blob: 8c77f510b1c00d21b04b5a65c333e9e0b66b2097 [file] [log] [blame]
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// FramebufferVk.cpp:
// Implements the class methods for FramebufferVk.
//
#include "libANGLE/renderer/vulkan/FramebufferVk.h"
#include <array>
#include "common/debug.h"
#include "common/vulkan/vk_headers.h"
#include "libANGLE/Context.h"
#include "libANGLE/Display.h"
#include "libANGLE/ErrorStrings.h"
#include "libANGLE/formatutils.h"
#include "libANGLE/renderer/renderer_utils.h"
#include "libANGLE/renderer/vulkan/ContextVk.h"
#include "libANGLE/renderer/vulkan/DisplayVk.h"
#include "libANGLE/renderer/vulkan/RenderTargetVk.h"
#include "libANGLE/renderer/vulkan/SurfaceVk.h"
#include "libANGLE/renderer/vulkan/vk_format_utils.h"
#include "libANGLE/renderer/vulkan/vk_renderer.h"
#include "libANGLE/renderer/vulkan/vk_resource.h"
namespace rx
{
namespace
{
// Clear values are only used when loadOp=Clear is set in clearWithRenderPassOp. When starting a
// new render pass, the clear value is set to an unlikely value (bright pink) to stand out better
// in case of a bug.
constexpr VkClearValue kUninitializedClearValue = {{{0.95, 0.05, 0.95, 0.95}}};
// The value to assign an alpha channel that's emulated. The type is unsigned int, though it will
// automatically convert to the actual data type.
constexpr unsigned int kEmulatedAlphaValue = 1;
bool HasSrcBlitFeature(vk::Renderer *renderer, RenderTargetVk *srcRenderTarget)
{
angle::FormatID srcFormatID = srcRenderTarget->getImageActualFormatID();
return renderer->hasImageFormatFeatureBits(srcFormatID, VK_FORMAT_FEATURE_BLIT_SRC_BIT);
}
bool HasDstBlitFeature(vk::Renderer *renderer, RenderTargetVk *dstRenderTarget)
{
angle::FormatID dstFormatID = dstRenderTarget->getImageActualFormatID();
return renderer->hasImageFormatFeatureBits(dstFormatID, VK_FORMAT_FEATURE_BLIT_DST_BIT);
}
// Returns false if destination has any channel the source doesn't. This means that channel was
// emulated and using the Vulkan blit command would overwrite that emulated channel.
bool AreSrcAndDstColorChannelsBlitCompatible(RenderTargetVk *srcRenderTarget,
RenderTargetVk *dstRenderTarget)
{
const angle::Format &srcFormat = srcRenderTarget->getImageIntendedFormat();
const angle::Format &dstFormat = dstRenderTarget->getImageIntendedFormat();
// Luminance/alpha formats are not renderable, so they can't have ended up in a framebuffer to
// participate in a blit.
ASSERT(!dstFormat.isLUMA() && !srcFormat.isLUMA());
// All color formats have the red channel.
ASSERT(dstFormat.redBits > 0 && srcFormat.redBits > 0);
return (dstFormat.greenBits > 0 || srcFormat.greenBits == 0) &&
(dstFormat.blueBits > 0 || srcFormat.blueBits == 0) &&
(dstFormat.alphaBits > 0 || srcFormat.alphaBits == 0);
}
// Returns false if formats are not identical. vkCmdResolveImage and resolve attachments both
// require identical formats between source and destination. vkCmdBlitImage additionally requires
// the same for depth/stencil formats.
bool AreSrcAndDstFormatsIdentical(RenderTargetVk *srcRenderTarget, RenderTargetVk *dstRenderTarget)
{
angle::FormatID srcFormatID = srcRenderTarget->getImageActualFormatID();
angle::FormatID dstFormatID = dstRenderTarget->getImageActualFormatID();
return srcFormatID == dstFormatID;
}
bool AreSrcAndDstDepthStencilChannelsBlitCompatible(RenderTargetVk *srcRenderTarget,
RenderTargetVk *dstRenderTarget)
{
const angle::Format &srcFormat = srcRenderTarget->getImageIntendedFormat();
const angle::Format &dstFormat = dstRenderTarget->getImageIntendedFormat();
return (dstFormat.depthBits > 0 || srcFormat.depthBits == 0) &&
(dstFormat.stencilBits > 0 || srcFormat.stencilBits == 0);
}
void EarlyAdjustFlipYForPreRotation(SurfaceRotation blitAngleIn,
SurfaceRotation *blitAngleOut,
bool *blitFlipYOut)
{
switch (blitAngleIn)
{
case SurfaceRotation::Identity:
// No adjustments needed
break;
case SurfaceRotation::Rotated90Degrees:
*blitAngleOut = SurfaceRotation::Rotated90Degrees;
*blitFlipYOut = false;
break;
case SurfaceRotation::Rotated180Degrees:
*blitAngleOut = SurfaceRotation::Rotated180Degrees;
break;
case SurfaceRotation::Rotated270Degrees:
*blitAngleOut = SurfaceRotation::Rotated270Degrees;
*blitFlipYOut = false;
break;
default:
UNREACHABLE();
break;
}
}
void AdjustBlitAreaForPreRotation(SurfaceRotation framebufferAngle,
const gl::Rectangle &blitAreaIn,
const gl::Rectangle &framebufferDimensions,
gl::Rectangle *blitAreaOut)
{
switch (framebufferAngle)
{
case SurfaceRotation::Identity:
// No adjustments needed
break;
case SurfaceRotation::Rotated90Degrees:
blitAreaOut->x = blitAreaIn.y;
blitAreaOut->y = blitAreaIn.x;
std::swap(blitAreaOut->width, blitAreaOut->height);
break;
case SurfaceRotation::Rotated180Degrees:
blitAreaOut->x = framebufferDimensions.width - blitAreaIn.x - blitAreaIn.width;
blitAreaOut->y = framebufferDimensions.height - blitAreaIn.y - blitAreaIn.height;
break;
case SurfaceRotation::Rotated270Degrees:
blitAreaOut->x = framebufferDimensions.height - blitAreaIn.y - blitAreaIn.height;
blitAreaOut->y = framebufferDimensions.width - blitAreaIn.x - blitAreaIn.width;
std::swap(blitAreaOut->width, blitAreaOut->height);
break;
default:
UNREACHABLE();
break;
}
}
void AdjustDimensionsAndFlipForPreRotation(SurfaceRotation framebufferAngle,
gl::Rectangle *framebufferDimensions,
bool *flipX,
bool *flipY)
{
switch (framebufferAngle)
{
case SurfaceRotation::Identity:
// No adjustments needed
break;
case SurfaceRotation::Rotated90Degrees:
std::swap(framebufferDimensions->width, framebufferDimensions->height);
std::swap(*flipX, *flipY);
break;
case SurfaceRotation::Rotated180Degrees:
break;
case SurfaceRotation::Rotated270Degrees:
std::swap(framebufferDimensions->width, framebufferDimensions->height);
std::swap(*flipX, *flipY);
break;
default:
UNREACHABLE();
break;
}
}
// When blitting, the source and destination areas are viewed like UVs. For example, a 64x64
// texture if flipped should have an offset of 64 in either X or Y which corresponds to U or V of 1.
// On the other hand, when resolving, the source and destination areas are used as fragment
// coordinates to fetch from. In that case, when flipped, the texture in the above example must
// have an offset of 63.
void AdjustBlitResolveParametersForResolve(const gl::Rectangle &sourceArea,
const gl::Rectangle &destArea,
UtilsVk::BlitResolveParameters *params)
{
params->srcOffset[0] = sourceArea.x;
params->srcOffset[1] = sourceArea.y;
params->dstOffset[0] = destArea.x;
params->dstOffset[1] = destArea.y;
if (sourceArea.isReversedX())
{
ASSERT(sourceArea.x > 0);
--params->srcOffset[0];
}
if (sourceArea.isReversedY())
{
ASSERT(sourceArea.y > 0);
--params->srcOffset[1];
}
if (destArea.isReversedX())
{
ASSERT(destArea.x > 0);
--params->dstOffset[0];
}
if (destArea.isReversedY())
{
ASSERT(destArea.y > 0);
--params->dstOffset[1];
}
}
// Potentially make adjustments for pre-rotatation. Depending on the angle some of the params need
// to be swapped and/or changes made to which axis are flipped.
void AdjustBlitResolveParametersForPreRotation(SurfaceRotation framebufferAngle,
SurfaceRotation srcFramebufferAngle,
UtilsVk::BlitResolveParameters *params)
{
switch (framebufferAngle)
{
case SurfaceRotation::Identity:
break;
case SurfaceRotation::Rotated90Degrees:
std::swap(params->stretch[0], params->stretch[1]);
std::swap(params->srcOffset[0], params->srcOffset[1]);
std::swap(params->rotatedOffsetFactor[0], params->rotatedOffsetFactor[1]);
std::swap(params->flipX, params->flipY);
if (srcFramebufferAngle == framebufferAngle)
{
std::swap(params->dstOffset[0], params->dstOffset[1]);
std::swap(params->stretch[0], params->stretch[1]);
}
break;
case SurfaceRotation::Rotated180Degrees:
// Combine flip info with api flip.
params->flipX = !params->flipX;
params->flipY = !params->flipY;
break;
case SurfaceRotation::Rotated270Degrees:
std::swap(params->stretch[0], params->stretch[1]);
std::swap(params->srcOffset[0], params->srcOffset[1]);
std::swap(params->rotatedOffsetFactor[0], params->rotatedOffsetFactor[1]);
if (srcFramebufferAngle == framebufferAngle)
{
std::swap(params->stretch[0], params->stretch[1]);
}
// Combine flip info with api flip.
params->flipX = !params->flipX;
params->flipY = !params->flipY;
std::swap(params->flipX, params->flipY);
break;
default:
UNREACHABLE();
break;
}
}
vk::FramebufferNonResolveAttachmentMask MakeUnresolveAttachmentMask(const vk::RenderPassDesc &desc)
{
vk::FramebufferNonResolveAttachmentMask unresolveMask(
desc.getColorUnresolveAttachmentMask().bits());
if (desc.hasDepthUnresolveAttachment() || desc.hasStencilUnresolveAttachment())
{
// This mask only needs to know if the depth/stencil attachment needs to be unresolved, and
// is agnostic of the aspect.
unresolveMask.set(vk::kUnpackedDepthIndex);
}
return unresolveMask;
}
bool IsAnyAttachment3DWithoutAllLayers(const RenderTargetCache<RenderTargetVk> &renderTargetCache,
gl::DrawBufferMask colorAttachmentsMask,
uint32_t framebufferLayerCount)
{
const auto &colorRenderTargets = renderTargetCache.getColors();
for (size_t colorIndexGL : colorAttachmentsMask)
{
RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
ASSERT(colorRenderTarget);
const vk::ImageHelper &image = colorRenderTarget->getImageForRenderPass();
if (image.getType() == VK_IMAGE_TYPE_3D && image.getExtents().depth > framebufferLayerCount)
{
return true;
}
}
// Depth/stencil attachments cannot be 3D.
ASSERT(renderTargetCache.getDepthStencil() == nullptr ||
renderTargetCache.getDepthStencil()->getImageForRenderPass().getType() !=
VK_IMAGE_TYPE_3D);
return false;
}
// Should be called when the image type is VK_IMAGE_TYPE_3D. Typically, the subresource, offsets
// and extents are filled in as if images are 2D layers (because depth slices of 3D images are also
// specified through "layers" everywhere, particularly by gl::ImageIndex). This function adjusts
// the layer base/count and offsets.z/extents.z appropriately after these structs are set up.
void AdjustLayersAndDepthFor3DImages(VkImageSubresourceLayers *subresource,
VkOffset3D *offsetsStart,
VkOffset3D *offsetsEnd)
{
// The struct must be set up as if the image was 2D array.
ASSERT(offsetsStart->z == 0);
ASSERT(offsetsEnd->z == 1);
offsetsStart->z = subresource->baseArrayLayer;
offsetsEnd->z = subresource->baseArrayLayer + subresource->layerCount;
subresource->baseArrayLayer = 0;
subresource->layerCount = 1;
}
bool AllowAddingResolveAttachmentsToSubpass(const vk::RenderPassDesc &desc)
{
// When in render-to-texture emulation mode, there are already resolve attachments present, and
// render pass compatibility rules would require packing those first before packing resolve
// attachments that may be added later (through glBlitFramebuffer). While supporting that is
// not onerous, the code is simplified by not supporting this combination. In practice no
// application should be mixing MSRTT textures and and truly multisampled textures in the same
// framebuffer (they could be using MSRTT for both).
//
// For the same reason, adding resolve attachments after the fact is disabled with YUV resolve.
return !desc.isRenderToTexture() && !desc.hasYUVResolveAttachment();
}
} // anonymous namespace
FramebufferVk::FramebufferVk(vk::Renderer *renderer, const gl::FramebufferState &state)
: FramebufferImpl(state), mBackbuffer(nullptr), mActiveColorComponentMasksForClear(0)
{
if (mState.isDefault())
{
// These are immutable for system default framebuffer.
mCurrentFramebufferDesc.updateLayerCount(1);
mCurrentFramebufferDesc.updateIsMultiview(false);
}
mIsCurrentFramebufferCached = !renderer->getFeatures().supportsImagelessFramebuffer.enabled;
mIsYUVResolve = false;
}
FramebufferVk::~FramebufferVk() = default;
void FramebufferVk::destroy(const gl::Context *context)
{
ContextVk *contextVk = vk::GetImpl(context);
if (mFragmentShadingRateImage.valid())
{
vk::Renderer *renderer = contextVk->getRenderer();
mFragmentShadingRateImageView.release(renderer, mFragmentShadingRateImage.getResourceUse());
mFragmentShadingRateImage.releaseImage(renderer);
}
releaseCurrentFramebuffer(contextVk);
}
void FramebufferVk::insertCache(ContextVk *contextVk,
const vk::FramebufferDesc &desc,
vk::FramebufferHelper &&newFramebuffer)
{
// Add it into per share group cache
contextVk->getShareGroup()->getFramebufferCache().insert(contextVk, desc,
std::move(newFramebuffer));
// Create a refcounted cache key object and have each attachment keep a refcount to it so that
// it can be destroyed promptly if those attachments change.
const vk::SharedFramebufferCacheKey sharedFramebufferCacheKey =
vk::CreateSharedFramebufferCacheKey(desc);
// Ask each attachment to hold a reference to the cache so that when any attachment is
// released, the cache can be destroyed.
const auto &colorRenderTargets = mRenderTargetCache.getColors();
for (size_t colorIndexGL : mState.getColorAttachmentsMask())
{
colorRenderTargets[colorIndexGL]->onNewFramebuffer(sharedFramebufferCacheKey);
}
if (getDepthStencilRenderTarget())
{
getDepthStencilRenderTarget()->onNewFramebuffer(sharedFramebufferCacheKey);
}
}
angle::Result FramebufferVk::discard(const gl::Context *context,
size_t count,
const GLenum *attachments)
{
return invalidate(context, count, attachments);
}
angle::Result FramebufferVk::invalidate(const gl::Context *context,
size_t count,
const GLenum *attachments)
{
ContextVk *contextVk = vk::GetImpl(context);
ANGLE_TRY(invalidateImpl(contextVk, count, attachments, false,
getRotatedCompleteRenderArea(contextVk)));
return angle::Result::Continue;
}
angle::Result FramebufferVk::invalidateSub(const gl::Context *context,
size_t count,
const GLenum *attachments,
const gl::Rectangle &area)
{
ContextVk *contextVk = vk::GetImpl(context);
const gl::Rectangle nonRotatedCompleteRenderArea = getNonRotatedCompleteRenderArea();
gl::Rectangle rotatedInvalidateArea;
RotateRectangle(contextVk->getRotationDrawFramebuffer(),
contextVk->isViewportFlipEnabledForDrawFBO(),
nonRotatedCompleteRenderArea.width, nonRotatedCompleteRenderArea.height, area,
&rotatedInvalidateArea);
// If invalidateSub() covers the whole framebuffer area, make it behave as invalidate().
// The invalidate area is clipped to the render area for use inside invalidateImpl.
const gl::Rectangle completeRenderArea = getRotatedCompleteRenderArea(contextVk);
if (ClipRectangle(rotatedInvalidateArea, completeRenderArea, &rotatedInvalidateArea) &&
rotatedInvalidateArea == completeRenderArea)
{
return invalidate(context, count, attachments);
}
// If there are deferred clears, restage them. syncState may have accumulated deferred clears,
// but if the framebuffer's attachments are used after this call not through the framebuffer,
// those clears wouldn't get flushed otherwise (for example as the destination of
// glCopyTex[Sub]Image, shader storage image, etc).
restageDeferredClears(contextVk);
if (contextVk->hasActiveRenderPass() &&
rotatedInvalidateArea.encloses(contextVk->getStartedRenderPassCommands().getRenderArea()))
{
// Because the render pass's render area is within the invalidated area, it is fine for
// invalidateImpl() to use a storeOp of DONT_CARE (i.e. fine to not store the contents of
// the invalidated area).
ANGLE_TRY(invalidateImpl(contextVk, count, attachments, true, rotatedInvalidateArea));
}
else
{
ANGLE_VK_PERF_WARNING(
contextVk, GL_DEBUG_SEVERITY_LOW,
"InvalidateSubFramebuffer ignored due to area not covering the render area");
}
return angle::Result::Continue;
}
angle::Result FramebufferVk::clear(const gl::Context *context, GLbitfield mask)
{
ANGLE_TRACE_EVENT0("gpu.angle", "FramebufferVk::clear");
ContextVk *contextVk = vk::GetImpl(context);
bool clearColor = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_COLOR_BUFFER_BIT));
bool clearDepth = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_DEPTH_BUFFER_BIT));
bool clearStencil = IsMaskFlagSet(mask, static_cast<GLbitfield>(GL_STENCIL_BUFFER_BIT));
gl::DrawBufferMask clearColorBuffers;
if (clearColor)
{
clearColorBuffers = mState.getEnabledDrawBuffers();
}
const VkClearColorValue &clearColorValue = contextVk->getClearColorValue().color;
const VkClearDepthStencilValue &clearDepthStencilValue =
contextVk->getClearDepthStencilValue().depthStencil;
return clearImpl(context, clearColorBuffers, clearDepth, clearStencil, clearColorValue,
clearDepthStencilValue);
}
VkClearColorValue adjustFloatClearColorPrecision(const VkClearColorValue &color,
const angle::Format &colorFormat)
{
// Truncate x to b bits: round(x * (2^b-1)) / (2^b-1)
// Implemented as floor(x * ((1 << b) - 1) + 0.5) / ((1 << b) - 1)
float floatClearColorRed = color.float32[0];
GLuint targetRedBits = colorFormat.redBits;
floatClearColorRed = floor(floatClearColorRed * ((1 << targetRedBits) - 1) + 0.5f);
floatClearColorRed = floatClearColorRed / ((1 << targetRedBits) - 1);
float floatClearColorGreen = color.float32[1];
GLuint targetGreenBits = colorFormat.greenBits;
floatClearColorGreen = floor(floatClearColorGreen * ((1 << targetGreenBits) - 1) + 0.5f);
floatClearColorGreen = floatClearColorGreen / ((1 << targetGreenBits) - 1);
float floatClearColorBlue = color.float32[2];
GLuint targetBlueBits = colorFormat.blueBits;
floatClearColorBlue = floor(floatClearColorBlue * ((1 << targetBlueBits) - 1) + 0.5f);
floatClearColorBlue = floatClearColorBlue / ((1 << targetBlueBits) - 1);
float floatClearColorAlpha = color.float32[3];
GLuint targetAlphaBits = colorFormat.alphaBits;
floatClearColorAlpha = floor(floatClearColorAlpha * ((1 << targetAlphaBits) - 1) + 0.5f);
floatClearColorAlpha = floatClearColorAlpha / ((1 << targetAlphaBits) - 1);
VkClearColorValue adjustedClearColor = color;
adjustedClearColor.float32[0] = floatClearColorRed;
adjustedClearColor.float32[1] = floatClearColorGreen;
adjustedClearColor.float32[2] = floatClearColorBlue;
adjustedClearColor.float32[3] = floatClearColorAlpha;
return adjustedClearColor;
}
angle::Result FramebufferVk::clearImpl(const gl::Context *context,
gl::DrawBufferMask clearColorBuffers,
bool clearDepth,
bool clearStencil,
const VkClearColorValue &clearColorValue,
const VkClearDepthStencilValue &clearDepthStencilValue)
{
ContextVk *contextVk = vk::GetImpl(context);
const gl::Rectangle scissoredRenderArea = getRotatedScissoredRenderArea(contextVk);
if (scissoredRenderArea.width == 0 || scissoredRenderArea.height == 0)
{
restageDeferredClears(contextVk);
return angle::Result::Continue;
}
// This function assumes that only enabled attachments are asked to be cleared.
ASSERT((clearColorBuffers & mState.getEnabledDrawBuffers()) == clearColorBuffers);
ASSERT(!clearDepth || mState.getDepthAttachment() != nullptr);
ASSERT(!clearStencil || mState.getStencilAttachment() != nullptr);
gl::BlendStateExt::ColorMaskStorage::Type colorMasks = contextVk->getClearColorMasks();
bool clearColor = clearColorBuffers.any();
// When this function is called, there should always be something to clear.
ASSERT(clearColor || clearDepth || clearStencil);
gl::DrawBuffersArray<VkClearColorValue> adjustedClearColorValues;
const gl::DrawBufferMask colorAttachmentMask = mState.getColorAttachmentsMask();
const auto &colorRenderTargets = mRenderTargetCache.getColors();
for (size_t colorIndexGL = 0; colorIndexGL < colorAttachmentMask.size(); ++colorIndexGL)
{
if (colorAttachmentMask[colorIndexGL])
{
adjustedClearColorValues[colorIndexGL] = clearColorValue;
RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
ASSERT(colorRenderTarget);
if (colorRenderTarget->isYuvResolve())
{
// OpenGLES spec says "clear color should be defined in yuv color space and so
// floating point r, g, and b value will be mapped to corresponding y, u and v
// value" https://registry.khronos.org/OpenGL/extensions/EXT/EXT_YUV_target.txt.
// But vulkan spec says "Values in the G, B, and R channels of the color
// attachment will be written to the Y, CB, and CR channels of the external
// format image, respectively." So we have to adjust the component mapping from
// GL order to vulkan order.
adjustedClearColorValues[colorIndexGL].float32[0] = clearColorValue.float32[2];
adjustedClearColorValues[colorIndexGL].float32[1] = clearColorValue.float32[0];
adjustedClearColorValues[colorIndexGL].float32[2] = clearColorValue.float32[1];
}
else if (contextVk->getRenderer()->getFeatures().adjustClearColorPrecision.enabled)
{
const angle::FormatID colorRenderTargetFormat =
colorRenderTarget->getImageForRenderPass().getActualFormatID();
if (colorRenderTargetFormat == angle::FormatID::R5G5B5A1_UNORM)
{
// Temporary workaround for https://issuetracker.google.com/292282210 to avoid
// dithering being automatically applied
adjustedClearColorValues[colorIndexGL] = adjustFloatClearColorPrecision(
clearColorValue, angle::Format::Get(colorRenderTargetFormat));
}
}
}
}
const uint8_t stencilMask =
static_cast<uint8_t>(contextVk->getState().getDepthStencilState().stencilWritemask);
// The front-end should ensure we don't attempt to clear color if all channels are masked.
ASSERT(!clearColor || colorMasks != 0);
// The front-end should ensure we don't attempt to clear depth if depth write is disabled.
ASSERT(!clearDepth || contextVk->getState().getDepthStencilState().depthMask);
// The front-end should ensure we don't attempt to clear stencil if all bits are masked.
ASSERT(!clearStencil || stencilMask != 0);
// Make sure to close the render pass now if in read-only depth/stencil feedback loop mode and
// depth/stencil is being cleared.
if (clearDepth || clearStencil)
{
ANGLE_TRY(contextVk->updateRenderPassDepthFeedbackLoopMode(
clearDepth ? UpdateDepthFeedbackLoopReason::Clear : UpdateDepthFeedbackLoopReason::None,
clearStencil ? UpdateDepthFeedbackLoopReason::Clear
: UpdateDepthFeedbackLoopReason::None));
}
const bool scissoredClear = scissoredRenderArea != getRotatedCompleteRenderArea(contextVk);
// We use the draw path if scissored clear, or color or stencil are masked. Note that depth
// clearing is already disabled if there's a depth mask.
const bool maskedClearColor = clearColor && (mActiveColorComponentMasksForClear & colorMasks) !=
mActiveColorComponentMasksForClear;
const bool maskedClearStencil = clearStencil && stencilMask != 0xFF;
bool clearColorWithDraw = clearColor && (maskedClearColor || scissoredClear);
bool clearDepthWithDraw = clearDepth && scissoredClear;
bool clearStencilWithDraw = clearStencil && (maskedClearStencil || scissoredClear);
const bool isMidRenderPassClear =
contextVk->hasStartedRenderPassWithQueueSerial(mLastRenderPassQueueSerial) &&
!contextVk->getStartedRenderPassCommands().getCommandBuffer().empty();
if (isMidRenderPassClear)
{
// Emit debug-util markers for this mid-render-pass clear
ANGLE_TRY(
contextVk->handleGraphicsEventLog(rx::GraphicsEventCmdBuf::InRenderPassCmdBufQueryCmd));
}
else
{
ASSERT(!contextVk->hasActiveRenderPass() ||
contextVk->hasStartedRenderPassWithQueueSerial(mLastRenderPassQueueSerial));
// Emit debug-util markers for this outside-render-pass clear
ANGLE_TRY(
contextVk->handleGraphicsEventLog(rx::GraphicsEventCmdBuf::InOutsideCmdBufQueryCmd));
}
const bool preferDrawOverClearAttachments =
contextVk->getRenderer()->getFeatures().preferDrawClearOverVkCmdClearAttachments.enabled;
// Merge current clears with the deferred clears, then proceed with only processing deferred
// clears. This simplifies the clear paths such that they don't need to consider both the
// current and deferred clears. Additionally, it avoids needing to undo an unresolve
// operation; say attachment A is deferred cleared and multisampled-render-to-texture
// attachment B is currently cleared. Assuming a render pass needs to start (because for
// example attachment C needs to clear with a draw path), starting one with only deferred
// clears and then applying the current clears won't work as attachment B is unresolved, and
// there are no facilities to undo that.
if (preferDrawOverClearAttachments && isMidRenderPassClear)
{
// On buggy hardware, prefer to clear with a draw call instead of vkCmdClearAttachments.
// Note that it's impossible to have deferred clears in the middle of the render pass.
ASSERT(!mDeferredClears.any());
clearColorWithDraw = clearColor;
clearDepthWithDraw = clearDepth;
clearStencilWithDraw = clearStencil;
}
else
{
gl::DrawBufferMask clearColorDrawBuffersMask;
if (clearColor && !clearColorWithDraw)
{
clearColorDrawBuffersMask = clearColorBuffers;
}
mergeClearsWithDeferredClears(clearColorDrawBuffersMask, clearDepth && !clearDepthWithDraw,
clearStencil && !clearStencilWithDraw,
adjustedClearColorValues, clearDepthStencilValue);
}
// If any deferred clears, we can further defer them, clear them with vkCmdClearAttachments or
// flush them if necessary.
if (mDeferredClears.any())
{
const bool clearAnyWithDraw =
clearColorWithDraw || clearDepthWithDraw || clearStencilWithDraw;
bool isAnyAttachment3DWithoutAllLayers =
IsAnyAttachment3DWithoutAllLayers(mRenderTargetCache, mState.getColorAttachmentsMask(),
mCurrentFramebufferDesc.getLayerCount());
// If we are in an active renderpass that has recorded commands and the framebuffer hasn't
// changed, inline the clear.
if (isMidRenderPassClear)
{
ANGLE_VK_PERF_WARNING(
contextVk, GL_DEBUG_SEVERITY_LOW,
"Clear effectively discarding previous draw call results. Suggest earlier Clear "
"followed by masked color or depth/stencil draw calls instead, or "
"glInvalidateFramebuffer to discard data instead");
ASSERT(!preferDrawOverClearAttachments);
// clearWithCommand will operate on deferred clears.
clearWithCommand(contextVk, scissoredRenderArea, ClearWithCommand::OptimizeWithLoadOp,
&mDeferredClears);
// clearWithCommand will clear only those attachments that have been used in the render
// pass, and removes them from mDeferredClears. Any deferred clears that are left can
// be performed with a renderpass loadOp.
if (mDeferredClears.any())
{
clearWithLoadOp(contextVk);
}
}
else
{
if (contextVk->hasActiveRenderPass())
{
// Typically, clears are deferred such that it's impossible to have a render pass
// opened without any additional commands recorded on it. This is not true for some
// corner cases, such as with 3D or external attachments. In those cases, a clear
// can open a render pass that's otherwise empty, and additional clears can continue
// to be accumulated in the render pass loadOps.
ASSERT(isAnyAttachment3DWithoutAllLayers || hasAnyExternalAttachments());
clearWithLoadOp(contextVk);
}
// This path will defer the current clears along with deferred clears. This won't work
// if any attachment needs to be subsequently cleared with a draw call. In that case,
// flush deferred clears, which will start a render pass with deferred clear values.
// The subsequent draw call will then operate on the cleared attachments.
//
// Additionally, if the framebuffer is layered, any attachment is 3D and it has a larger
// depth than the framebuffer layers, clears cannot be deferred. This is because the
// clear may later need to be flushed with vkCmdClearColorImage, which cannot partially
// clear the 3D texture. In that case, the clears are flushed immediately too.
//
// For external images such as from AHBs, the clears are not deferred so that they are
// definitely applied before the application uses them outside of the control of ANGLE.
if (clearAnyWithDraw || isAnyAttachment3DWithoutAllLayers ||
hasAnyExternalAttachments())
{
ANGLE_TRY(flushDeferredClears(contextVk));
}
else
{
restageDeferredClears(contextVk);
}
}
// If nothing left to clear, early out.
if (!clearAnyWithDraw)
{
ASSERT(mDeferredClears.empty());
return angle::Result::Continue;
}
}
if (!clearColorWithDraw)
{
clearColorBuffers.reset();
}
// If we reach here simply because the clear is scissored (as opposed to masked), use
// vkCmdClearAttachments to clear the attachments. The attachments that are masked will
// continue to use a draw call. For depth, vkCmdClearAttachments can always be used, and no
// shader/pipeline support would then be required (though this is pending removal of the
// preferDrawOverClearAttachments workaround).
//
// A potential optimization is to use loadOp=Clear for scissored clears, but care needs to be
// taken to either break the render pass on growRenderArea(), or to turn the op back to Load and
// revert to vkCmdClearAttachments. This is not currently deemed necessary.
if (((clearColorBuffers.any() && !mEmulatedAlphaAttachmentMask.any() && !maskedClearColor) ||
clearDepthWithDraw || (clearStencilWithDraw && !maskedClearStencil)) &&
!preferDrawOverClearAttachments)
{
if (!contextVk->hasActiveRenderPass())
{
// Start a new render pass if necessary to record the commands.
vk::RenderPassCommandBuffer *commandBuffer;
gl::Rectangle renderArea = getRenderArea(contextVk);
ANGLE_TRY(contextVk->startRenderPass(renderArea, &commandBuffer, nullptr));
}
// Build clear values
vk::ClearValuesArray clears;
if (!maskedClearColor && !mEmulatedAlphaAttachmentMask.any())
{
VkClearValue colorClearValue = {};
for (size_t colorIndexGL : clearColorBuffers)
{
colorClearValue.color = adjustedClearColorValues[colorIndexGL];
clears.store(static_cast<uint32_t>(colorIndexGL), VK_IMAGE_ASPECT_COLOR_BIT,
colorClearValue);
}
clearColorBuffers.reset();
}
VkImageAspectFlags dsAspectFlags = 0;
if (clearDepthWithDraw)
{
dsAspectFlags |= VK_IMAGE_ASPECT_DEPTH_BIT;
clearDepthWithDraw = false;
}
if (clearStencilWithDraw && !maskedClearStencil)
{
dsAspectFlags |= VK_IMAGE_ASPECT_STENCIL_BIT;
clearStencilWithDraw = false;
}
if (dsAspectFlags != 0)
{
VkClearValue dsClearValue = {};
dsClearValue.depthStencil = clearDepthStencilValue;
clears.store(vk::kUnpackedDepthIndex, dsAspectFlags, dsClearValue);
}
clearWithCommand(contextVk, scissoredRenderArea, ClearWithCommand::Always, &clears);
if (!clearColorBuffers.any() && !clearStencilWithDraw)
{
ASSERT(!clearDepthWithDraw);
return angle::Result::Continue;
}
}
// The most costly clear mode is when we need to mask out specific color channels or stencil
// bits. This can only be done with a draw call.
return clearWithDraw(contextVk, scissoredRenderArea, clearColorBuffers, clearDepthWithDraw,
clearStencilWithDraw, colorMasks, stencilMask, adjustedClearColorValues,
clearDepthStencilValue);
}
angle::Result FramebufferVk::clearBufferfv(const gl::Context *context,
GLenum buffer,
GLint drawbuffer,
const GLfloat *values)
{
VkClearValue clearValue = {};
bool clearDepth = false;
gl::DrawBufferMask clearColorBuffers;
if (buffer == GL_DEPTH)
{
clearDepth = true;
clearValue.depthStencil.depth = values[0];
}
else
{
clearColorBuffers.set(drawbuffer);
clearValue.color.float32[0] = values[0];
clearValue.color.float32[1] = values[1];
clearValue.color.float32[2] = values[2];
clearValue.color.float32[3] = values[3];
}
return clearImpl(context, clearColorBuffers, clearDepth, false, clearValue.color,
clearValue.depthStencil);
}
angle::Result FramebufferVk::clearBufferuiv(const gl::Context *context,
GLenum buffer,
GLint drawbuffer,
const GLuint *values)
{
VkClearValue clearValue = {};
gl::DrawBufferMask clearColorBuffers;
clearColorBuffers.set(drawbuffer);
clearValue.color.uint32[0] = values[0];
clearValue.color.uint32[1] = values[1];
clearValue.color.uint32[2] = values[2];
clearValue.color.uint32[3] = values[3];
return clearImpl(context, clearColorBuffers, false, false, clearValue.color,
clearValue.depthStencil);
}
angle::Result FramebufferVk::clearBufferiv(const gl::Context *context,
GLenum buffer,
GLint drawbuffer,
const GLint *values)
{
VkClearValue clearValue = {};
bool clearStencil = false;
gl::DrawBufferMask clearColorBuffers;
if (buffer == GL_STENCIL)
{
clearStencil = true;
clearValue.depthStencil.stencil = static_cast<uint8_t>(values[0]);
}
else
{
clearColorBuffers.set(drawbuffer);
clearValue.color.int32[0] = values[0];
clearValue.color.int32[1] = values[1];
clearValue.color.int32[2] = values[2];
clearValue.color.int32[3] = values[3];
}
return clearImpl(context, clearColorBuffers, false, clearStencil, clearValue.color,
clearValue.depthStencil);
}
angle::Result FramebufferVk::clearBufferfi(const gl::Context *context,
GLenum buffer,
GLint drawbuffer,
GLfloat depth,
GLint stencil)
{
VkClearValue clearValue = {};
clearValue.depthStencil.depth = depth;
clearValue.depthStencil.stencil = static_cast<uint8_t>(stencil);
return clearImpl(context, gl::DrawBufferMask(), true, true, clearValue.color,
clearValue.depthStencil);
}
const gl::InternalFormat &FramebufferVk::getImplementationColorReadFormat(
const gl::Context *context) const
{
ContextVk *contextVk = vk::GetImpl(context);
GLenum sizedFormat = mState.getReadAttachment()->getFormat().info->sizedInternalFormat;
const vk::Format &vkFormat = contextVk->getRenderer()->getFormat(sizedFormat);
GLenum implFormat = vkFormat.getActualRenderableImageFormat().fboImplementationInternalFormat;
return gl::GetSizedInternalFormatInfo(implFormat);
}
angle::Result FramebufferVk::readPixels(const gl::Context *context,
const gl::Rectangle &area,
GLenum format,
GLenum type,
const gl::PixelPackState &pack,
gl::Buffer *packBuffer,
void *pixels)
{
// Clip read area to framebuffer.
const gl::Extents &fbSize = getState().getReadPixelsAttachment(format)->getSize();
const gl::Rectangle fbRect(0, 0, fbSize.width, fbSize.height);
ContextVk *contextVk = vk::GetImpl(context);
gl::Rectangle clippedArea;
if (!ClipRectangle(area, fbRect, &clippedArea))
{
// nothing to read
return angle::Result::Continue;
}
// Flush any deferred clears.
ANGLE_TRY(flushDeferredClears(contextVk));
GLuint outputSkipBytes = 0;
PackPixelsParams params;
ANGLE_TRY(vk::ImageHelper::GetReadPixelsParams(contextVk, pack, packBuffer, format, type, area,
clippedArea, &params, &outputSkipBytes));
bool flipY = contextVk->isViewportFlipEnabledForReadFBO();
switch (params.rotation = contextVk->getRotationReadFramebuffer())
{
case SurfaceRotation::Identity:
// Do not rotate gl_Position (surface matches the device's orientation):
if (flipY)
{
params.area.y = fbRect.height - clippedArea.y - clippedArea.height;
}
break;
case SurfaceRotation::Rotated90Degrees:
// Rotate gl_Position 90 degrees:
params.area.x = clippedArea.y;
params.area.y =
flipY ? clippedArea.x : fbRect.width - clippedArea.x - clippedArea.width;
std::swap(params.area.width, params.area.height);
break;
case SurfaceRotation::Rotated180Degrees:
// Rotate gl_Position 180 degrees:
params.area.x = fbRect.width - clippedArea.x - clippedArea.width;
params.area.y =
flipY ? clippedArea.y : fbRect.height - clippedArea.y - clippedArea.height;
break;
case SurfaceRotation::Rotated270Degrees:
// Rotate gl_Position 270 degrees:
params.area.x = fbRect.height - clippedArea.y - clippedArea.height;
params.area.y =
flipY ? fbRect.width - clippedArea.x - clippedArea.width : clippedArea.x;
std::swap(params.area.width, params.area.height);
break;
default:
UNREACHABLE();
break;
}
if (flipY)
{
params.reverseRowOrder = !params.reverseRowOrder;
}
ANGLE_TRY(readPixelsImpl(contextVk, params.area, params, getReadPixelsAspectFlags(format),
getReadPixelsRenderTarget(format),
static_cast<uint8_t *>(pixels) + outputSkipBytes));
return angle::Result::Continue;
}
RenderTargetVk *FramebufferVk::getDepthStencilRenderTarget() const
{
return mRenderTargetCache.getDepthStencil();
}
RenderTargetVk *FramebufferVk::getColorDrawRenderTarget(size_t colorIndexGL) const
{
RenderTargetVk *renderTarget = mRenderTargetCache.getColorDraw(mState, colorIndexGL);
ASSERT(renderTarget && renderTarget->getImageForRenderPass().valid());
return renderTarget;
}
RenderTargetVk *FramebufferVk::getColorReadRenderTarget() const
{
RenderTargetVk *renderTarget = mRenderTargetCache.getColorRead(mState);
ASSERT(renderTarget && renderTarget->getImageForRenderPass().valid());
return renderTarget;
}
RenderTargetVk *FramebufferVk::getReadPixelsRenderTarget(GLenum format) const
{
switch (format)
{
case GL_DEPTH_COMPONENT:
case GL_STENCIL_INDEX_OES:
case GL_DEPTH_STENCIL_OES:
return getDepthStencilRenderTarget();
default:
return getColorReadRenderTarget();
}
}
VkImageAspectFlagBits FramebufferVk::getReadPixelsAspectFlags(GLenum format) const
{
switch (format)
{
case GL_DEPTH_COMPONENT:
return VK_IMAGE_ASPECT_DEPTH_BIT;
case GL_STENCIL_INDEX_OES:
return VK_IMAGE_ASPECT_STENCIL_BIT;
case GL_DEPTH_STENCIL_OES:
return vk::IMAGE_ASPECT_DEPTH_STENCIL;
default:
return VK_IMAGE_ASPECT_COLOR_BIT;
}
}
angle::Result FramebufferVk::blitWithCommand(ContextVk *contextVk,
const gl::Rectangle &sourceArea,
const gl::Rectangle &destArea,
RenderTargetVk *readRenderTarget,
RenderTargetVk *drawRenderTarget,
GLenum filter,
bool colorBlit,
bool depthBlit,
bool stencilBlit,
bool flipX,
bool flipY)
{
// Since blitRenderbufferRect is called for each render buffer that needs to be blitted,
// it should never be the case that both color and depth/stencil need to be blitted at
// at the same time.
ASSERT(colorBlit != (depthBlit || stencilBlit));
vk::ImageHelper *srcImage = &readRenderTarget->getImageForCopy();
vk::ImageHelper *dstImage = &drawRenderTarget->getImageForWrite();
VkImageAspectFlags imageAspectMask = srcImage->getAspectFlags();
VkImageAspectFlags blitAspectMask = imageAspectMask;
// Remove depth or stencil aspects if they are not requested to be blitted.
if (!depthBlit)
{
blitAspectMask &= ~VK_IMAGE_ASPECT_DEPTH_BIT;
}
if (!stencilBlit)
{
blitAspectMask &= ~VK_IMAGE_ASPECT_STENCIL_BIT;
}
vk::CommandBufferAccess access;
access.onImageTransferRead(imageAspectMask, srcImage);
access.onImageTransferWrite(drawRenderTarget->getLevelIndex(), 1,
drawRenderTarget->getLayerIndex(), 1, imageAspectMask, dstImage);
vk::OutsideRenderPassCommandBuffer *commandBuffer;
ANGLE_TRY(contextVk->getOutsideRenderPassCommandBuffer(access, &commandBuffer));
VkImageBlit blit = {};
blit.srcSubresource.aspectMask = blitAspectMask;
blit.srcSubresource.mipLevel = srcImage->toVkLevel(readRenderTarget->getLevelIndex()).get();
blit.srcSubresource.baseArrayLayer = readRenderTarget->getLayerIndex();
blit.srcSubresource.layerCount = 1;
blit.srcOffsets[0] = {sourceArea.x0(), sourceArea.y0(), 0};
blit.srcOffsets[1] = {sourceArea.x1(), sourceArea.y1(), 1};
blit.dstSubresource.aspectMask = blitAspectMask;
blit.dstSubresource.mipLevel = dstImage->toVkLevel(drawRenderTarget->getLevelIndex()).get();
blit.dstSubresource.baseArrayLayer = drawRenderTarget->getLayerIndex();
blit.dstSubresource.layerCount = 1;
blit.dstOffsets[0] = {destArea.x0(), destArea.y0(), 0};
blit.dstOffsets[1] = {destArea.x1(), destArea.y1(), 1};
// Note: vkCmdBlitImage doesn't actually work between 3D and 2D array images due to Vulkan valid
// usage restrictions (https://gitlab.khronos.org/vulkan/vulkan/-/issues/3490), but drivers seem
// to work as expected anyway. ANGLE continues to use vkCmdBlitImage in that case.
const bool isSrc3D = srcImage->getType() == VK_IMAGE_TYPE_3D;
const bool isDst3D = dstImage->getType() == VK_IMAGE_TYPE_3D;
if (isSrc3D)
{
AdjustLayersAndDepthFor3DImages(&blit.srcSubresource, &blit.srcOffsets[0],
&blit.srcOffsets[1]);
}
if (isDst3D)
{
AdjustLayersAndDepthFor3DImages(&blit.dstSubresource, &blit.dstOffsets[0],
&blit.dstOffsets[1]);
}
commandBuffer->blitImage(srcImage->getImage(), VK_IMAGE_LAYOUT_TRANSFER_SRC_OPTIMAL,
dstImage->getImage(), VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &blit,
gl_vk::GetFilter(filter));
return angle::Result::Continue;
}
angle::Result FramebufferVk::blit(const gl::Context *context,
const gl::Rectangle &sourceAreaIn,
const gl::Rectangle &destAreaIn,
GLbitfield mask,
GLenum filter)
{
ContextVk *contextVk = vk::GetImpl(context);
vk::Renderer *renderer = contextVk->getRenderer();
UtilsVk &utilsVk = contextVk->getUtils();
// If any clears were picked up when syncing the read framebuffer (as the blit source), restage
// them. They correspond to attachments that are not used in the blit. This will cause the
// read framebuffer to become dirty, so the attachments will be synced again on the next command
// that might be using them.
const gl::State &glState = contextVk->getState();
const gl::Framebuffer *srcFramebuffer = glState.getReadFramebuffer();
FramebufferVk *srcFramebufferVk = vk::GetImpl(srcFramebuffer);
if (srcFramebufferVk->mDeferredClears.any())
{
srcFramebufferVk->restageDeferredClearsForReadFramebuffer(contextVk);
}
// We can sometimes end up in a blit with some clear commands saved. Ensure all clear commands
// are issued before we issue the blit command.
ANGLE_TRY(flushDeferredClears(contextVk));
const bool blitColorBuffer = (mask & GL_COLOR_BUFFER_BIT) != 0;
const bool blitDepthBuffer = (mask & GL_DEPTH_BUFFER_BIT) != 0;
const bool blitStencilBuffer = (mask & GL_STENCIL_BUFFER_BIT) != 0;
// If a framebuffer contains a mixture of multisampled and multisampled-render-to-texture
// attachments, this function could be simultaneously doing a blit on one attachment and resolve
// on another. For the most part, this means resolve semantics apply. However, as the resolve
// path cannot be taken for multisampled-render-to-texture attachments, the distinction of
// whether resolve is done for each attachment or blit is made.
const bool isColorResolve =
blitColorBuffer &&
srcFramebufferVk->getColorReadRenderTarget()->getImageForCopy().getSamples() > 1;
const bool isDepthStencilResolve =
(blitDepthBuffer || blitStencilBuffer) &&
srcFramebufferVk->getDepthStencilRenderTarget()->getImageForCopy().getSamples() > 1;
const bool isResolve = isColorResolve || isDepthStencilResolve;
bool srcFramebufferFlippedY = contextVk->isViewportFlipEnabledForReadFBO();
bool dstFramebufferFlippedY = contextVk->isViewportFlipEnabledForDrawFBO();
gl::Rectangle sourceArea = sourceAreaIn;
gl::Rectangle destArea = destAreaIn;
// Note: GLES (all 3.x versions) require source and destination area to be identical when
// resolving.
ASSERT(!isResolve ||
(sourceArea.x == destArea.x && sourceArea.y == destArea.y &&
sourceArea.width == destArea.width && sourceArea.height == destArea.height));
gl::Rectangle srcFramebufferDimensions = srcFramebufferVk->getNonRotatedCompleteRenderArea();
gl::Rectangle dstFramebufferDimensions = getNonRotatedCompleteRenderArea();
// If the destination is flipped in either direction, we will flip the source instead so that
// the destination area is always unflipped.
sourceArea = sourceArea.flip(destArea.isReversedX(), destArea.isReversedY());
destArea = destArea.removeReversal();
// Calculate the stretch factor prior to any clipping, as it needs to remain constant.
const double stretch[2] = {
std::abs(sourceArea.width / static_cast<double>(destArea.width)),
std::abs(sourceArea.height / static_cast<double>(destArea.height)),
};
// Potentially make adjustments for pre-rotatation. To handle various cases (e.g. clipping)
// and to not interrupt the normal flow of the code, different adjustments are made in
// different parts of the code. These first adjustments are for whether or not to flip the
// y-axis, and to note the overall rotation (regardless of whether it is the source or
// destination that is rotated).
SurfaceRotation srcFramebufferRotation = contextVk->getRotationReadFramebuffer();
SurfaceRotation dstFramebufferRotation = contextVk->getRotationDrawFramebuffer();
SurfaceRotation rotation = SurfaceRotation::Identity;
// Both the source and destination cannot be rotated (which would indicate both are the default
// framebuffer (i.e. swapchain image).
ASSERT((srcFramebufferRotation == SurfaceRotation::Identity) ||
(dstFramebufferRotation == SurfaceRotation::Identity));
EarlyAdjustFlipYForPreRotation(srcFramebufferRotation, &rotation, &srcFramebufferFlippedY);
EarlyAdjustFlipYForPreRotation(dstFramebufferRotation, &rotation, &dstFramebufferFlippedY);
// First, clip the source area to framebuffer. That requires transforming the destination area
// to match the clipped source.
gl::Rectangle absSourceArea = sourceArea.removeReversal();
gl::Rectangle clippedSourceArea;
if (!gl::ClipRectangle(srcFramebufferDimensions, absSourceArea, &clippedSourceArea))
{
return angle::Result::Continue;
}
// Resize the destination area based on the new size of source. Note again that stretch is
// calculated as SrcDimension/DestDimension.
gl::Rectangle srcClippedDestArea;
if (isResolve)
{
// Source and destination areas are identical in resolve (except rotate it, if appropriate).
srcClippedDestArea = clippedSourceArea;
AdjustBlitAreaForPreRotation(dstFramebufferRotation, clippedSourceArea,
dstFramebufferDimensions, &srcClippedDestArea);
}
else if (clippedSourceArea == absSourceArea)
{
// If there was no clipping, keep destination area as is (except rotate it, if appropriate).
srcClippedDestArea = destArea;
AdjustBlitAreaForPreRotation(dstFramebufferRotation, destArea, dstFramebufferDimensions,
&srcClippedDestArea);
}
else
{
// Shift destination area's x0,y0,x1,y1 by as much as the source area's got shifted (taking
// stretching into account). Note that double is used as float doesn't have enough
// precision near the end of int range.
double x0Shift = std::round((clippedSourceArea.x - absSourceArea.x) / stretch[0]);
double y0Shift = std::round((clippedSourceArea.y - absSourceArea.y) / stretch[1]);
double x1Shift = std::round((absSourceArea.x1() - clippedSourceArea.x1()) / stretch[0]);
double y1Shift = std::round((absSourceArea.y1() - clippedSourceArea.y1()) / stretch[1]);
// If the source area was reversed in any direction, the shift should be applied in the
// opposite direction as well.
if (sourceArea.isReversedX())
{
std::swap(x0Shift, x1Shift);
}
if (sourceArea.isReversedY())
{
std::swap(y0Shift, y1Shift);
}
srcClippedDestArea.x = destArea.x0() + static_cast<int>(x0Shift);
srcClippedDestArea.y = destArea.y0() + static_cast<int>(y0Shift);
int x1 = destArea.x1() - static_cast<int>(x1Shift);
int y1 = destArea.y1() - static_cast<int>(y1Shift);
srcClippedDestArea.width = x1 - srcClippedDestArea.x;
srcClippedDestArea.height = y1 - srcClippedDestArea.y;
// Rotate srcClippedDestArea if the destination is rotated
if (dstFramebufferRotation != SurfaceRotation::Identity)
{
gl::Rectangle originalSrcClippedDestArea = srcClippedDestArea;
AdjustBlitAreaForPreRotation(dstFramebufferRotation, originalSrcClippedDestArea,
dstFramebufferDimensions, &srcClippedDestArea);
}
}
// If framebuffers are flipped in Y, flip the source and destination area (which define the
// transformation regardless of clipping), as well as the blit area (which is the clipped
// destination area).
if (srcFramebufferFlippedY)
{
sourceArea.y = srcFramebufferDimensions.height - sourceArea.y;
sourceArea.height = -sourceArea.height;
}
if (dstFramebufferFlippedY)
{
destArea.y = dstFramebufferDimensions.height - destArea.y;
destArea.height = -destArea.height;
srcClippedDestArea.y =
dstFramebufferDimensions.height - srcClippedDestArea.y - srcClippedDestArea.height;
}
bool flipX = sourceArea.isReversedX() != destArea.isReversedX();
bool flipY = sourceArea.isReversedY() != destArea.isReversedY();
// GLES doesn't allow flipping the parameters of glBlitFramebuffer if performing a resolve.
ASSERT(!isResolve ||
(flipX == false && flipY == (srcFramebufferFlippedY != dstFramebufferFlippedY)));
// Again, transfer the destination flip to source, so destination is unflipped. Note that
// destArea was not reversed until the final possible Y-flip.
ASSERT(!destArea.isReversedX());
sourceArea = sourceArea.flip(false, destArea.isReversedY());
destArea = destArea.removeReversal();
// Now that clipping and flipping is done, rotate certain values that will be used for
// UtilsVk::BlitResolveParameters
gl::Rectangle sourceAreaOld = sourceArea;
gl::Rectangle destAreaOld = destArea;
if (srcFramebufferRotation == rotation)
{
AdjustBlitAreaForPreRotation(srcFramebufferRotation, sourceAreaOld,
srcFramebufferDimensions, &sourceArea);
AdjustDimensionsAndFlipForPreRotation(srcFramebufferRotation, &srcFramebufferDimensions,
&flipX, &flipY);
}
SurfaceRotation rememberDestFramebufferRotation = dstFramebufferRotation;
if (srcFramebufferRotation == SurfaceRotation::Rotated90Degrees)
{
dstFramebufferRotation = rotation;
}
AdjustBlitAreaForPreRotation(dstFramebufferRotation, destAreaOld, dstFramebufferDimensions,
&destArea);
dstFramebufferRotation = rememberDestFramebufferRotation;
// Clip the destination area to the framebuffer size and scissor. Note that we don't care
// about the source area anymore. The offset translation is done based on the original source
// and destination rectangles. The stretch factor is already calculated as well.
gl::Rectangle blitArea;
if (!gl::ClipRectangle(getRotatedScissoredRenderArea(contextVk), srcClippedDestArea, &blitArea))
{
return angle::Result::Continue;
}
bool noClip = blitArea == destArea && stretch[0] == 1.0f && stretch[1] == 1.0f;
bool noFlip = !flipX && !flipY;
bool disableFlippingBlitWithCommand =
renderer->getFeatures().disableFlippingBlitWithCommand.enabled;
UtilsVk::BlitResolveParameters commonParams;
commonParams.srcOffset[0] = sourceArea.x;
commonParams.srcOffset[1] = sourceArea.y;
commonParams.dstOffset[0] = destArea.x;
commonParams.dstOffset[1] = destArea.y;
commonParams.rotatedOffsetFactor[0] = std::abs(sourceArea.width);
commonParams.rotatedOffsetFactor[1] = std::abs(sourceArea.height);
commonParams.stretch[0] = static_cast<float>(stretch[0]);
commonParams.stretch[1] = static_cast<float>(stretch[1]);
commonParams.srcExtents[0] = srcFramebufferDimensions.width;
commonParams.srcExtents[1] = srcFramebufferDimensions.height;
commonParams.blitArea = blitArea;
commonParams.linear = filter == GL_LINEAR && !isResolve;
commonParams.flipX = flipX;
commonParams.flipY = flipY;
commonParams.rotation = rotation;
if (blitColorBuffer)
{
RenderTargetVk *readRenderTarget = srcFramebufferVk->getColorReadRenderTarget();
UtilsVk::BlitResolveParameters params = commonParams;
params.srcLayer = readRenderTarget->getLayerIndex();
// Multisampled images are not allowed to have mips.
ASSERT(!isColorResolve || readRenderTarget->getLevelIndex() == gl::LevelIndex(0));
// If there was no clipping and the format capabilities allow us, use Vulkan's builtin blit.
// The reason clipping is prohibited in this path is that due to rounding errors, it would
// be hard to guarantee the image stretching remains perfect. That also allows us not to
// have to transform back the destination clipping to source.
//
// Non-identity pre-rotation cases do not use Vulkan's builtin blit. Additionally, blits
// between 3D and non-3D-non-layer-0 images are forbidden (possibly due to an oversight:
// https://gitlab.khronos.org/vulkan/vulkan/-/issues/3490)
//
// For simplicity, we either blit all render targets with a Vulkan command, or none.
bool canBlitWithCommand =
!isColorResolve && noClip && (noFlip || !disableFlippingBlitWithCommand) &&
HasSrcBlitFeature(renderer, readRenderTarget) && rotation == SurfaceRotation::Identity;
// If we need to reinterpret the colorspace then the blit must be done through a shader
bool reinterpretsColorspace =
mCurrentFramebufferDesc.getWriteControlMode() != gl::SrgbWriteControlMode::Default;
bool areChannelsBlitCompatible = true;
bool areFormatsIdentical = true;
for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
{
RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL];
canBlitWithCommand =
canBlitWithCommand && HasDstBlitFeature(renderer, drawRenderTarget);
areChannelsBlitCompatible =
areChannelsBlitCompatible &&
AreSrcAndDstColorChannelsBlitCompatible(readRenderTarget, drawRenderTarget);
areFormatsIdentical = areFormatsIdentical &&
AreSrcAndDstFormatsIdentical(readRenderTarget, drawRenderTarget);
}
// Now that all flipping is done, adjust the offsets for resolve and prerotation
if (isColorResolve)
{
AdjustBlitResolveParametersForResolve(sourceArea, destArea, &params);
}
AdjustBlitResolveParametersForPreRotation(rotation, srcFramebufferRotation, &params);
if (canBlitWithCommand && areChannelsBlitCompatible && !reinterpretsColorspace)
{
for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
{
RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL];
ANGLE_TRY(blitWithCommand(contextVk, sourceArea, destArea, readRenderTarget,
drawRenderTarget, filter, true, false, false, flipX,
flipY));
}
}
// If we're not flipping or rotating, use Vulkan's builtin resolve.
else if (isColorResolve && !flipX && !flipY && areChannelsBlitCompatible &&
areFormatsIdentical && rotation == SurfaceRotation::Identity &&
!reinterpretsColorspace)
{
// Resolving with a subpass resolve attachment has a few restrictions:
// 1.) glBlitFramebuffer() needs to copy the read color attachment to all enabled
// attachments in the draw framebuffer, but Vulkan requires a 1:1 relationship for
// multisample attachments to resolve attachments in the render pass subpass.
// Due to this, we currently only support using resolve attachments when there is a
// single draw attachment enabled.
// 2.) Using a subpass resolve attachment relies on using the render pass that performs
// the draw to still be open, so it can be updated to use the resolve attachment to draw
// into. If there's no render pass with commands, then the multisampled render pass is
// already done and whose data is already flushed from the tile (in a tile-based
// renderer), so there's no chance for the resolve attachment to take advantage of the
// data already being present in the tile.
// glBlitFramebuffer() needs to copy the read color attachment to all enabled
// attachments in the draw framebuffer, but Vulkan requires a 1:1 relationship for
// multisample attachments to resolve attachments in the render pass subpass. Due to
// this, we currently only support using resolve attachments when there is a single draw
// attachment enabled.
//
// Additionally, when resolving with a resolve attachment, the src and destination
// offsets must match, the render area must match the resolve area, and there should be
// no flipping or rotation. Fortunately, in GLES the blit source and destination areas
// are already required to be identical.
ASSERT(params.srcOffset[0] == params.dstOffset[0] &&
params.srcOffset[1] == params.dstOffset[1]);
bool canResolveWithSubpass = mState.getEnabledDrawBuffers().count() == 1 &&
mCurrentFramebufferDesc.getLayerCount() == 1 &&
contextVk->hasStartedRenderPassWithQueueSerial(
srcFramebufferVk->getLastRenderPassQueueSerial());
if (canResolveWithSubpass)
{
const vk::RenderPassCommandBufferHelper &renderPassCommands =
contextVk->getStartedRenderPassCommands();
const vk::RenderPassDesc &renderPassDesc = renderPassCommands.getRenderPassDesc();
// Make sure that:
// - The blit and render areas are identical
// - There is no resolve attachment for the corresponding index already
// Additionally, disable the optimization for a few corner cases that are
// unrealistic and inconvenient.
const uint32_t readColorIndexGL = srcFramebuffer->getState().getReadIndex();
canResolveWithSubpass =
blitArea == renderPassCommands.getRenderArea() &&
!renderPassDesc.hasColorResolveAttachment(readColorIndexGL) &&
AllowAddingResolveAttachmentsToSubpass(renderPassDesc);
}
if (canResolveWithSubpass)
{
ANGLE_TRY(resolveColorWithSubpass(contextVk, params));
}
else
{
ANGLE_TRY(resolveColorWithCommand(contextVk, params,
&readRenderTarget->getImageForCopy()));
}
}
else
{
// Otherwise use a shader to do blit or resolve.
// Flush the render pass, which may incur a vkQueueSubmit, before taking any views.
// Otherwise the view serials would not reflect the render pass they are really used in.
// http://crbug.com/1272266#c22
ANGLE_TRY(
contextVk->flushCommandsAndEndRenderPass(RenderPassClosureReason::PrepareForBlit));
const vk::ImageView *copyImageView = nullptr;
ANGLE_TRY(readRenderTarget->getCopyImageView(contextVk, &copyImageView));
ANGLE_TRY(utilsVk.colorBlitResolve(
contextVk, this, &readRenderTarget->getImageForCopy(), copyImageView, params));
}
}
if (blitDepthBuffer || blitStencilBuffer)
{
RenderTargetVk *readRenderTarget = srcFramebufferVk->getDepthStencilRenderTarget();
RenderTargetVk *drawRenderTarget = mRenderTargetCache.getDepthStencil();
UtilsVk::BlitResolveParameters params = commonParams;
params.srcLayer = readRenderTarget->getLayerIndex();
// Multisampled images are not allowed to have mips.
ASSERT(!isDepthStencilResolve || readRenderTarget->getLevelIndex() == gl::LevelIndex(0));
// Similarly, only blit if there's been no clipping or rotating.
bool canBlitWithCommand =
!isDepthStencilResolve && noClip && (noFlip || !disableFlippingBlitWithCommand) &&
HasSrcBlitFeature(renderer, readRenderTarget) &&
HasDstBlitFeature(renderer, drawRenderTarget) && rotation == SurfaceRotation::Identity;
bool areChannelsBlitCompatible =
AreSrcAndDstDepthStencilChannelsBlitCompatible(readRenderTarget, drawRenderTarget);
// glBlitFramebuffer requires that depth/stencil blits have matching formats.
ASSERT(AreSrcAndDstFormatsIdentical(readRenderTarget, drawRenderTarget));
if (canBlitWithCommand && areChannelsBlitCompatible)
{
ANGLE_TRY(blitWithCommand(contextVk, sourceArea, destArea, readRenderTarget,
drawRenderTarget, filter, false, blitDepthBuffer,
blitStencilBuffer, flipX, flipY));
}
else
{
vk::ImageHelper *depthStencilImage = &readRenderTarget->getImageForCopy();
VkImageAspectFlags resolveAspects = 0;
if (blitDepthBuffer)
{
resolveAspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
}
if (blitStencilBuffer)
{
resolveAspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
// See comment on canResolveWithSubpass for the color path.
bool canResolveWithSubpass =
isDepthStencilResolve &&
!renderer->getFeatures().disableDepthStencilResolveThroughAttachment.enabled &&
areChannelsBlitCompatible && mCurrentFramebufferDesc.getLayerCount() == 1 &&
contextVk->hasStartedRenderPassWithQueueSerial(
srcFramebufferVk->getLastRenderPassQueueSerial()) &&
noFlip && rotation == SurfaceRotation::Identity;
if (canResolveWithSubpass)
{
const vk::RenderPassCommandBufferHelper &renderPassCommands =
contextVk->getStartedRenderPassCommands();
const vk::RenderPassDesc &renderPassDesc = renderPassCommands.getRenderPassDesc();
const VkImageAspectFlags depthStencilImageAspects =
depthStencilImage->getAspectFlags();
const bool resolvesAllAspects =
(resolveAspects & depthStencilImageAspects) == depthStencilImageAspects;
// Make sure that:
// - The blit and render areas are identical
// - There is no resolve attachment already
// Additionally, disable the optimization for a few corner cases that are
// unrealistic and inconvenient.
//
// Note: currently, if two separate `glBlitFramebuffer` calls are made for each
// aspect, only the first one is optimized as a resolve attachment. Applications
// should use one `glBlitFramebuffer` call with both aspects if they want to resolve
// both.
canResolveWithSubpass =
blitArea == renderPassCommands.getRenderArea() &&
(resolvesAllAspects ||
renderer->getFeatures().supportsDepthStencilIndependentResolveNone.enabled) &&
!renderPassDesc.hasDepthStencilResolveAttachment() &&
AllowAddingResolveAttachmentsToSubpass(renderPassDesc);
}
if (canResolveWithSubpass)
{
ANGLE_TRY(resolveDepthStencilWithSubpass(contextVk, params, resolveAspects));
}
else
{
// See comment for the draw-based color blit. The render pass must be flushed
// before creating the views.
ANGLE_TRY(contextVk->flushCommandsAndEndRenderPass(
RenderPassClosureReason::PrepareForBlit));
// Now that all flipping is done, adjust the offsets for resolve and prerotation
if (isDepthStencilResolve)
{
AdjustBlitResolveParametersForResolve(sourceArea, destArea, &params);
}
AdjustBlitResolveParametersForPreRotation(rotation, srcFramebufferRotation,
&params);
// Create depth- and stencil-only views for reading.
vk::DeviceScoped<vk::ImageView> depthView(contextVk->getDevice());
vk::DeviceScoped<vk::ImageView> stencilView(contextVk->getDevice());
vk::LevelIndex levelIndex =
depthStencilImage->toVkLevel(readRenderTarget->getLevelIndex());
uint32_t layerIndex = readRenderTarget->getLayerIndex();
gl::TextureType textureType = vk::Get2DTextureType(
depthStencilImage->getLayerCount(), depthStencilImage->getSamples());
if (blitDepthBuffer)
{
ANGLE_TRY(depthStencilImage->initLayerImageView(
contextVk, textureType, VK_IMAGE_ASPECT_DEPTH_BIT, gl::SwizzleState(),
&depthView.get(), levelIndex, 1, layerIndex, 1,
gl::SrgbWriteControlMode::Default, gl::YuvSamplingMode::Default,
vk::ImageHelper::kDefaultImageViewUsageFlags));
}
if (blitStencilBuffer)
{
ANGLE_TRY(depthStencilImage->initLayerImageView(
contextVk, textureType, VK_IMAGE_ASPECT_STENCIL_BIT, gl::SwizzleState(),
&stencilView.get(), levelIndex, 1, layerIndex, 1,
gl::SrgbWriteControlMode::Default, gl::YuvSamplingMode::Default,
vk::ImageHelper::kDefaultImageViewUsageFlags));
}
// If shader stencil export is not possible, defer stencil blit/resolve to another
// pass.
const bool hasShaderStencilExport =
renderer->getFeatures().supportsShaderStencilExport.enabled;
// Blit depth. If shader stencil export is present, blit stencil as well.
if (blitDepthBuffer || (blitStencilBuffer && hasShaderStencilExport))
{
const vk::ImageView *depth = blitDepthBuffer ? &depthView.get() : nullptr;
const vk::ImageView *stencil =
blitStencilBuffer && hasShaderStencilExport ? &stencilView.get() : nullptr;
ANGLE_TRY(utilsVk.depthStencilBlitResolve(contextVk, this, depthStencilImage,
depth, stencil, params));
}
// If shader stencil export is not present, blit stencil through a different path.
if (blitStencilBuffer && !hasShaderStencilExport)
{
ANGLE_VK_PERF_WARNING(
contextVk, GL_DEBUG_SEVERITY_LOW,
"Inefficient BlitFramebuffer operation on the stencil aspect "
"due to lack of shader stencil export support");
ANGLE_TRY(utilsVk.stencilBlitResolveNoShaderExport(
contextVk, this, depthStencilImage, &stencilView.get(), params));
}
vk::ImageView depthViewObject = depthView.release();
vk::ImageView stencilViewObject = stencilView.release();
contextVk->addGarbage(&depthViewObject);
contextVk->addGarbage(&stencilViewObject);
}
}
}
return angle::Result::Continue;
}
void FramebufferVk::releaseCurrentFramebuffer(ContextVk *contextVk)
{
if (mIsCurrentFramebufferCached)
{
mCurrentFramebuffer.release();
}
else
{
contextVk->addGarbage(&mCurrentFramebuffer);
}
}
void FramebufferVk::updateLayerCount()
{
uint32_t layerCount = std::numeric_limits<uint32_t>::max();
// Color attachments.
const auto &colorRenderTargets = mRenderTargetCache.getColors();
for (size_t colorIndexGL : mState.getColorAttachmentsMask())
{
RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
ASSERT(colorRenderTarget);
layerCount = std::min(layerCount, colorRenderTarget->getLayerCount());
}
// Depth/stencil attachment.
RenderTargetVk *depthStencilRenderTarget = getDepthStencilRenderTarget();
if (depthStencilRenderTarget)
{
layerCount = std::min(layerCount, depthStencilRenderTarget->getLayerCount());
}
if (layerCount == std::numeric_limits<uint32_t>::max())
{
layerCount = mState.getDefaultLayers();
}
// While layer count and view count are mutually exclusive, they result in different render
// passes (and thus framebuffers). For multiview, layer count is set to view count and a flag
// signifies that the framebuffer is multiview (as opposed to layered).
const bool isMultiview = mState.isMultiview();
if (isMultiview)
{
layerCount = mState.getNumViews();
}
mCurrentFramebufferDesc.updateLayerCount(layerCount);
mCurrentFramebufferDesc.updateIsMultiview(isMultiview);
}
angle::Result FramebufferVk::ensureFragmentShadingRateImageAndViewInitialized(
ContextVk *contextVk,
const uint32_t fragmentShadingRateAttachmentWidth,
const uint32_t fragmentShadingRateAttachmentHeight)
{
vk::Renderer *renderer = contextVk->getRenderer();
// Release current valid image iff attachment extents need to change.
if (mFragmentShadingRateImage.valid() &&
(mFragmentShadingRateImage.getExtents().width != fragmentShadingRateAttachmentWidth ||
mFragmentShadingRateImage.getExtents().height != fragmentShadingRateAttachmentHeight))
{
mFragmentShadingRateImageView.release(renderer, mFragmentShadingRateImage.getResourceUse());
mFragmentShadingRateImage.releaseImage(renderer);
}
if (!mFragmentShadingRateImage.valid())
{
ANGLE_TRY(mFragmentShadingRateImage.init(
contextVk, gl::TextureType::_2D,
VkExtent3D{fragmentShadingRateAttachmentWidth, fragmentShadingRateAttachmentHeight, 1},
renderer->getFormat(angle::FormatID::R8_UINT), 1,
VK_IMAGE_USAGE_FRAGMENT_SHADING_RATE_ATTACHMENT_BIT_KHR |
VK_IMAGE_USAGE_TRANSFER_DST_BIT,
gl::LevelIndex(0), 1, 1, false,
contextVk->getProtectionType() == vk::ProtectionType::Protected));
ANGLE_TRY(contextVk->initImageAllocation(
&mFragmentShadingRateImage, false, renderer->getMemoryProperties(),
VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT, vk::MemoryAllocationType::TextureImage));
mFragmentShadingRateImageView.init(renderer);
ANGLE_TRY(mFragmentShadingRateImageView.initFragmentShadingRateView(
contextVk, &mFragmentShadingRateImage));
}
return angle::Result::Continue;
}
angle::Result FramebufferVk::generateFragmentShadingRateWithCPU(
ContextVk *contextVk,
const bool isGainZero,
const uint32_t fragmentShadingRateWidth,
const uint32_t fragmentShadingRateHeight,
const uint32_t fragmentShadingRateBlockWidth,
const uint32_t fragmentShadingRateBlockHeight,
const uint32_t foveatedAttachmentWidth,
const uint32_t foveatedAttachmentHeight,
const std::vector<gl::FocalPoint> &activeFocalPoints)
{
// Fill in image with fragment shading rate data
size_t bufferSize = fragmentShadingRateWidth * fragmentShadingRateHeight;
VkBufferCreateInfo bufferCreateInfo = {};
bufferCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
bufferCreateInfo.size = bufferSize;
bufferCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
bufferCreateInfo.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
vk::RendererScoped<vk::BufferHelper> stagingBuffer(contextVk->getRenderer());
vk::BufferHelper *buffer = &stagingBuffer.get();
ANGLE_TRY(buffer->init(contextVk, bufferCreateInfo, VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT));
uint8_t *mappedBuffer;
ANGLE_TRY(buffer->map(contextVk, &mappedBuffer));
uint8_t val = 0;
memset(mappedBuffer, 0, bufferSize);
if (!isGainZero)
{
// The spec requires min_pixel_density to be computed thusly -
//
// min_pixel_density=0.;
// for(int i=0;i<focalPointsPerLayer;++i)
// {
// focal_point_density = 1./max((focalX[i]-px)^2*gainX[i]^2+
// (focalY[i]-py)^2*gainY[i]^2-foveaArea[i],1.);
//
// min_pixel_density=max(min_pixel_density,focal_point_density);
// }
float minPixelDensity = 0.0f;
float focalPointDensity = 0.0f;
for (uint32_t y = 0; y < fragmentShadingRateHeight; y++)
{
for (uint32_t x = 0; x < fragmentShadingRateWidth; x++)
{
minPixelDensity = 0.0f;
float px = (static_cast<float>(x) * fragmentShadingRateBlockWidth /
foveatedAttachmentWidth -
0.5f) *
2.0f;
float py = (static_cast<float>(y) * fragmentShadingRateBlockHeight /
foveatedAttachmentHeight -
0.5f) *
2.0f;
focalPointDensity = 0.0f;
for (uint32_t point = 0; point < activeFocalPoints.size(); point++)
{
float density =
1.0f / std::max(std::pow(activeFocalPoints[point].focalX - px, 2.0f) *
std::pow(activeFocalPoints[point].gainX, 2.0f) +
std::pow(activeFocalPoints[point].focalY - py, 2.0f) *
std::pow(activeFocalPoints[point].gainY, 2.0f) -
activeFocalPoints[point].foveaArea,
1.0f);
// When focal points are overlapping choose the highest quality of all
if (density > focalPointDensity)
{
focalPointDensity = density;
}
}
minPixelDensity = std::max(minPixelDensity, focalPointDensity);
// https://docs.vulkan.org/spec/latest/chapters/primsrast.html#primsrast-fragment-shading-rate-attachment
//
// w = 2^((texel/4) & 3)
// h = 2^(texel & 3)
// `texel` would then be => log2(w) << 2 | log2(h).
//
// 1) The supported shading rates are - 1x1, 1x2, 2x1, 2x2
// 2) log2(1) == 0, log2(2) == 1
if (minPixelDensity > 0.75f)
{
// Use shading rate 1x1
val = 0;
}
else if (minPixelDensity > 0.5f)
{
// Use shading rate 2x1
val = (1 << 2);
}
else
{
// Use shading rate 2x2
val = (1 << 2) | 1;
}
mappedBuffer[y * fragmentShadingRateWidth + x] = val;
}
}
}
ANGLE_TRY(buffer->flush(contextVk->getRenderer(), 0, buffer->getSize()));
buffer->unmap(contextVk->getRenderer());
// copy data from staging buffer to image
vk::CommandBufferAccess access;
access.onBufferTransferRead(buffer);
access.onImageTransferWrite(gl::LevelIndex(0), 1, 0, 1, VK_IMAGE_ASPECT_COLOR_BIT,
&mFragmentShadingRateImage);
vk::OutsideRenderPassCommandBuffer *dataUpload;
ANGLE_TRY(contextVk->getOutsideRenderPassCommandBuffer(access, &dataUpload));
VkBufferImageCopy copy = {};
copy.imageSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
copy.imageSubresource.layerCount = 1;
copy.imageExtent.depth = 1;
copy.imageExtent.width = fragmentShadingRateWidth;
copy.imageExtent.height = fragmentShadingRateHeight;
dataUpload->copyBufferToImage(buffer->getBuffer().getHandle(),
mFragmentShadingRateImage.getImage(),
VK_IMAGE_LAYOUT_TRANSFER_DST_OPTIMAL, 1, &copy);
return angle::Result::Continue;
}
angle::Result FramebufferVk::updateFragmentShadingRateAttachment(
ContextVk *contextVk,
const gl::FoveationState &foveationState,
const gl::Extents &foveatedAttachmentSize)
{
const VkExtent2D fragmentShadingRateExtent =
contextVk->getRenderer()->getMaxFragmentShadingRateAttachmentTexelSize();
const uint32_t fragmentShadingRateBlockWidth = fragmentShadingRateExtent.width;
const uint32_t fragmentShadingRateBlockHeight = fragmentShadingRateExtent.height;
const uint32_t foveatedAttachmentWidth = foveatedAttachmentSize.width;
const uint32_t foveatedAttachmentHeight = foveatedAttachmentSize.height;
const uint32_t fragmentShadingRateWidth =
UnsignedCeilDivide(foveatedAttachmentWidth, fragmentShadingRateBlockWidth);
const uint32_t fragmentShadingRateHeight =
UnsignedCeilDivide(foveatedAttachmentHeight, fragmentShadingRateBlockHeight);
ANGLE_TRY(ensureFragmentShadingRateImageAndViewInitialized(contextVk, fragmentShadingRateWidth,
fragmentShadingRateHeight));
ASSERT(mFragmentShadingRateImage.valid());
bool isGainZero = true;
std::vector<gl::FocalPoint> activeFocalPoints;
for (uint32_t point = 0; point < gl::IMPLEMENTATION_MAX_FOCAL_POINTS; point++)
{
const gl::FocalPoint &focalPoint = foveationState.getFocalPoint(0, point);
if (focalPoint != gl::kInvalidFocalPoint)
{
isGainZero = isGainZero && focalPoint.gainX == 0 && focalPoint.gainY == 0;
activeFocalPoints.push_back(focalPoint);
}
}
return generateFragmentShadingRateWithCPU(
contextVk, isGainZero, fragmentShadingRateWidth, fragmentShadingRateHeight,
fragmentShadingRateBlockWidth, fragmentShadingRateBlockHeight, foveatedAttachmentWidth,
foveatedAttachmentHeight, activeFocalPoints);
}
angle::Result FramebufferVk::updateFoveationState(ContextVk *contextVk,
const gl::FoveationState &newFoveationState,
const gl::Extents &foveatedAttachmentSize)
{
mFoveationState = newFoveationState;
const bool isFoveationEnabled = mFoveationState.isFoveated();
vk::ImageOrBufferViewSubresourceSerial serial = vk::kInvalidImageOrBufferViewSubresourceSerial;
if (isFoveationEnabled)
{
ANGLE_TRY(updateFragmentShadingRateAttachment(contextVk, newFoveationState,
foveatedAttachmentSize));
ASSERT(mFragmentShadingRateImage.valid());
serial = mFragmentShadingRateImageView.getSubresourceSerial(
gl::LevelIndex(0), 1, 0, vk::LayerMode::All, vk::SrgbDecodeMode::SkipDecode,
gl::SrgbOverride::Default);
}
mCurrentFramebufferDesc.updateFragmentShadingRate(serial);
mRenderPassDesc.setFragmentShadingAttachment(isFoveationEnabled);
return angle::Result::Continue;
}
angle::Result FramebufferVk::resolveColorWithSubpass(ContextVk *contextVk,
const UtilsVk::BlitResolveParameters &params)
{
// Vulkan requires a 1:1 relationship for multisample attachments to resolve attachments in the
// render pass subpass. Due to this, we currently only support using resolve attachments when
// there is a single draw attachment enabled.
ASSERT(mState.getEnabledDrawBuffers().count() == 1);
uint32_t drawColorIndexGL = static_cast<uint32_t>(*mState.getEnabledDrawBuffers().begin());
RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[drawColorIndexGL];
const vk::ImageView *resolveImageView = nullptr;
ANGLE_TRY(drawRenderTarget->getImageView(contextVk, &resolveImageView));
const gl::Framebuffer *srcFramebuffer = contextVk->getState().getReadFramebuffer();
uint32_t readColorIndexGL = srcFramebuffer->getState().getReadIndex();
vk::RenderPassCommandBufferHelper &renderPassCommands =
contextVk->getStartedRenderPassCommands();
ASSERT(!renderPassCommands.getRenderPassDesc().hasColorResolveAttachment(readColorIndexGL));
renderPassCommands.addColorResolveAttachment(readColorIndexGL, resolveImageView->getHandle());
drawRenderTarget->onColorResolve(contextVk, mCurrentFramebufferDesc.getLayerCount());
// The render pass is already closed because of the change in the draw buffer. Just don't let
// it reactivate now that it has a resolve attachment.
contextVk->disableRenderPassReactivation();
return angle::Result::Continue;
}
angle::Result FramebufferVk::resolveDepthStencilWithSubpass(
ContextVk *contextVk,
const UtilsVk::BlitResolveParameters &params,
VkImageAspectFlags aspects)
{
RenderTargetVk *drawRenderTarget = mRenderTargetCache.getDepthStencil();
const vk::ImageView *resolveImageView = nullptr;
ANGLE_TRY(drawRenderTarget->getImageView(contextVk, &resolveImageView));
vk::RenderPassCommandBufferHelper &renderPassCommands =
contextVk->getStartedRenderPassCommands();
ASSERT(!renderPassCommands.getRenderPassDesc().hasDepthStencilResolveAttachment());
renderPassCommands.addDepthStencilResolveAttachment(resolveImageView->getHandle(), aspects);
drawRenderTarget->onDepthStencilResolve(contextVk, mCurrentFramebufferDesc.getLayerCount());
// The render pass is already closed because of the change in the draw buffer. Just don't let
// it reactivate now that it has a resolve attachment.
contextVk->disableRenderPassReactivation();
return angle::Result::Continue;
}
angle::Result FramebufferVk::resolveColorWithCommand(ContextVk *contextVk,
const UtilsVk::BlitResolveParameters &params,
vk::ImageHelper *srcImage)
{
vk::CommandBufferAccess access;
access.onImageTransferRead(VK_IMAGE_ASPECT_COLOR_BIT, srcImage);
for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
{
RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL];
vk::ImageHelper &dstImage = drawRenderTarget->getImageForWrite();
access.onImageTransferWrite(drawRenderTarget->getLevelIndex(), 1,
drawRenderTarget->getLayerIndex(), 1, VK_IMAGE_ASPECT_COLOR_BIT,
&dstImage);
}
vk::OutsideRenderPassCommandBuffer *commandBuffer;
ANGLE_TRY(contextVk->getOutsideRenderPassCommandBuffer(access, &commandBuffer));
VkImageResolve resolveRegion = {};
resolveRegion.srcSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
resolveRegion.srcSubresource.mipLevel = 0;
resolveRegion.srcSubresource.baseArrayLayer = params.srcLayer;
resolveRegion.srcSubresource.layerCount = 1;
resolveRegion.srcOffset.x = params.blitArea.x;
resolveRegion.srcOffset.y = params.blitArea.y;
resolveRegion.srcOffset.z = 0;
resolveRegion.dstSubresource.aspectMask = VK_IMAGE_ASPECT_COLOR_BIT;
resolveRegion.dstSubresource.layerCount = 1;
resolveRegion.dstOffset.x = params.blitArea.x;
resolveRegion.dstOffset.y = params.blitArea.y;
resolveRegion.dstOffset.z = 0;
resolveRegion.extent.width = params.blitArea.width;
resolveRegion.extent.height = params.blitArea.height;
resolveRegion.extent.depth = 1;
angle::VulkanPerfCounters &perfCounters = contextVk->getPerfCounters();
for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
{
RenderTargetVk *drawRenderTarget = mRenderTargetCache.getColors()[colorIndexGL];
vk::ImageHelper &dstImage = drawRenderTarget->getImageForWrite();
vk::LevelIndex levelVk = dstImage.toVkLevel(drawRenderTarget->getLevelIndex());
resolveRegion.dstSubresource.mipLevel = levelVk.get();
resolveRegion.dstSubresource.baseArrayLayer = drawRenderTarget->getLayerIndex();
srcImage->resolve(&dstImage, resolveRegion, commandBuffer);
perfCounters.resolveImageCommands++;
}
return angle::Result::Continue;
}
gl::FramebufferStatus FramebufferVk::checkStatus(const gl::Context *context) const
{
// if we have both a depth and stencil buffer, they must refer to the same object
// since we only support packed_depth_stencil and not separate depth and stencil
if (mState.hasSeparateDepthAndStencilAttachments())
{
return gl::FramebufferStatus::Incomplete(
GL_FRAMEBUFFER_UNSUPPORTED,
gl::err::kFramebufferIncompleteUnsupportedSeparateDepthStencilBuffers);
}
return gl::FramebufferStatus::Complete();
}
angle::Result FramebufferVk::invalidateImpl(ContextVk *contextVk,
size_t count,
const GLenum *attachments,
bool isSubInvalidate,
const gl::Rectangle &invalidateArea)
{
gl::DrawBufferMask invalidateColorBuffers;
bool invalidateDepthBuffer = false;
bool invalidateStencilBuffer = false;
for (size_t i = 0; i < count; ++i)
{
const GLenum attachment = attachments[i];
switch (attachment)
{
case GL_DEPTH:
case GL_DEPTH_ATTACHMENT:
invalidateDepthBuffer = true;
break;
case GL_STENCIL:
case GL_STENCIL_ATTACHMENT:
invalidateStencilBuffer = true;
break;
case GL_DEPTH_STENCIL_ATTACHMENT:
invalidateDepthBuffer = true;
invalidateStencilBuffer = true;
break;
default:
ASSERT(
(attachment >= GL_COLOR_ATTACHMENT0 && attachment <= GL_COLOR_ATTACHMENT15) ||
(attachment == GL_COLOR));
invalidateColorBuffers.set(
attachment == GL_COLOR ? 0u : (attachment - GL_COLOR_ATTACHMENT0));
}
}
// Shouldn't try to issue deferred clears if invalidating sub framebuffer.
ASSERT(mDeferredClears.empty() || !isSubInvalidate);
// Remove deferred clears for the invalidated attachments.
if (invalidateDepthBuffer)
{
mDeferredClears.reset(vk::kUnpackedDepthIndex);
}
if (invalidateStencilBuffer)
{
mDeferredClears.reset(vk::kUnpackedStencilIndex);
}
for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
{
if (invalidateColorBuffers.test(colorIndexGL))
{
mDeferredClears.reset(colorIndexGL);
}
}
// If there are still deferred clears, restage them. See relevant comment in invalidateSub.
restageDeferredClears(contextVk);
const auto &colorRenderTargets = mRenderTargetCache.getColors();
RenderTargetVk *depthStencilRenderTarget = mRenderTargetCache.getDepthStencil();
// If not a partial invalidate, mark the contents of the invalidated attachments as undefined,
// so their loadOp can be set to DONT_CARE in the following render pass.
if (!isSubInvalidate)
{
for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
{
if (invalidateColorBuffers.test(colorIndexGL))
{
RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
ASSERT(colorRenderTarget);
bool preferToKeepContentsDefined = false;
colorRenderTarget->invalidateEntireContent(contextVk, &preferToKeepContentsDefined);
if (preferToKeepContentsDefined)
{
invalidateColorBuffers.reset(colorIndexGL);
}
}
}
// If we have a depth / stencil render target, invalidate its aspects.
if (depthStencilRenderTarget)
{
if (invalidateDepthBuffer)
{
bool preferToKeepContentsDefined = false;
depthStencilRenderTarget->invalidateEntireContent(contextVk,
&preferToKeepContentsDefined);
if (preferToKeepContentsDefined)
{
invalidateDepthBuffer = false;
}
}
if (invalidateStencilBuffer)
{
bool preferToKeepContentsDefined = false;
depthStencilRenderTarget->invalidateEntireStencilContent(
contextVk, &preferToKeepContentsDefined);
if (preferToKeepContentsDefined)
{
invalidateStencilBuffer = false;
}
}
}
}
// To ensure we invalidate the right renderpass we require that the current framebuffer be the
// same as the current renderpass' framebuffer. E.g. prevent sequence like:
//- Bind FBO 1, draw
//- Bind FBO 2, draw
//- Bind FBO 1, invalidate D/S
// to invalidate the D/S of FBO 2 since it would be the currently active renderpass.
if (contextVk->hasStartedRenderPassWithQueueSerial(mLastRenderPassQueueSerial))
{
// Mark the invalidated attachments in the render pass for loadOp and storeOp determination
// at its end.
vk::PackedAttachmentIndex colorIndexVk(0);
for (size_t colorIndexGL : mState.getColorAttachmentsMask())
{
if (mState.getEnabledDrawBuffers()[colorIndexGL] &&
invalidateColorBuffers.test(colorIndexGL))
{
contextVk->getStartedRenderPassCommands().invalidateRenderPassColorAttachment(
contextVk->getState(), colorIndexGL, colorIndexVk, invalidateArea);
}
++colorIndexVk;
}
if (depthStencilRenderTarget)
{
const gl::DepthStencilState &dsState = contextVk->getState().getDepthStencilState();
if (invalidateDepthBuffer)
{
contextVk->getStartedRenderPassCommands().invalidateRenderPassDepthAttachment(
dsState, invalidateArea);
}
if (invalidateStencilBuffer)
{
contextVk->getStartedRenderPassCommands().invalidateRenderPassStencilAttachment(
dsState, invalidateArea);
}
}
}
return angle::Result::Continue;
}
angle::Result FramebufferVk::updateColorAttachment(const gl::Context *context,
uint32_t colorIndexGL)
{
ANGLE_TRY(mRenderTargetCache.updateColorRenderTarget(context, mState, colorIndexGL));
// Update cached masks for masked clears.
RenderTargetVk *renderTarget = mRenderTargetCache.getColors()[colorIndexGL];
if (renderTarget)
{
const angle::Format &actualFormat = renderTarget->getImageActualFormat();
updateActiveColorMasks(colorIndexGL, actualFormat.redBits > 0, actualFormat.greenBits > 0,
actualFormat.blueBits > 0, actualFormat.alphaBits > 0);
const angle::Format &intendedFormat = renderTarget->getImageIntendedFormat();
mEmulatedAlphaAttachmentMask.set(
colorIndexGL, intendedFormat.alphaBits == 0 && actualFormat.alphaBits > 0);
}
else
{
updateActiveColorMasks(colorIndexGL, false, false, false, false);
}
const bool enabledColor =
renderTarget && mState.getColorAttachments()[colorIndexGL].isAttached();
const bool enabledResolve = enabledColor && renderTarget->hasResolveAttachment();
if (enabledColor)
{
mCurrentFramebufferDesc.updateColor(colorIndexGL, renderTarget->getDrawSubresourceSerial());
const bool isExternalImage =
mState.getColorAttachments()[colorIndexGL].isExternalImageWithoutIndividualSync();
mIsExternalColorAttachments.set(colorIndexGL, isExternalImage);
mAttachmentHasFrontBufferUsage.set(
colorIndexGL, mState.getColorAttachments()[colorIndexGL].hasFrontBufferUsage());
}
else
{
mCurrentFramebufferDesc.updateColor(colorIndexGL,
vk::kInvalidImageOrBufferViewSubresourceSerial);
}
if (enabledResolve)
{
mCurrentFramebufferDesc.updateColorResolve(colorIndexGL,
renderTarget->getResolveSubresourceSerial());
}
else
{
mCurrentFramebufferDesc.updateColorResolve(colorIndexGL,
vk::kInvalidImageOrBufferViewSubresourceSerial);
}
return angle::Result::Continue;
}
angle::Result FramebufferVk::updateDepthStencilAttachment(const gl::Context *context)
{
ANGLE_TRY(mRenderTargetCache.updateDepthStencilRenderTarget(context, mState));
ContextVk *contextVk = vk::GetImpl(context);
updateDepthStencilAttachmentSerial(contextVk);
return angle::Result::Continue;
}
void FramebufferVk::updateDepthStencilAttachmentSerial(ContextVk *contextVk)
{
RenderTargetVk *depthStencilRT = getDepthStencilRenderTarget();
if (depthStencilRT != nullptr)
{
mCurrentFramebufferDesc.updateDepthStencil(depthStencilRT->getDrawSubresourceSerial());
}
else
{
mCurrentFramebufferDesc.updateDepthStencil(vk::kInvalidImageOrBufferViewSubresourceSerial);
}
if (depthStencilRT != nullptr && depthStencilRT->hasResolveAttachment())
{
mCurrentFramebufferDesc.updateDepthStencilResolve(
depthStencilRT->getResolveSubresourceSerial());
}
else
{
mCurrentFramebufferDesc.updateDepthStencilResolve(
vk::kInvalidImageOrBufferViewSubresourceSerial);
}
}
angle::Result FramebufferVk::flushColorAttachmentUpdates(const gl::Context *context,
bool deferClears,
uint32_t colorIndexGL)
{
ContextVk *contextVk = vk::GetImpl(context);
RenderTargetVk *readRenderTarget = nullptr;
RenderTargetVk *drawRenderTarget = nullptr;
// It's possible for the read and draw color attachments to be different if different surfaces
// are bound, so we need to flush any staged updates to both.
// Draw
drawRenderTarget = mRenderTargetCache.getColorDraw(mState, colorIndexGL);
if (drawRenderTarget)
{
if (deferClears)
{
ANGLE_TRY(
drawRenderTarget->flushStagedUpdates(contextVk, &mDeferredClears, colorIndexGL,
mCurrentFramebufferDesc.getLayerCount()));
}
else
{
ANGLE_TRY(drawRenderTarget->flushStagedUpdates(
contextVk, nullptr, 0, mCurrentFramebufferDesc.getLayerCount()));
}
}
// Read
if (mState.getReadBufferState() != GL_NONE && mState.getReadIndex() == colorIndexGL)
{
// Flush staged updates to the read render target as well, but only if it's not the same as
// the draw render target. This can happen when the read render target is bound to another
// surface.
readRenderTarget = mRenderTargetCache.getColorRead(mState);
if (readRenderTarget && readRenderTarget != drawRenderTarget)
{
ANGLE_TRY(readRenderTarget->flushStagedUpdates(
contextVk, nullptr, 0, mCurrentFramebufferDesc.getLayerCount()));
}
}
return angle::Result::Continue;
}
angle::Result FramebufferVk::flushDepthStencilAttachmentUpdates(const gl::Context *context,
bool deferClears)
{
ContextVk *contextVk = vk::GetImpl(context);
RenderTargetVk *depthStencilRT = getDepthStencilRenderTarget();
if (depthStencilRT == nullptr)
{
return angle::Result::Continue;
}
if (deferClears)
{
return depthStencilRT->flushStagedUpdates(contextVk, &mDeferredClears,
vk::kUnpackedDepthIndex,
mCurrentFramebufferDesc.getLayerCount());
}
return depthStencilRT->flushStagedUpdates(contextVk, nullptr, 0,
mCurrentFramebufferDesc.getLayerCount());
}
angle::Result FramebufferVk::syncState(const gl::Context *context,
GLenum binding,
const gl::Framebuffer::DirtyBits &dirtyBits,
gl::Command command)
{
ContextVk *contextVk = vk::GetImpl(context);
vk::FramebufferDesc priorFramebufferDesc = mCurrentFramebufferDesc;
// Keep track of which attachments have dirty content and need their staged updates flushed.
// The respective functions depend on |mCurrentFramebufferDesc::mLayerCount| which is updated
// after all attachment render targets are updated.
gl::DrawBufferMask dirtyColorAttachments;
bool dirtyDepthStencilAttachment = false;
bool shouldUpdateColorMaskAndBlend = false;
bool shouldUpdateLayerCount = false;
bool shouldUpdateSrgbWriteControlMode = false;
// Cache new foveation state, if any
const gl::FoveationState *newFoveationState = nullptr;
gl::Extents foveatedAttachmentSize;
// For any updated attachments we'll update their Serials below
ASSERT(dirtyBits.any());
for (size_t dirtyBit : dirtyBits)
{
switch (dirtyBit)
{
case gl::Framebuffer::DIRTY_BIT_DEPTH_ATTACHMENT:
case gl::Framebuffer::DIRTY_BIT_DEPTH_BUFFER_CONTENTS:
case gl::Framebuffer::DIRTY_BIT_STENCIL_ATTACHMENT:
case gl::Framebuffer::DIRTY_BIT_STENCIL_BUFFER_CONTENTS:
ANGLE_TRY(updateDepthStencilAttachment(context));
shouldUpdateLayerCount = true;
dirtyDepthStencilAttachment = true;
break;
case gl::Framebuffer::DIRTY_BIT_READ_BUFFER:
ANGLE_TRY(mRenderTargetCache.update(context, mState, dirtyBits));
break;
case gl::Framebuffer::DIRTY_BIT_DRAW_BUFFERS:
shouldUpdateColorMaskAndBlend = true;
shouldUpdateLayerCount = true;
break;
case gl::Framebuffer::DIRTY_BIT_DEFAULT_WIDTH:
case gl::Framebuffer::DIRTY_BIT_DEFAULT_HEIGHT:
case gl::Framebuffer::DIRTY_BIT_DEFAULT_SAMPLES:
case gl::Framebuffer::DIRTY_BIT_DEFAULT_FIXED_SAMPLE_LOCATIONS:
// Invalidate the cache. If we have performance critical code hitting this path we
// can add related data (such as width/height) to the cache
releaseCurrentFramebuffer(contextVk);
break;
case gl::Framebuffer::DIRTY_BIT_FRAMEBUFFER_SRGB_WRITE_CONTROL_MODE:
shouldUpdateSrgbWriteControlMode = true;
break;
case gl::Framebuffer::DIRTY_BIT_DEFAULT_LAYERS:
shouldUpdateLayerCount = true;
break;
case gl::Framebuffer::DIRTY_BIT_FOVEATION:
// This dirty bit is set iff the framebuffer itself is foveated
ASSERT(mState.isFoveationEnabled());
newFoveationState = &mState.getFoveationState();
foveatedAttachmentSize = mState.getExtents();
break;
default:
{
static_assert(gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_0 == 0, "FB dirty bits");
uint32_t colorIndexGL;
if (dirtyBit < gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_MAX)
{
colorIndexGL = static_cast<uint32_t>(
dirtyBit - gl::Framebuffer::DIRTY_BIT_COLOR_ATTACHMENT_0);
}
else
{
ASSERT(dirtyBit >= gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_0 &&
dirtyBit < gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_MAX);
colorIndexGL = static_cast<uint32_t>(
dirtyBit - gl::Framebuffer::DIRTY_BIT_COLOR_BUFFER_CONTENTS_0);
}
ANGLE_TRY(updateColorAttachment(context, colorIndexGL));
// Check if attachment has foveated rendering, if so grab foveation state
const gl::FramebufferAttachment *attachment =
mState.getColorAttachment(colorIndexGL);
if (attachment && attachment->hasFoveatedRendering())
{
// If attachment is foveated the framebuffer must not be.
ASSERT(!mState.isFoveationEnabled());
newFoveationState = attachment->getFoveationState();
ASSERT(newFoveationState != nullptr);
foveatedAttachmentSize = attachment->getSize();
}
// Window system framebuffer only have one color attachment and its property should
// never change unless via DIRTY_BIT_DRAW_BUFFERS bit.
if (!mState.isDefault())
{
shouldUpdateColorMaskAndBlend = true;
shouldUpdateLayerCount = true;
}
dirtyColorAttachments.set(colorIndexGL);
break;
}
}
}
if (shouldUpdateSrgbWriteControlMode)
{
// Framebuffer colorspace state has been modified, so refresh the current framebuffer
// descriptor to reflect the new state.
gl::SrgbWriteControlMode newSrgbWriteControlMode = mState.getWriteControlMode();
mCurrentFramebufferDesc.setWriteControlMode(newSrgbWriteControlMode);
mRenderPassDesc.setWriteControlMode(newSrgbWriteControlMode);
}
if (shouldUpdateColorMaskAndBlend)
{
contextVk->updateColorMasks();
contextVk->updateBlendFuncsAndEquations();
}
if (shouldUpdateLayerCount)
{
updateLayerCount();
}
if (newFoveationState && mFoveationState != *newFoveationState)
{
ANGLE_TRY(updateFoveationState(contextVk, *newFoveationState, foveatedAttachmentSize));
}
// Defer clears for draw framebuffer ops. Note that this will result in a render area that
// completely covers the framebuffer, even if the operation that follows is scissored.
//
// Additionally, defer clears for read framebuffer attachments that are not taking part in a
// blit operation.
const bool isBlitCommand = command >= gl::Command::Blit && command <= gl::Command::BlitAll;
bool deferColorClears = binding == GL_DRAW_FRAMEBUFFER;
bool deferDepthStencilClears = binding == GL_DRAW_FRAMEBUFFER;
if (binding == GL_READ_FRAMEBUFFER && isBlitCommand)
{
uint32_t blitMask =
static_cast<uint32_t>(command) - static_cast<uint32_t>(gl::Command::Blit);
if ((blitMask & gl::CommandBlitBufferColor) == 0)
{
deferColorClears = true;
}
if ((blitMask & (gl::CommandBlitBufferDepth | gl::CommandBlitBufferStencil)) == 0)
{
deferDepthStencilClears = true;
}
}
// If we are notified that any attachment is dirty, but we have deferred clears for them, a
// flushDeferredClears() call is missing somewhere. ASSERT this to catch these bugs.
vk::ClearValuesArray previousDeferredClears = mDeferredClears;
for (size_t colorIndexGL : dirtyColorAttachments)
{
ASSERT(!previousDeferredClears.test(colorIndexGL));
ANGLE_TRY(flushColorAttachmentUpdates(context, deferColorClears,
static_cast<uint32_t>(colorIndexGL)));
}
if (dirtyDepthStencilAttachment)
{
ASSERT(!previousDeferredClears.testDepth());
ASSERT(!previousDeferredClears.testStencil());
ANGLE_TRY(flushDepthStencilAttachmentUpdates(context, deferDepthStencilClears));
}
// No-op redundant changes to prevent closing the RenderPass.
if (mCurrentFramebufferDesc == priorFramebufferDesc &&
mCurrentFramebufferDesc.attachmentCount() > 0)
{
return angle::Result::Continue;
}
// ContextVk::onFramebufferChange will end up calling onRenderPassFinished if necessary,
// which will trigger ending of current render pass. |mLastRenderPassQueueSerial| is reset
// so that the render pass will not get reactivated, since |mCurrentFramebufferDesc| has
// changed.
mLastRenderPassQueueSerial = QueueSerial();
updateRenderPassDesc(contextVk);
// Deactivate Framebuffer
releaseCurrentFramebuffer(contextVk);
// Notify the ContextVk to update the pipeline desc.
return contextVk->onFramebufferChange(this, command);
}
void FramebufferVk::updateRenderPassDesc(ContextVk *contextVk)
{
mRenderPassDesc = {};
mRenderPassDesc.setSamples(getSamples());
mRenderPassDesc.setViewCount(
mState.isMultiview() && mState.getNumViews() > 1 ? mState.getNumViews() : 0);
// Color attachments.
const auto &colorRenderTargets = mRenderTargetCache.getColors();
const gl::DrawBufferMask colorAttachmentMask = mState.getColorAttachmentsMask();
for (size_t colorIndexGL = 0; colorIndexGL < colorAttachmentMask.size(); ++colorIndexGL)
{
if (colorAttachmentMask[colorIndexGL])
{
RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
ASSERT(colorRenderTarget);
if (colorRenderTarget->isYuvResolve())
{
// If this is YUV resolve target, we use resolveImage's format since image maybe
// nullptr
auto const &resolveImage = colorRenderTarget->getResolveImageForRenderPass();
mRenderPassDesc.packColorAttachment(colorIndexGL, resolveImage.getActualFormatID());
mRenderPassDesc.packYUVResolveAttachment(colorIndexGL);
}
else
{
mRenderPassDesc.packColorAttachment(
colorIndexGL, colorRenderTarget->getImageForRenderPass().getActualFormatID());
// Add the resolve attachment, if any.
if (colorRenderTarget->hasResolveAttachment())
{
mRenderPassDesc.packColorResolveAttachment(colorIndexGL);
}
}
}
else
{
mRenderPassDesc.packColorAttachmentGap(colorIndexGL);
}
}
// Depth/stencil attachment.
RenderTargetVk *depthStencilRenderTarget = getDepthStencilRenderTarget();
if (depthStencilRenderTarget)
{
mRenderPassDesc.packDepthStencilAttachment(
depthStencilRenderTarget->getImageForRenderPass().getActualFormatID());
// Add the resolve attachment, if any.
if (depthStencilRenderTarget->hasResolveAttachment())
{
mRenderPassDesc.packDepthResolveAttachment();
mRenderPassDesc.packStencilResolveAttachment();
}
}
if (contextVk->isInFramebufferFetchMode())
{
mRenderPassDesc.setFramebufferFetchMode(true);
}
if (contextVk->getFeatures().enableMultisampledRenderToTexture.enabled)
{
// Update descriptions regarding multisampled-render-to-texture use.
bool isRenderToTexture = false;
for (size_t colorIndexGL : mState.getEnabledDrawBuffers())
{
const gl::FramebufferAttachment *color = mState.getColorAttachment(colorIndexGL);
ASSERT(color);
if (color->isRenderToTexture())
{
isRenderToTexture = true;
break;
}
}
const gl::FramebufferAttachment *depthStencil = mState.getDepthStencilAttachment();
if (depthStencil && depthStencil->isRenderToTexture())
{
isRenderToTexture = true;
}
mCurrentFramebufferDesc.updateRenderToTexture(isRenderToTexture);
mRenderPassDesc.updateRenderToTexture(isRenderToTexture);
}
mCurrentFramebufferDesc.updateUnresolveMask({});
mRenderPassDesc.setWriteControlMode(mCurrentFramebufferDesc.getWriteControlMode());
mRenderPassDesc.setFragmentShadingAttachment(
mCurrentFramebufferDesc.hasFragmentShadingRateAttachment());
updateLegacyDither(contextVk);
}
angle::Result FramebufferVk::getAttachmentsAndRenderTargets(
vk::Context *context,
vk::FramebufferAttachmentsVector<VkImageView> *unpackedAttachments,
vk::FramebufferAttachmentsVector<RenderTargetInfo> *packedRenderTargetsInfoOut)
{
// Color attachments.
mIsYUVResolve = false;
const auto &colorRenderTargets = mRenderTargetCache.getColors();
for (size_t colorIndexGL : mState.getColorAttachmentsMask())
{
RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
ASSERT(colorRenderTarget);
if (colorRenderTarget->isYuvResolve())
{
mIsYUVResolve = true;
if (context->getRenderer()->nullColorAttachmentWithExternalFormatResolve())
{
continue;
}
}
const vk::ImageView *imageView = nullptr;
ANGLE_TRY(colorRenderTarget->getImageViewWithColorspace(
context, mCurrentFramebufferDesc.getWriteControlMode(), &imageView));
unpackedAttachments->push_back(imageView->getHandle());
packedRenderTargetsInfoOut->emplace_back(
RenderTargetInfo(colorRenderTarget, RenderTargetImage::Attachment));
}
// Depth/stencil attachment.
RenderTargetVk *depthStencilRenderTarget = getDepthStencilRenderTarget();
if (depthStencilRenderTarget)
{
const vk::ImageView *imageView = nullptr;
ANGLE_TRY(depthStencilRenderTarget->getImageView(context, &imageView));
unpackedAttachments->push_back(imageView->getHandle());
packedRenderTargetsInfoOut->emplace_back(
RenderTargetInfo(depthStencilRenderTarget, RenderTargetImage::Attachment));
}
// Fragment shading rate attachment.
if (mCurrentFramebufferDesc.hasFragmentShadingRateAttachment())
{
const vk::ImageViewHelper *imageViewHelper = &mFragmentShadingRateImageView;
unpackedAttachments->push_back(
imageViewHelper->getFragmentShadingRateImageView().getHandle());
packedRenderTargetsInfoOut->emplace_back(nullptr, RenderTargetImage::FragmentShadingRate);
}
// Color resolve attachments. From here on, the views are placed at sparse indices because of
// |RenderPassFramebuffer|. That allows more resolve attachments to be added later.
unpackedAttachments->resize(vk::kMaxFramebufferAttachments, VK_NULL_HANDLE);
static_assert(vk::RenderPassFramebuffer::kColorResolveAttachmentBegin <
vk::kMaxFramebufferAttachments);
static_assert(vk::RenderPassFramebuffer::kDepthStencilResolveAttachment <
vk::kMaxFramebufferAttachments);
bool anyResolveAttachments = false;
for (size_t colorIndexGL : mState.getColorAttachmentsMask())
{
RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
ASSERT(colorRenderTarget);
if (colorRenderTarget->hasResolveAttachment())
{
const vk::ImageView *resolveImageView = nullptr;
ANGLE_TRY(colorRenderTarget->getResolveImageView(context, &resolveImageView));
constexpr size_t kBaseIndex = vk::RenderPassFramebuffer::kColorResolveAttachmentBegin;
(*unpackedAttachments)[kBaseIndex + colorIndexGL] = resolveImageView->getHandle();
packedRenderTargetsInfoOut->emplace_back(
RenderTargetInfo(colorRenderTarget, RenderTargetImage::Resolve));
anyResolveAttachments = true;
}
}
// Depth/stencil resolve attachment.
if (depthStencilRenderTarget && depthStencilRenderTarget->hasResolveAttachment())
{
const vk::ImageView *imageView = nullptr;
ANGLE_TRY(depthStencilRenderTarget->getResolveImageView(context, &imageView));
(*unpackedAttachments)[vk::RenderPassFramebuffer::kDepthStencilResolveAttachment] =
imageView->getHandle();
packedRenderTargetsInfoOut->emplace_back(
RenderTargetInfo(depthStencilRenderTarget, RenderTargetImage::Resolve));
anyResolveAttachments = true;
}
// Make sure |AllowAddingResolveAttachmentsToSubpass()| is guarding against all cases where a
// resolve attachment is pre-present in the render pass.
if (anyResolveAttachments)
{
ASSERT(!AllowAddingResolveAttachmentsToSubpass(mRenderPassDesc));
}
return angle::Result::Continue;
}
angle::Result FramebufferVk::createNewFramebuffer(
ContextVk *contextVk,
uint32_t framebufferWidth,
const uint32_t framebufferHeight,
const uint32_t framebufferLayers,
const vk::FramebufferAttachmentsVector<VkImageView> &unpackedAttachments,
const vk::FramebufferAttachmentsVector<RenderTargetInfo> &renderTargetsInfo)
{
// The backbuffer framebuffer is cached in WindowSurfaceVk instead.
ASSERT(mBackbuffer == nullptr);
// Called only when a new framebuffer is needed.
ASSERT(!mCurrentFramebuffer.valid());
// When using imageless framebuffers, the framebuffer cache is not utilized.
const bool useImagelessFramebuffer =
contextVk->getFeatures().supportsImagelessFramebuffer.enabled;
// Try to retrieve a framebuffer from the cache.
if (!useImagelessFramebuffer && contextVk->getShareGroup()->getFramebufferCache().get(
contextVk, mCurrentFramebufferDesc, mCurrentFramebuffer))
{
ASSERT(mCurrentFramebuffer.valid());
mIsCurrentFramebufferCached = true;
return angle::Result::Continue;
}
const vk::RenderPass *compatibleRenderPass = nullptr;
ANGLE_TRY(contextVk->getCompatibleRenderPass(mRenderPassDesc, &compatibleRenderPass));
// Create a new framebuffer.
vk::FramebufferHelper newFramebuffer;
VkFramebufferCreateInfo framebufferInfo = {};
framebufferInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_CREATE_INFO;
framebufferInfo.flags = 0;
framebufferInfo.renderPass = compatibleRenderPass->getHandle();
framebufferInfo.attachmentCount = static_cast<uint32_t>(renderTargetsInfo.size());
framebufferInfo.width = framebufferWidth;
framebufferInfo.height = framebufferHeight;
framebufferInfo.layers = framebufferLayers;
// Check that our description matches our attachments. Can catch implementation bugs.
ASSERT((mIsYUVResolve &&
contextVk->getRenderer()->nullColorAttachmentWithExternalFormatResolve()) ||
static_cast<uint32_t>(renderTargetsInfo.size()) ==
mCurrentFramebufferDesc.attachmentCount());
if (!useImagelessFramebuffer)
{
vk::FramebufferAttachmentsVector<VkImageView> packedAttachments = unpackedAttachments;
vk::RenderPassFramebuffer::PackViews(&packedAttachments);
ASSERT(renderTargetsInfo.size() == packedAttachments.size());
framebufferInfo.pAttachments = packedAttachments.data();
// The cache key (|FramebufferDesc|) can't distinguish between two framebuffers with 0
// attachments but with different sizes. For simplicity, 0-attachment framebuffers are not
// cached.
ANGLE_TRY(newFramebuffer.init(contextVk, framebufferInfo));
if (packedAttachments.empty())
{
mCurrentFramebuffer = std::move(newFramebuffer.getFramebuffer());
mIsCurrentFramebufferCached = false;
}
else
{
insertCache(contextVk, mCurrentFramebufferDesc, std::move(newFramebuffer));
const bool result = contextVk->getShareGroup()->getFramebufferCache().get(
contextVk, mCurrentFramebufferDesc, mCurrentFramebuffer);
ASSERT(result);
mIsCurrentFramebufferCached = true;
}
return angle::Result::Continue;
}
// For imageless framebuffers, attachment image and create info objects should be defined
// when creating the new framebuffer.
vk::FramebufferAttachmentsVector<VkFramebufferAttachmentImageInfo> attachmentImageInfos(
renderTargetsInfo.size(), {});
for (size_t index = 0; index < renderTargetsInfo.size(); ++index)
{
const RenderTargetInfo &info = renderTargetsInfo[index];
VkFramebufferAttachmentImageInfo &attachmentInfo = attachmentImageInfos[index];
attachmentInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENT_IMAGE_INFO;
// The fragment shading rate attachment does not have a corresponding render target, and is
// handled specially.
if (info.renderTargetImage == RenderTargetImage::FragmentShadingRate)
{
attachmentInfo.width = mFragmentShadingRateImage.getExtents().width;
attachmentInfo.height = mFragmentShadingRateImage.getExtents().height;
attachmentInfo.layerCount = 1;
attachmentInfo.flags = mFragmentShadingRateImage.getCreateFlags();
attachmentInfo.usage = mFragmentShadingRateImage.getUsage();
attachmentInfo.viewFormatCount =
static_cast<uint32_t>(mFragmentShadingRateImage.getViewFormats().size());
attachmentInfo.pViewFormats = mFragmentShadingRateImage.getViewFormats().data();
continue;
}
vk::ImageHelper *image = (info.renderTargetImage == RenderTargetImage::Resolve ||
info.renderTarget->isYuvResolve())
? &info.renderTarget->getResolveImageForRenderPass()
: &info.renderTarget->getImageForRenderPass();
const gl::LevelIndex level = info.renderTarget->getLevelIndex();
const uint32_t layerCount = info.renderTarget->getLayerCount();
const gl::Extents extents = image->getLevelExtents2D(image->toVkLevel(level));
attachmentInfo.width = std::max(extents.width, 1);
attachmentInfo.height = std::max(extents.height, 1);
attachmentInfo.layerCount = mCurrentFramebufferDesc.isMultiview()
? std::max<uint32_t>(mRenderPassDesc.viewCount(), 1u)
: layerCount;
attachmentInfo.flags = image->getCreateFlags();
attachmentInfo.usage = image->getUsage();
attachmentInfo.viewFormatCount = static_cast<uint32_t>(image->getViewFormats().size());
attachmentInfo.pViewFormats = image->getViewFormats().data();
}
VkFramebufferAttachmentsCreateInfo attachmentsCreateInfo = {};
attachmentsCreateInfo.sType = VK_STRUCTURE_TYPE_FRAMEBUFFER_ATTACHMENTS_CREATE_INFO;
attachmentsCreateInfo.attachmentImageInfoCount =
static_cast<uint32_t>(attachmentImageInfos.size());
attachmentsCreateInfo.pAttachmentImageInfos = attachmentImageInfos.data();
framebufferInfo.flags |= VK_FRAMEBUFFER_CREATE_IMAGELESS_BIT;
vk::AddToPNextChain(&framebufferInfo, &attachmentsCreateInfo);
ANGLE_TRY(newFramebuffer.init(contextVk, framebufferInfo));
mCurrentFramebuffer = std::move(newFramebuffer.getFramebuffer());
return angle::Result::Continue;
}
angle::Result FramebufferVk::getFramebuffer(ContextVk *contextVk,
vk::RenderPassFramebuffer *framebufferOut)
{
ASSERT(mCurrentFramebufferDesc.hasFramebufferFetch() == mRenderPassDesc.hasFramebufferFetch());
const gl::Extents attachmentsSize = mState.getExtents();
ASSERT(attachmentsSize.width != 0 && attachmentsSize.height != 0);
uint32_t framebufferWidth = static_cast<uint32_t>(attachmentsSize.width);
uint32_t framebufferHeight = static_cast<uint32_t>(attachmentsSize.height);
const uint32_t framebufferLayers = !mCurrentFramebufferDesc.isMultiview()
? std::max(mCurrentFramebufferDesc.getLayerCount(), 1u)
: 1;
vk::FramebufferAttachmentsVector<VkImageView> unpackedAttachments;
vk::FramebufferAttachmentsVector<RenderTargetInfo> renderTargetsInfo;
ANGLE_TRY(getAttachmentsAndRenderTargets(contextVk, &unpackedAttachments, &renderTargetsInfo));
vk::Framebuffer framebufferHandle;
if (mCurrentFramebuffer.valid())
{
// If a valid framebuffer is already created, use it. This is not done when the swapchain
// is being resolved, because the appropriate framebuffer needs to be queried from the back
// buffer.
framebufferHandle.setHandle(mCurrentFramebuffer.getHandle());
}
else
{
// For the default framebuffer attached to a window surface, WindowSurfaceVk caches a
// handful of framebuffer objects which are queried here. For the rest, a framebuffer needs
// to be created based on the current attachments to the FBO.
if (mBackbuffer == nullptr)
{
// Create a new framebuffer
ANGLE_TRY(createNewFramebuffer(contextVk, framebufferWidth, framebufferHeight,
framebufferLayers, unpackedAttachments,
renderTargetsInfo));
ASSERT(mCurrentFramebuffer.valid());
framebufferHandle.setHandle(mCurrentFramebuffer.getHandle());
}
else
{
const vk::RenderPass *compatibleRenderPass = nullptr;
ANGLE_TRY(contextVk->getCompatibleRenderPass(mRenderPassDesc, &compatibleRenderPass));
// If there is a backbuffer, query the framebuffer from WindowSurfaceVk instead.
ANGLE_TRY(mBackbuffer->getCurrentFramebuffer(
contextVk,
mRenderPassDesc.hasFramebufferFetch() ? FramebufferFetchMode::Enabled
: FramebufferFetchMode::Disabled,
*compatibleRenderPass, &framebufferHandle));
// Account for swapchain pre-rotation
framebufferWidth = renderTargetsInfo[0].renderTarget->getRotatedExtents().width;
framebufferHeight = renderTargetsInfo[0].renderTarget->getRotatedExtents().height;
}
}
const vk::ImagelessFramebuffer imagelessFramebuffer =
contextVk->getFeatures().supportsImagelessFramebuffer.enabled && mBackbuffer == nullptr
? vk::ImagelessFramebuffer::Yes
: vk::ImagelessFramebuffer::No;
framebufferOut->setFramebuffer(std::move(framebufferHandle), std::move(unpackedAttachments),
framebufferWidth, framebufferHeight, framebufferLayers,
imagelessFramebuffer);
return angle::Result::Continue;
}
void FramebufferVk::mergeClearsWithDeferredClears(
gl::DrawBufferMask clearColorBuffers,
bool clearDepth,
bool clearStencil,
const gl::DrawBuffersArray<VkClearColorValue> &clearColorValues,
const VkClearDepthStencilValue &clearDepthStencilValue)
{
// Apply clears to mDeferredClears. Note that clears override deferred clears.
// Color clears.
for (size_t colorIndexGL : clearColorBuffers)
{
ASSERT(mState.getEnabledDrawBuffers().test(colorIndexGL));
VkClearValue clearValue =
getCorrectedColorClearValue(colorIndexGL, clearColorValues[colorIndexGL]);
mDeferredClears.store(static_cast<uint32_t>(colorIndexGL), VK_IMAGE_ASPECT_COLOR_BIT,
clearValue);
}
// Depth and stencil clears.
VkImageAspectFlags dsAspectFlags = 0;
VkClearValue dsClearValue = {};
dsClearValue.depthStencil = clearDepthStencilValue;
if (clearDepth)
{
dsAspectFlags |= VK_IMAGE_ASPECT_DEPTH_BIT;
}
if (clearStencil)
{
dsAspectFlags |= VK_IMAGE_ASPECT_STENCIL_BIT;
}
if (dsAspectFlags != 0)
{
mDeferredClears.store(vk::kUnpackedDepthIndex, dsAspectFlags, dsClearValue);
}
}
angle::Result FramebufferVk::clearWithDraw(
ContextVk *contextVk,
const gl::Rectangle &clearArea,
gl::DrawBufferMask clearColorBuffers,
bool clearDepth,
bool clearStencil,
gl::BlendStateExt::ColorMaskStorage::Type colorMasks,
uint8_t stencilMask,
const gl::DrawBuffersArray<VkClearColorValue> &clearColorValues,
const VkClearDepthStencilValue &clearDepthStencilValue)
{
// All deferred clears should be handled already.
ASSERT(mDeferredClears.empty());
UtilsVk::ClearFramebufferParameters params = {};
params.clearArea = clearArea;
params.depthStencilClearValue = clearDepthStencilValue;
params.stencilMask = stencilMask;
params.clearColor = true;
params.clearDepth = clearDepth;
params.clearStencil = clearStencil;
const auto &colorRenderTargets = mRenderTargetCache.getColors();
for (size_t colorIndexGL : clearColorBuffers)
{
const RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
ASSERT(colorRenderTarget);
params.colorClearValue = clearColorValues[colorIndexGL];
params.colorFormat = &colorRenderTarget->getImageForRenderPass().getActualFormat();
params.colorAttachmentIndexGL = static_cast<uint32_t>(colorIndexGL);
params.colorMaskFlags =
gl::BlendStateExt::ColorMaskStorage::GetValueIndexed(colorIndexGL, colorMasks);
if (mEmulatedAlphaAttachmentMask[colorIndexGL])
{
params.colorMaskFlags &= ~VK_COLOR_COMPONENT_A_BIT;
}
// TODO: implement clear of layered framebuffers. UtilsVk::clearFramebuffer should add a
// geometry shader that is instanced layerCount times (or loops layerCount times), each time
// selecting a different layer.
// http://anglebug.com/5453
ASSERT(mCurrentFramebufferDesc.isMultiview() || colorRenderTarget->getLayerCount() == 1);
ANGLE_TRY(contextVk->getUtils().clearFramebuffer(contextVk, this, params));
// Clear depth/stencil only once!
params.clearDepth = false;
params.clearStencil = false;
}
// If there was no color clear, clear depth/stencil alone.
if (params.clearDepth || params.clearStencil)
{
params.clearColor = false;
ANGLE_TRY(contextVk->getUtils().clearFramebuffer(contextVk, this, params));
}
return angle::Result::Continue;
}
VkClearValue FramebufferVk::getCorrectedColorClearValue(size_t colorIndexGL,
const VkClearColorValue &clearColor) const
{
VkClearValue clearValue = {};
clearValue.color = clearColor;
if (!mEmulatedAlphaAttachmentMask[colorIndexGL])
{
return clearValue;
}
// If the render target doesn't have alpha, but its emulated format has it, clear the alpha
// to 1.
RenderTargetVk *renderTarget = getColorDrawRenderTarget(colorIndexGL);
const angle::Format &format = renderTarget->getImageActualFormat();
if (format.isUint())
{
clearValue.color.uint32[3] = kEmulatedAlphaValue;
}
else if (format.isSint())
{
clearValue.color.int32[3] = kEmulatedAlphaValue;
}
else
{
clearValue.color.float32[3] = kEmulatedAlphaValue;
}
return clearValue;
}
void FramebufferVk::restageDeferredClears(ContextVk *contextVk)
{
// Called when restaging clears of the draw framebuffer. In that case, there can't be any
// render passes open, otherwise the clear would have applied to the render pass. In the
// exceptional occasion in blit where the read framebuffer accumulates deferred clears, it can
// be deferred while this assumption doesn't hold (and restageDeferredClearsForReadFramebuffer
// should be used instead).
ASSERT(!contextVk->hasActiveRenderPass() || !mDeferredClears.any());
restageDeferredClearsImpl(contextVk);
}
void FramebufferVk::restageDeferredClearsForReadFramebuffer(ContextVk *contextVk)
{
restageDeferredClearsImpl(contextVk);
}
void FramebufferVk::restageDeferredClearsImpl(ContextVk *contextVk)
{
// Set the appropriate aspect and clear values for depth and stencil.
VkImageAspectFlags dsAspectFlags = 0;
VkClearValue dsClearValue = {};
dsClearValue.depthStencil.depth = mDeferredClears.getDepthValue();
dsClearValue.depthStencil.stencil = mDeferredClears.getStencilValue();
if (mDeferredClears.testDepth())
{
dsAspectFlags |= VK_IMAGE_ASPECT_DEPTH_BIT;
mDeferredClears.reset(vk::kUnpackedDepthIndex);
}
if (mDeferredClears.testStencil())
{
dsAspectFlags |= VK_IMAGE_ASPECT_STENCIL_BIT;
mDeferredClears.reset(vk::kUnpackedStencilIndex);
}
// Go through deferred clears and stage the clears for future.
for (size_t colorIndexGL : mDeferredClears.getColorMask())
{
RenderTargetVk *renderTarget = getColorDrawRenderTarget(colorIndexGL);
gl::ImageIndex imageIndex =
renderTarget->getImageIndexForClear(mCurrentFramebufferDesc.getLayerCount());
renderTarget->getImageForWrite().stageClear(imageIndex, VK_IMAGE_ASPECT_COLOR_BIT,
mDeferredClears[colorIndexGL]);
mDeferredClears.reset(colorIndexGL);
}
if (dsAspectFlags)
{
RenderTargetVk *renderTarget = getDepthStencilRenderTarget();
ASSERT(renderTarget);
gl::ImageIndex imageIndex =
renderTarget->getImageIndexForClear(mCurrentFramebufferDesc.getLayerCount());
renderTarget->getImageForWrite().stageClear(imageIndex, dsAspectFlags, dsClearValue);
}
}
void FramebufferVk::clearWithCommand(ContextVk *contextVk,
const gl::Rectangle &scissoredRenderArea,
ClearWithCommand behavior,
vk::ClearValuesArray *clears)
{
// Clear is not affected by viewport, so ContextVk::updateScissor may have decided on a smaller
// render area. Grow the render area to the full framebuffer size as this clear path is taken
// when not scissored.
vk::RenderPassCommandBufferHelper *renderPassCommands =
&contextVk->getStartedRenderPassCommands();
renderPassCommands->growRenderArea(contextVk, scissoredRenderArea);
gl::AttachmentVector<VkClearAttachment> attachments;
const bool optimizeWithLoadOp = behavior == ClearWithCommand::OptimizeWithLoadOp;
// Go through deferred clears and add them to the list of attachments to clear. If any
// attachment is unused, skip the clear. clearWithLoadOp will follow and move the remaining
// clears up to loadOp.
vk::PackedAttachmentIndex colorIndexVk(0);
for (size_t colorIndexGL : mState.getColorAttachmentsMask())
{
if (clears->getColorMask().test(colorIndexGL))
{
if (renderPassCommands->hasAnyColorAccess(colorIndexVk) ||
renderPassCommands->getRenderPassDesc().hasColorUnresolveAttachment(colorIndexGL) ||
!optimizeWithLoadOp)
{
attachments.emplace_back(VkClearAttachment{VK_IMAGE_ASPECT_COLOR_BIT,
static_cast<uint32_t>(colorIndexGL),
(*clears)[colorIndexGL]});
clears->reset(colorIndexGL);
++contextVk->getPerfCounters().colorClearAttachments;
renderPassCommands->onColorAccess(colorIndexVk, vk::ResourceAccess::ReadWrite);
}
else
{
// Skip this attachment, so we can use a renderpass loadOp to clear it instead.
// Note that if loadOp=Clear was already used for this color attachment, it will be
// overriden by the new clear, which is valid because the attachment wasn't used in
// between.
}
}
++colorIndexVk;
}
// Add depth and stencil to list of attachments as needed.
VkImageAspectFlags dsAspectFlags = 0;
VkClearValue dsClearValue = {};
dsClearValue.depthStencil.depth = clears->getDepthValue();
dsClearValue.depthStencil.stencil = clears->getStencilValue();
if (clears->testDepth() &&
(renderPassCommands->hasAnyDepthAccess() ||
renderPassCommands->getRenderPassDesc().hasDepthUnresolveAttachment() ||
!optimizeWithLoadOp))
{
dsAspectFlags |= VK_IMAGE_ASPECT_DEPTH_BIT;
// Explicitly mark a depth write because we are clearing the depth buffer.
renderPassCommands->onDepthAccess(vk::ResourceAccess::ReadWrite);
clears->reset(vk::kUnpackedDepthIndex);
++contextVk->getPerfCounters().depthClearAttachments;
}
if (clears->testStencil() &&
(renderPassCommands->hasAnyStencilAccess() ||
renderPassCommands->getRenderPassDesc().hasStencilUnresolveAttachment() ||
!optimizeWithLoadOp))
{
dsAspectFlags |= VK_IMAGE_ASPECT_STENCIL_BIT;
// Explicitly mark a stencil write because we are clearing the stencil buffer.
renderPassCommands->onStencilAccess(vk::ResourceAccess::ReadWrite);
clears->reset(vk::kUnpackedStencilIndex);
++contextVk->getPerfCounters().stencilClearAttachments;
}
if (dsAspectFlags != 0)
{
attachments.emplace_back(VkClearAttachment{dsAspectFlags, 0, dsClearValue});
// Because we may have changed the depth/stencil access mode, update read only depth/stencil
// mode.
renderPassCommands->updateDepthStencilReadOnlyMode(
contextVk->getDepthStencilAttachmentFlags(), dsAspectFlags);
}
if (attachments.empty())
{
// If called with the intent to definitely clear something with vkCmdClearAttachments, there
// must have been something to clear!
ASSERT(optimizeWithLoadOp);
return;
}
const uint32_t layerCount = mState.isMultiview() ? 1 : mCurrentFramebufferDesc.getLayerCount();
VkClearRect rect = {};
rect.rect.offset.x = scissoredRenderArea.x;
rect.rect.offset.y = scissoredRenderArea.y;
rect.rect.extent.width = scissoredRenderArea.width;
rect.rect.extent.height = scissoredRenderArea.height;
rect.layerCount = layerCount;
vk::RenderPassCommandBuffer *renderPassCommandBuffer = &renderPassCommands->getCommandBuffer();
renderPassCommandBuffer->clearAttachments(static_cast<uint32_t>(attachments.size()),
attachments.data(), 1, &rect);
return;
}
void FramebufferVk::clearWithLoadOp(ContextVk *contextVk)
{
vk::RenderPassCommandBufferHelper *renderPassCommands =
&contextVk->getStartedRenderPassCommands();
// Update the render pass loadOps to clear the attachments.
vk::PackedAttachmentIndex colorIndexVk(0);
for (size_t colorIndexGL : mState.getColorAttachmentsMask())
{
if (!mDeferredClears.test(colorIndexGL))
{
++colorIndexVk;
continue;
}
ASSERT(!renderPassCommands->hasAnyColorAccess(colorIndexVk));
renderPassCommands->updateRenderPassColorClear(colorIndexVk, mDeferredClears[colorIndexGL]);
mDeferredClears.reset(colorIndexGL);
++colorIndexVk;
}
VkClearValue dsClearValue = {};
dsClearValue.depthStencil.depth = mDeferredClears.getDepthValue();
dsClearValue.depthStencil.stencil = mDeferredClears.getStencilValue();
VkImageAspectFlags dsAspects = 0;
if (mDeferredClears.testDepth())
{
ASSERT(!renderPassCommands->hasAnyDepthAccess());
dsAspects |= VK_IMAGE_ASPECT_DEPTH_BIT;
mDeferredClears.reset(vk::kUnpackedDepthIndex);
}
if (mDeferredClears.testStencil())
{
ASSERT(!renderPassCommands->hasAnyStencilAccess());
dsAspects |= VK_IMAGE_ASPECT_STENCIL_BIT;
mDeferredClears.reset(vk::kUnpackedStencilIndex);
}
if (dsAspects != 0)
{
renderPassCommands->updateRenderPassDepthStencilClear(dsAspects, dsClearValue);
// The render pass can no longer be in read-only depth/stencil mode.
renderPassCommands->updateDepthStencilReadOnlyMode(
contextVk->getDepthStencilAttachmentFlags(), dsAspects);
}
}
angle::Result FramebufferVk::getSamplePosition(const gl::Context *context,
size_t index,
GLfloat *xy) const
{
int sampleCount = getSamples();
rx::GetSamplePosition(sampleCount, index, xy);
return angle::Result::Continue;
}
angle::Result FramebufferVk::startNewRenderPass(ContextVk *contextVk,
const gl::Rectangle &renderArea,
vk::RenderPassCommandBuffer **commandBufferOut,
bool *renderPassDescChangedOut)
{
ANGLE_TRY(contextVk->flushCommandsAndEndRenderPass(RenderPassClosureReason::NewRenderPass));
// Initialize RenderPass info.
vk::AttachmentOpsArray renderPassAttachmentOps;
vk::PackedClearValuesArray packedClearValues;
gl::DrawBufferMask previousUnresolveColorMask =
mRenderPassDesc.getColorUnresolveAttachmentMask();
const bool hasDeferredClears = mDeferredClears.any();
const bool previousUnresolveDepth = mRenderPassDesc.hasDepthUnresolveAttachment();
const bool previousUnresolveStencil = mRenderPassDesc.hasStencilUnresolveAttachment();
// Make sure render pass and framebuffer are in agreement w.r.t unresolve attachments.
ASSERT(mCurrentFramebufferDesc.getUnresolveAttachmentMask() ==
MakeUnresolveAttachmentMask(mRenderPassDesc));
// Color attachments.
const auto &colorRenderTargets = mRenderTargetCache.getColors();
vk::PackedAttachmentIndex colorIndexVk(0);
for (size_t colorIndexGL : mState.getColorAttachmentsMask())
{
RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
ASSERT(colorRenderTarget);
// Color render targets are never entirely transient. Only depth/stencil
// multisampled-render-to-texture textures can be so.
ASSERT(!colorRenderTarget->isEntirelyTransient());
const vk::RenderPassStoreOp storeOp = colorRenderTarget->isImageTransient()
? vk::RenderPassStoreOp::DontCare
: vk::RenderPassStoreOp::Store;
if (mDeferredClears.test(colorIndexGL))
{
renderPassAttachmentOps.setOps(colorIndexVk, vk::RenderPassLoadOp::Clear, storeOp);
packedClearValues.store(colorIndexVk, VK_IMAGE_ASPECT_COLOR_BIT,
mDeferredClears[colorIndexGL]);
mDeferredClears.reset(colorIndexGL);
}
else
{
const vk::RenderPassLoadOp loadOp = colorRenderTarget->hasDefinedContent()
? vk::RenderPassLoadOp::Load
: vk::RenderPassLoadOp::DontCare;
renderPassAttachmentOps.setOps(colorIndexVk, loadOp, storeOp);
packedClearValues.store(colorIndexVk, VK_IMAGE_ASPECT_COLOR_BIT,
kUninitializedClearValue);
}
renderPassAttachmentOps.setStencilOps(colorIndexVk, vk::RenderPassLoadOp::DontCare,
vk::RenderPassStoreOp::DontCare);
// If there's a resolve attachment, and loadOp needs to be LOAD, the multisampled attachment
// needs to take its value from the resolve attachment. In this case, an initial subpass is
// added for this very purpose which uses the resolve attachment as input attachment. As a
// result, loadOp of the multisampled attachment can remain DONT_CARE.
//
// Note that this only needs to be done if the multisampled image and the resolve attachment
// come from the same source. isImageTransient() indicates whether this should happen.
if (colorRenderTarget->hasResolveAttachment() && colorRenderTarget->isImageTransient())
{
if (renderPassAttachmentOps[colorIndexVk].loadOp == VK_ATTACHMENT_LOAD_OP_LOAD)
{
renderPassAttachmentOps[colorIndexVk].loadOp = VK_ATTACHMENT_LOAD_OP_DONT_CARE;
// Update the render pass desc to specify that this attachment should be unresolved.
mRenderPassDesc.packColorUnresolveAttachment(colorIndexGL);
}
else
{
mRenderPassDesc.removeColorUnresolveAttachment(colorIndexGL);
}
}
else
{
ASSERT(!mRenderPassDesc.getColorUnresolveAttachmentMask().test(colorIndexGL));
}
++colorIndexVk;
}
// Depth/stencil attachment.
vk::PackedAttachmentIndex depthStencilAttachmentIndex = vk::kAttachmentIndexInvalid;
RenderTargetVk *depthStencilRenderTarget = getDepthStencilRenderTarget();
if (depthStencilRenderTarget)
{
// depth stencil attachment always immediately follows color attachment
depthStencilAttachmentIndex = colorIndexVk;
vk::RenderPassLoadOp depthLoadOp = vk::RenderPassLoadOp::Load;
vk::RenderPassLoadOp stencilLoadOp = vk::RenderPassLoadOp::Load;
vk::RenderPassStoreOp depthStoreOp = vk::RenderPassStoreOp::Store;
vk::RenderPassStoreOp stencilStoreOp = vk::RenderPassStoreOp::Store;
// If the image data was previously discarded (with no update in between), don't attempt to
// load the image. Additionally, if the multisampled image data is transient and there is
// no resolve attachment, there's no data to load. The latter is the case with
// depth/stencil texture attachments per GL_EXT_multisampled_render_to_texture2.
if (!depthStencilRenderTarget->hasDefinedContent() ||
depthStencilRenderTarget->isEntirelyTransient())
{
depthLoadOp = vk::RenderPassLoadOp::DontCare;
}
if (!depthStencilRenderTarget->hasDefinedStencilContent() ||
depthStencilRenderTarget->isEntirelyTransient())
{
stencilLoadOp = vk::RenderPassLoadOp::DontCare;
}
// If depth/stencil image is transient, no need to store its data at the end of the render
// pass.
if (depthStencilRenderTarget->isImageTransient())
{
depthStoreOp = vk::RenderPassStoreOp::DontCare;
stencilStoreOp = vk::RenderPassStoreOp::DontCare;
}
if (mDeferredClears.testDepth() || mDeferredClears.testStencil())
{
VkClearValue clearValue = {};
if (mDeferredClears.testDepth())
{
depthLoadOp = vk::RenderPassLoadOp::Clear;
clearValue.depthStencil.depth = mDeferredClears.getDepthValue();
mDeferredClears.reset(vk::kUnpackedDepthIndex);
}
if (mDeferredClears.testStencil())
{
stencilLoadOp = vk::RenderPassLoadOp::Clear;
clearValue.depthStencil.stencil = mDeferredClears.getStencilValue();
mDeferredClears.reset(vk::kUnpackedStencilIndex);
}
// Note the aspect is only depth here. That's intentional.
packedClearValues.store(depthStencilAttachmentIndex, VK_IMAGE_ASPECT_DEPTH_BIT,
clearValue);
}
else
{
// Note the aspect is only depth here. That's intentional.
packedClearValues.store(depthStencilAttachmentIndex, VK_IMAGE_ASPECT_DEPTH_BIT,
kUninitializedClearValue);
}
const angle::Format &format = depthStencilRenderTarget->getImageIntendedFormat();
// If the format we picked has stencil but user did not ask for it due to hardware
// limitations, use DONT_CARE for load/store. The same logic for depth follows.
if (format.stencilBits == 0)
{
stencilLoadOp = vk::RenderPassLoadOp::DontCare;
stencilStoreOp = vk::RenderPassStoreOp::DontCare;
}
if (format.depthBits == 0)
{
depthLoadOp = vk::RenderPassLoadOp::DontCare;
depthStoreOp = vk::RenderPassStoreOp::DontCare;
}
// Similar to color attachments, if there's a resolve attachment and the multisampled image
// is transient, depth/stencil data need to be unresolved in an initial subpass.
if (depthStencilRenderTarget->hasResolveAttachment() &&
depthStencilRenderTarget->isImageTransient())
{
const bool unresolveDepth = depthLoadOp == vk::RenderPassLoadOp::Load;
const bool unresolveStencil = stencilLoadOp == vk::RenderPassLoadOp::Load;
if (unresolveDepth)
{
depthLoadOp = vk::RenderPassLoadOp::DontCare;
}
if (unresolveStencil)
{
stencilLoadOp = vk::RenderPassLoadOp::DontCare;
// If VK_EXT_shader_stencil_export is not supported, stencil unresolve is done
// through a method that requires stencil to have been cleared.
if (!contextVk->getRenderer()->getFeatures().supportsShaderStencilExport.enabled)
{
stencilLoadOp = vk::RenderPassLoadOp::Clear;
// Note the aspect is only depth here. That's intentional.
VkClearValue clearValue = packedClearValues[depthStencilAttachmentIndex];
clearValue.depthStencil.stencil = 0;
packedClearValues.store(depthStencilAttachmentIndex, VK_IMAGE_ASPECT_DEPTH_BIT,
clearValue);
}
}
if (unresolveDepth || unresolveStencil)
{
if (unresolveDepth)
{
mRenderPassDesc.packDepthUnresolveAttachment();
}
if (unresolveStencil)
{
mRenderPassDesc.packStencilUnresolveAttachment();
}
}
else
{
mRenderPassDesc.removeDepthStencilUnresolveAttachment();
}
}
renderPassAttachmentOps.setOps(depthStencilAttachmentIndex, depthLoadOp, depthStoreOp);
renderPassAttachmentOps.setStencilOps(depthStencilAttachmentIndex, stencilLoadOp,
stencilStoreOp);
}
// If render pass description is changed, the previous render pass desc is no longer compatible.
// Tell the context so that the graphics pipelines can be recreated.
//
// Note that render passes are compatible only if the differences are in loadOp/storeOp values,
// or the existence of resolve attachments in single subpass render passes. The modification
// here can add/remove a subpass, or modify its input attachments.
gl::DrawBufferMask unresolveColorMask = mRenderPassDesc.getColorUnresolveAttachmentMask();
const bool unresolveDepth = mRenderPassDesc.hasDepthUnresolveAttachment();
const bool unresolveStencil = mRenderPassDesc.hasStencilUnresolveAttachment();
const bool unresolveChanged = previousUnresolveColorMask != unresolveColorMask ||
previousUnresolveDepth != unresolveDepth ||
previousUnresolveStencil != unresolveStencil;
if (unresolveChanged)
{
// Make sure framebuffer is recreated.
releaseCurrentFramebuffer(contextVk);
mCurrentFramebufferDesc.updateUnresolveMask(MakeUnresolveAttachmentMask(mRenderPassDesc));
}
vk::RenderPassFramebuffer framebuffer = {};
ANGLE_TRY(getFramebuffer(contextVk, &framebuffer));
// If deferred clears were used in the render pass, the render area must cover the whole
// framebuffer.
ASSERT(!hasDeferredClears || renderArea == getRotatedCompleteRenderArea(contextVk));
ANGLE_TRY(contextVk->beginNewRenderPass(
std::move(framebuffer), renderArea, mRenderPassDesc, renderPassAttachmentOps, colorIndexVk,
depthStencilAttachmentIndex, packedClearValues, commandBufferOut));
mLastRenderPassQueueSerial = contextVk->getStartedRenderPassCommands().getQueueSerial();
// Add the images to the renderpass tracking list (through onColorDraw).
vk::PackedAttachmentIndex colorAttachmentIndex(0);
for (size_t colorIndexGL : mState.getColorAttachmentsMask())
{
RenderTargetVk *colorRenderTarget = colorRenderTargets[colorIndexGL];
colorRenderTarget->onColorDraw(contextVk, mCurrentFramebufferDesc.getLayerCount(),
colorAttachmentIndex);
++colorAttachmentIndex;
}
if (depthStencilRenderTarget)
{
// This must be called after hasDefined*Content() since it will set content to valid. If
// the attachment ends up not used in the render pass, contents will be marked undefined at
// endRenderPass. The actual layout determination is also deferred until the same time.
depthStencilRenderTarget->onDepthStencilDraw(contextVk,
mCurrentFramebufferDesc.getLayerCount());
}
const bool anyUnresolve = unresolveColorMask.any() || unresolveDepth || unresolveStencil;
if (anyUnresolve)
{
// Unresolve attachments if any.
UtilsVk::UnresolveParameters params;
params.unresolveColorMask = unresolveColorMask;
params.unresolveDepth = unresolveDepth;
params.unresolveStencil = unresolveStencil;
ANGLE_TRY(contextVk->getUtils().unresolve(contextVk, this, params));
// The unresolve subpass has only one draw call.
ANGLE_TRY(contextVk->startNextSubpass());
}
if (unresolveChanged || anyUnresolve)
{
contextVk->onDrawFramebufferRenderPassDescChange(this, renderPassDescChangedOut);
}
// Add fragment shading rate to the tracking list.
if (mCurrentFramebufferDesc.hasFragmentShadingRateAttachment())
{
contextVk->onFragmentShadingRateRead(&mFragmentShadingRateImage);
}
return angle::Result::Continue;
}
gl::Rectangle FramebufferVk::getRenderArea(ContextVk *contextVk) const
{
if (hasDeferredClears())
{
return getRotatedCompleteRenderArea(contextVk);
}
else
{
return getRotatedScissoredRenderArea(contextVk);
}
}
void FramebufferVk::updateActiveColorMasks(size_t colorIndexGL, bool r, bool g, bool b, bool a)
{
gl::BlendStateExt::ColorMaskStorage::SetValueIndexed(
colorIndexGL, gl::BlendStateExt::PackColorMask(r, g, b, a),
&mActiveColorComponentMasksForClear);
}
const gl::DrawBufferMask &FramebufferVk::getEmulatedAlphaAttachmentMask() const
{
return mEmulatedAlphaAttachmentMask;
}
angle::Result FramebufferVk::readPixelsImpl(ContextVk *contextVk,
const gl::Rectangle &area,
const PackPixelsParams &packPixelsParams,
VkImageAspectFlagBits copyAspectFlags,
RenderTargetVk *renderTarget,
void *pixels)
{
ANGLE_TRACE_EVENT0("gpu.angle", "FramebufferVk::readPixelsImpl");
gl::LevelIndex levelGL = renderTarget->getLevelIndex();
uint32_t layer = renderTarget->getLayerIndex();
return renderTarget->getImageForCopy().readPixels(contextVk, area, packPixelsParams,
copyAspectFlags, levelGL, layer, pixels);
}
gl::Extents FramebufferVk::getReadImageExtents() const
{
RenderTargetVk *readRenderTarget = mRenderTargetCache.getColorRead(mState);
return readRenderTarget->getExtents();
}
// Return the framebuffer's non-rotated render area. This is a gl::Rectangle that is based on the
// dimensions of the framebuffer, IS NOT rotated, and IS NOT y-flipped
gl::Rectangle FramebufferVk::getNonRotatedCompleteRenderArea() const
{
const gl::Box &dimensions = mState.getDimensions();
return gl::Rectangle(0, 0, dimensions.width, dimensions.height);
}
// Return the framebuffer's rotated render area. This is a gl::Rectangle that is based on the
// dimensions of the framebuffer, IS ROTATED for the draw FBO, and IS NOT y-flipped
//
// Note: Since the rectangle is not scissored (i.e. x and y are guaranteed to be zero), only the
// width and height must be swapped if the rotation is 90 or 270 degrees.
gl::Rectangle FramebufferVk::getRotatedCompleteRenderArea(ContextVk *contextVk) const
{
gl::Rectangle renderArea = getNonRotatedCompleteRenderArea();
if (contextVk->isRotatedAspectRatioForDrawFBO())
{
// The surface is rotated 90/270 degrees. This changes the aspect ratio of the surface.
std::swap(renderArea.width, renderArea.height);
}
return renderArea;
}
// Return the framebuffer's scissored and rotated render area. This is a gl::Rectangle that is
// based on the dimensions of the framebuffer, is clipped to the scissor, IS ROTATED and IS
// Y-FLIPPED for the draw FBO.
//
// Note: Since the rectangle is scissored, it must be fully rotated, and not just have the width
// and height swapped.
gl::Rectangle FramebufferVk::getRotatedScissoredRenderArea(ContextVk *contextVk) const
{
const gl::Rectangle renderArea = getNonRotatedCompleteRenderArea();
bool invertViewport = contextVk->isViewportFlipEnabledForDrawFBO();
gl::Rectangle scissoredArea = ClipRectToScissor(contextVk->getState(), renderArea, false);
gl::Rectangle rotatedScissoredArea;
RotateRectangle(contextVk->getRotationDrawFramebuffer(), invertViewport, renderArea.width,
renderArea.height, scissoredArea, &rotatedScissoredArea);
return rotatedScissoredArea;
}
GLint FramebufferVk::getSamples() const
{
const gl::FramebufferAttachment *lastAttachment = nullptr;
for (size_t colorIndexGL : mState.getEnabledDrawBuffers() & mState.getColorAttachmentsMask())
{
const gl::FramebufferAttachment *color = mState.getColorAttachment(colorIndexGL);
ASSERT(color);
if (color->isRenderToTexture())
{
return color->getSamples();
}
lastAttachment = color;
}
const gl::FramebufferAttachment *depthStencil = mState.getDepthOrStencilAttachment();
if (depthStencil)
{
if (depthStencil->isRenderToTexture())
{
return depthStencil->getSamples();
}
lastAttachment = depthStencil;
}
// If none of the attachments are multisampled-render-to-texture, take the sample count from the
// last attachment (any would have worked, as they would all have the same sample count).
return std::max(lastAttachment ? lastAttachment->getSamples() : 1, 1);
}
angle::Result FramebufferVk::flushDeferredClears(ContextVk *contextVk)
{
if (mDeferredClears.empty())
{
return angle::Result::Continue;
}
return contextVk->startRenderPass(getRotatedCompleteRenderArea(contextVk), nullptr, nullptr);
}
void FramebufferVk::switchToFramebufferFetchMode(ContextVk *contextVk, bool hasFramebufferFetch)
{
// The switch happens once, and is permanent.
if (mCurrentFramebufferDesc.hasFramebufferFetch() == hasFramebufferFetch)
{
return;
}
// Make sure framebuffer is recreated.
releaseCurrentFramebuffer(contextVk);
mCurrentFramebufferDesc.setFramebufferFetchMode(hasFramebufferFetch);
mRenderPassDesc.setFramebufferFetchMode(hasFramebufferFetch);
contextVk->onDrawFramebufferRenderPassDescChange(this, nullptr);
// Clear the framebuffer cache, as none of the old framebuffers are usable.
if (contextVk->getFeatures().permanentlySwitchToFramebufferFetchMode.enabled)
{
ASSERT(hasFramebufferFetch);
releaseCurrentFramebuffer(contextVk);
}
}
bool FramebufferVk::updateLegacyDither(ContextVk *contextVk)
{
if (contextVk->getFeatures().supportsLegacyDithering.enabled &&
mRenderPassDesc.isLegacyDitherEnabled() != contextVk->isDitherEnabled())
{
mRenderPassDesc.setLegacyDither(contextVk->isDitherEnabled());
return true;
}
return false;
}
} // namespace rx