.clear();
}
FramebufferImpl *WindowSurfaceVk::createDefaultFramebuffer(const gl::Context *context,
const gl::FramebufferState &state)
{
RendererVk *renderer = vk::GetImpl(context)->getRenderer();
return FramebufferVk::CreateDefaultFBO(renderer, state, this);
}
egl::Error WindowSurfaceVk::swapWithDamage(const gl::Context *context,
EGLint *rects,
EGLint n_rects)
{
DisplayVk *displayVk = vk::GetImpl(context->getDisplay());
angle::Result result = swapImpl(displayVk, rects, n_rects);
return angle::ToEGL(result, displayVk, EGL_BAD_SURFACE);
}
egl::Error WindowSurfaceVk::swap(const gl::Context *context)
{
DisplayVk *displayVk = vk::GetImpl(context->getDisplay());
angle::Result result = swapImpl(displayVk, nullptr, 0);
return angle::ToEGL(result, displayVk, EGL_BAD_SURFACE);
}
angle::Result WindowSurfaceVk::present(DisplayVk *displayVk,
EGLint *rects,
EGLint n_rects,
bool &swapchainOutOfDate)
{
RendererVk *renderer = displayVk->getRenderer();
// Throttle the submissions to avoid getting too far ahead of the GPU.
SwapHistory &swap = mSwapHistory[mCurrentSwapHistoryIndex];
{
TRACE_EVENT0("gpu.angle", "WindowSurfaceVk::present: Throttle CPU");
ANGLE_TRY(swap.waitFence(displayVk));
swap.destroy(displayVk->getDevice());
}
SwapchainImage &image = mSwapchainImages[mCurrentSwapchainImageIndex];
vk::CommandBuffer *swapCommands = nullptr;
if (mColorImageMS.valid())
{
// Transition the multisampled image to TRANSFER_SRC for resolve.
vk::CommandBuffer *multisampledTransition = nullptr;
ANGLE_TRY(mColorImageMS.recordCommands(displayVk, &multisampledTransition));
mColorImageMS.changeLayout(VK_IMAGE_ASPECT_COLOR_BIT, vk::ImageLayout::TransferSrc,
multisampledTransition);
// Setup graph dependency between the swapchain image and the multisampled one.
image.image.addReadDependency(&mColorImageMS);
VkImageResolve resolveRegion = {};
resolveRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
resolveRegion.srcSubresource.mipLevel = 0;
resolveRegion.srcSubresource.baseArrayLayer = 0;
resolveRegion.srcSubresource.layerCount = 1;
resolveRegion.srcOffset = {};
resolveRegion.dstSubresource = resolveRegion.srcSubresource;
resolveRegion.dstOffset = {};
gl_vk::GetExtent(image.image.getExtents(), &resolveRegion.extent);
ANGLE_TRY(image.image.recordCommands(displayVk, &swapCommands));
mColorImageMS.resolve(&image.image, resolveRegion, swapCommands);
}
else
{
ANGLE_TRY(image.image.recordCommands(displayVk, &swapCommands));
}
image.image.changeLayout(VK_IMAGE_ASPECT_COLOR_BIT, vk::ImageLayout::Present, swapCommands);
const vk::Semaphore *waitSemaphore = nullptr;
const vk::Semaphore *signalSemaphore = nullptr;
if (!renderer->getCommandGraph()->empty())
{
ANGLE_TRY(generateSemaphoresForFlush(displayVk, &waitSemaphore, &signalSemaphore));
}
ANGLE_TRY(renderer->flush(displayVk, waitSemaphore, signalSemaphore));
// The semaphore chain must at least have the semaphore returned by vkAquireImage in it. It will
// likely have more based on how much work was flushed this frame.
ASSERT(!mFlushSemaphoreChain.empty());
VkPresentInfoKHR presentInfo = {};
presentInfo.sType = VK_STRUCTURE_TYPE_PRESENT_INFO_KHR;
presentInfo.waitSemaphoreCount = 1;
presentInfo.pWaitSemaphores = mFlushSemaphoreChain.back().ptr();
presentInfo.swapchainCount = 1;
presentInfo.pSwapchains = &mSwapchain;
presentInfo.pImageIndices = &mCurrentSwapchainImageIndex;
presentInfo.pResults = nullptr;
VkPresentRegionKHR presentRegion = {};
VkPresentRegionsKHR presentRegions = {};
std::vector<VkRectLayerKHR> vkRects;
if (renderer->getFeatures().supportsIncrementalPresent.enabled && (n_rects > 0))
{
EGLint width = getWidth();
EGLint height = getHeight();
EGLint *eglRects = rects;
presentRegion.rectangleCount = n_rects;
vkRects.resize(n_rects);
for (EGLint i = 0; i < n_rects; i++)
{
VkRectLayerKHR &rect = vkRects[i];
// Make sure the damage rects are within swapchain bounds.
rect.offset.x = gl::clamp(*eglRects++, 0, width);
rect.offset.y = gl::clamp(*eglRects++, 0, height);
rect.extent.width = gl::clamp(*eglRects++, 0, width - rect.offset.x);
rect.extent.height = gl::clamp(*eglRects++, 0, height - rect.offset.y);
rect.layer = 0;
}
presentRegion.pRectangles = vkRects.data();
presentRegions.sType = VK_STRUCTURE_TYPE_PRESENT_REGIONS_KHR;
presentRegions.pNext = nullptr;
presentRegions.swapchainCount = 1;
presentRegions.pRegions = &presentRegion;
presentInfo.pNext = &presentRegions;
}
// Update the swap history for this presentation
swap.sharedFence = renderer->getLastSubmittedFence();
swap.semaphores = std::move(mFlushSemaphoreChain);
++mCurrentSwapHistoryIndex;
mCurrentSwapHistoryIndex =
mCurrentSwapHistoryIndex == mSwapHistory.size() ? 0 : mCurrentSwapHistoryIndex;
VkResult result = vkQueuePresentKHR(renderer->getQueue(), &presentInfo);
// If SUBOPTIMAL/OUT_OF_DATE is returned, it's ok, we just need to recreate the swapchain before
// continuing.
swapchainOutOfDate = result == VK_SUBOPTIMAL_KHR || result == VK_ERROR_OUT_OF_DATE_KHR;
if (!swapchainOutOfDate)
{
ANGLE_VK_TRY(displayVk, result);
}
return angle::Result::Continue;
}
angle::Result WindowSurfaceVk::swapImpl(DisplayVk *displayVk, EGLint *rects, EGLint n_rects)
{
bool swapchainOutOfDate;
// Save this now, since present() will increment the value.
size_t currentSwapHistoryIndex = mCurrentSwapHistoryIndex;
ANGLE_TRY(present(displayVk, rects, n_rects, swapchainOutOfDate));
ANGLE_TRY(checkForOutOfDateSwapchain(displayVk, currentSwapHistoryIndex, swapchainOutOfDate));
{
// Note: TRACE_EVENT0 is put here instead of inside the function to workaround this issue:
// http://anglebug.com/2927
TRACE_EVENT0("gpu.angle", "nextSwapchainImage");
// Get the next available swapchain image.
ANGLE_TRY(nextSwapchainImage(displayVk));
}
RendererVk *renderer = displayVk->getRenderer();
ANGLE_TRY(renderer->syncPipelineCacheVk(displayVk));
return angle::Result::Continue;
}
angle::Result WindowSurfaceVk::nextSwapchainImage(DisplayVk *displayVk)
{
VkDevice device = displayVk->getDevice();
vk::Scoped<vk::Semaphore> aquireImageSemaphore(device);
ANGLE_VK_TRY(displayVk, aquireImageSemaphore.get().init(device));
ANGLE_VK_TRY(displayVk, vkAcquireNextImageKHR(device, mSwapchain, UINT64_MAX,
aquireImageSemaphore.get().getHandle(),
VK_NULL_HANDLE, &mCurrentSwapchainImageIndex));
// After presenting, the flush semaphore chain is cleared. The semaphore returned by
// vkAcquireNextImage will start a new chain.
ASSERT(mFlushSemaphoreChain.empty());
mFlushSemaphoreChain.push_back(aquireImageSemaphore.release());
SwapchainImage &image = mSwapchainImages[mCurrentSwapchainImageIndex];
// This swap chain image is new, reset any dependency information it has.
//
// When the Vulkan backend is multithreading, different contexts can have very different current
// serials. If a surface is rendered to by multiple contexts in different frames, the last
// context to write a particular swap chain image has no bearing on the current context writing
// to that image.
//
// Clear the image's queue serial because it's possible that it appears to be in the future to
// the next context that writes to the image.
image.image.resetQueueSerial();
// Update RenderTarget pointers to this swapchain image if not multisampling. Note: a possible
// optimization is to defer the |vkAcquireNextImageKHR| call itself to |present()| if
// multisampling, as the swapchain image is essentially unused until then.
if (!mColorImageMS.valid())
{
mColorRenderTarget.updateSwapchainImage(&image.image, &image.imageView);
}
return angle::Result::Continue;
}
egl::Error WindowSurfaceVk::postSubBuffer(const gl::Context *context,
EGLint x,
EGLint y,
EGLint width,
EGLint height)
{
// TODO(jmadill)
return egl::NoError();
}
egl::Error WindowSurfaceVk::querySurfacePointerANGLE(EGLint attribute, void **value)
{
UNREACHABLE();
return egl::EglBadCurrentSurface();
}
egl::Error WindowSurfaceVk::bindTexImage(const gl::Context *context,
gl::Texture *texture,
EGLint buffer)
{
return egl::NoError();
}
egl::Error WindowSurfaceVk::releaseTexImage(const gl::Context *context, EGLint buffer)
{
return egl::NoError();
}
egl::Error WindowSurfaceVk::getSyncValues(EGLuint64KHR * /*ust*/,
EGLuint64KHR * /*msc*/,
EGLuint64KHR * /*sbc*/)
{
UNIMPLEMENTED();
return egl::EglBadAccess();
}
void WindowSurfaceVk::setSwapInterval(EGLint interval)
{
const EGLint minSwapInterval = mState.config->minSwapInterval;
const EGLint maxSwapInterval = mState.config->maxSwapInterval;
ASSERT(minSwapInterval == 0 || minSwapInterval == 1);
ASSERT(maxSwapInterval == 0 || maxSwapInterval == 1);
interval = gl::clamp(interval, minSwapInterval, maxSwapInterval);
mDesiredSwapchainPresentMode = GetDesiredPresentMode(mPresentModes, interval);
// - On mailbox, we need at least three images; one is being displayed to the user until the
// next v-sync, and the application alternatingly renders to the other two, one being
// recorded, and the other queued for presentation if v-sync happens in the meantime.
// - On immediate, we need at least two images; the application alternates between the two
// images.
// - On fifo, we use at least three images. Triple-buffering allows us to present an image,
// have one in the queue, and record in another. Note: on certain configurations (windows +
// nvidia + windowed mode), we could get away with a smaller number.
//
// For simplicity, we always allocate at least three images.
mMinImageCount = std::max(3u, mSurfaceCaps.minImageCount);
// Make sure we don't exceed maxImageCount.
if (mSurfaceCaps.maxImageCount > 0 && mMinImageCount > mSurfaceCaps.maxImageCount)
{
mMinImageCount = mSurfaceCaps.maxImageCount;
}
// On the next swap, if the desired present mode is different from the current one, the
// swapchain will be recreated.
}
EGLint WindowSurfaceVk::getWidth() const
{
return static_cast<EGLint>(mColorRenderTarget.getExtents().width);
}
EGLint WindowSurfaceVk::getHeight() const
{
return static_cast<EGLint>(mColorRenderTarget.getExtents().height);
}
EGLint WindowSurfaceVk::isPostSubBufferSupported() const
{
// TODO(jmadill)
return EGL_FALSE;
}
EGLint WindowSurfaceVk::getSwapBehavior() const
{
// TODO(jmadill)
return EGL_BUFFER_DESTROYED;
}
angle::Result WindowSurfaceVk::getAttachmentRenderTarget(const gl::Context *context,
GLenum binding,
const gl::ImageIndex &imageIndex,
FramebufferAttachmentRenderTarget **rtOut)
{
if (binding == GL_BACK)
{
*rtOut = &mColorRenderTarget;
}
else
{
ASSERT(binding == GL_DEPTH || binding == GL_STENCIL || binding == GL_DEPTH_STENCIL);
*rtOut = &mDepthStencilRenderTarget;
}
return angle::Result::Continue;
}
angle::Result WindowSurfaceVk::getCurrentFramebuffer(vk::Context *context,
const vk::RenderPass &compatibleRenderPass,
vk::Framebuffer **framebufferOut)
{
vk::Framebuffer &currentFramebuffer =
isMultiSampled() ? mFramebufferMS
: mSwapchainImages[mCurrentSwapchainImageIndex].framebuffer;
if (currentFramebuffer.valid())
{
// Validation layers should detect if the render pass is really compatible.
*framebufferOut = &currentFramebuffer;
return angle::Result::Continue;
}
VkFramebufferCreateInfo framebufferInfo = {};
const gl::Extents extents = mColorRenderTarget.getExtents();
std::array<VkImageView, 2> imageViews = {{VK_NULL_HANDLE, mDepthStencilImageView.getHandle()}};
framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
framebufferInfo.flags = 0;
framebufferInfo.renderPass = compatibleRenderPass.getHandle();
framebufferInfo.attachmentCount = (mDepthStencilImage.valid() ? 2u : 1u);
framebufferInfo.pAttachments = imageViews.data();
framebufferInfo.width = static_cast<uint32_t>(extents.width);
framebufferInfo.height = static_cast<uint32_t>(extents.height);
framebufferInfo.layers = 1;
if (isMultiSampled())
{
// If multisampled, there is only a single color image and framebuffer.
imageViews[0] = mColorImageViewMS.getHandle();
ANGLE_VK_TRY(context, mFramebufferMS.init(context->getDevice(), framebufferInfo));
}
else
{
for (SwapchainImage &swapchainImage : mSwapchainImages)
{
imageViews[0] = swapchainImage.imageView.getHandle();
ANGLE_VK_TRY(context,
swapchainImage.framebuffer.init(context->getDevice(), framebufferInfo));
}
}
ASSERT(currentFramebuffer.valid());
*framebufferOut = &currentFramebuffer;
return angle::Result::Continue;
}
angle::Result WindowSurfaceVk::generateSemaphoresForFlush(vk::Context *context,
const vk::Semaphore **outWaitSemaphore,
const vk::Semaphore **outSignalSempahore)
{
// The flush semaphore chain should always start with a semaphore in it, created by the
// vkAquireImage call. This semaphore must be waited on before any rendering to the swap chain
// image can occur.
ASSERT(!mFlushSemaphoreChain.empty());
vk::Semaphore nextSemaphore;
ANGLE_VK_TRY(context, nextSemaphore.init(context->getDevice()));
mFlushSemaphoreChain.push_back(std::move(nextSemaphore));
*outWaitSemaphore = &mFlushSemaphoreChain[mFlushSemaphoreChain.size() - 2];
*outSignalSempahore = &mFlushSemaphoreChain[mFlushSemaphoreChain.size() - 1];
return angle::Result::Continue;
}
angle::Result WindowSurfaceVk::initializeContents(const gl::Context *context,
const gl::ImageIndex &imageIndex)
{
ContextVk *contextVk = vk::GetImpl(context);
ASSERT(mSwapchainImages.size() > 0);
ASSERT(mCurrentSwapchainImageIndex < mSwapchainImages.size());
vk::ImageHelper *image =
isMultiSampled() ? &mColorImageMS : &mSwapchainImages[mCurrentSwapchainImageIndex].image;
image->stageSubresourceRobustClear(imageIndex, image->getFormat().angleFormat());
ANGLE_TRY(image->flushAllStagedUpdates(contextVk));
if (mDepthStencilImage.valid())
{
mDepthStencilImage.stageSubresourceRobustClear(
gl::ImageIndex::Make2D(0), mDepthStencilImage.getFormat().angleFormat());
ANGLE_TRY(mDepthStencilImage.flushAllStagedUpdates(contextVk));
}
return angle::Result::Continue;
}
} // namespace rx