blob: 8d82bb37f479a49c5de88fb036928a7b1316a85b [file] [log] [blame]
//
// Copyright 2016 The ANGLE Project Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// RendererVk.cpp:
// Implements the class methods for RendererVk.
//
#include "libANGLE/renderer/vulkan/RendererVk.h"
// Placing this first seems to solve an intellisense bug.
#include "libANGLE/renderer/vulkan/vk_utils.h"
#include <EGL/eglext.h>
#include "common/debug.h"
#include "common/platform.h"
#include "common/system_utils.h"
#include "libANGLE/Context.h"
#include "libANGLE/Display.h"
#include "libANGLE/renderer/driver_utils.h"
#include "libANGLE/renderer/glslang_wrapper_utils.h"
#include "libANGLE/renderer/vulkan/CommandGraph.h"
#include "libANGLE/renderer/vulkan/CompilerVk.h"
#include "libANGLE/renderer/vulkan/ContextVk.h"
#include "libANGLE/renderer/vulkan/DisplayVk.h"
#include "libANGLE/renderer/vulkan/FramebufferVk.h"
#include "libANGLE/renderer/vulkan/ProgramVk.h"
#include "libANGLE/renderer/vulkan/VertexArrayVk.h"
#include "libANGLE/renderer/vulkan/vk_caps_utils.h"
#include "libANGLE/renderer/vulkan/vk_format_utils.h"
#include "libANGLE/trace.h"
#include "platform/Platform.h"
// Consts
namespace
{
const uint32_t kMockVendorID = 0xba5eba11;
const uint32_t kMockDeviceID = 0xf005ba11;
constexpr char kMockDeviceName[] = "Vulkan Mock Device";
const uint32_t kSwiftShaderDeviceID = 0xC0DE;
constexpr char kSwiftShaderDeviceName[] = "SwiftShader Device";
constexpr VkFormatFeatureFlags kInvalidFormatFeatureFlags = static_cast<VkFormatFeatureFlags>(-1);
} // anonymous namespace
namespace rx
{
namespace
{
// Update the pipeline cache every this many swaps.
constexpr uint32_t kPipelineCacheVkUpdatePeriod = 60;
// Per the Vulkan specification, as long as Vulkan 1.1+ is returned by vkEnumerateInstanceVersion,
// ANGLE must indicate the highest version of Vulkan functionality that it uses. The Vulkan
// validation layers will issue messages for any core functionality that requires a higher version.
// This value must be increased whenever ANGLE starts using functionality from a newer core
// version of Vulkan.
constexpr uint32_t kPreferredVulkanAPIVersion = VK_API_VERSION_1_1;
vk::ICD ChooseICDFromAttribs(const egl::AttributeMap &attribs)
{
#if !defined(ANGLE_PLATFORM_ANDROID)
// Mock ICD does not currently run on Android
EGLAttrib deviceType = attribs.get(EGL_PLATFORM_ANGLE_DEVICE_TYPE_ANGLE,
EGL_PLATFORM_ANGLE_DEVICE_TYPE_HARDWARE_ANGLE);
switch (deviceType)
{
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_HARDWARE_ANGLE:
break;
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_NULL_ANGLE:
return vk::ICD::Mock;
case EGL_PLATFORM_ANGLE_DEVICE_TYPE_SWIFTSHADER_ANGLE:
return vk::ICD::SwiftShader;
default:
UNREACHABLE();
break;
}
#endif // !defined(ANGLE_PLATFORM_ANDROID)
return vk::ICD::Default;
}
bool StrLess(const char *a, const char *b)
{
return strcmp(a, b) < 0;
}
bool ExtensionFound(const char *needle, const RendererVk::ExtensionNameList &haystack)
{
// NOTE: The list must be sorted.
return std::binary_search(haystack.begin(), haystack.end(), needle, StrLess);
}
VkResult VerifyExtensionsPresent(const RendererVk::ExtensionNameList &haystack,
const RendererVk::ExtensionNameList &needles)
{
// NOTE: The lists must be sorted.
if (std::includes(haystack.begin(), haystack.end(), needles.begin(), needles.end(), StrLess))
{
return VK_SUCCESS;
}
for (const char *needle : needles)
{
if (!ExtensionFound(needle, haystack))
{
ERR() << "Extension not supported: " << needle;
}
}
return VK_ERROR_EXTENSION_NOT_PRESENT;
}
// Array of Validation error/warning messages that will be ignored, should include bugID
constexpr const char *kSkippedMessages[] = {
// http://anglebug.com/2866
"UNASSIGNED-CoreValidation-Shader-OutputNotConsumed",
// http://anglebug.com/2796
"UNASSIGNED-CoreValidation-Shader-PointSizeMissing",
// http://anglebug.com/3832
"VUID-VkPipelineInputAssemblyStateCreateInfo-topology-00428",
// http://anglebug.com/3450
"VUID-vkDestroySemaphore-semaphore-parameter",
// http://anglebug.com/4063
"VUID-VkDeviceCreateInfo-pNext-pNext",
"VUID-VkPipelineRasterizationStateCreateInfo-pNext-pNext",
"VUID_Undefined",
};
// Suppress validation errors that are known
// return "true" if given code/prefix/message is known, else return "false"
bool IsIgnoredDebugMessage(const char *message)
{
if (!message)
{
return false;
}
for (const char *msg : kSkippedMessages)
{
if (strstr(message, msg) != nullptr)
{
return true;
}
}
return false;
}
const char *GetVkObjectTypeName(VkObjectType type)
{
switch (type)
{
case VK_OBJECT_TYPE_UNKNOWN:
return "Unknown";
case VK_OBJECT_TYPE_INSTANCE:
return "Instance";
case VK_OBJECT_TYPE_PHYSICAL_DEVICE:
return "Physical Device";
case VK_OBJECT_TYPE_DEVICE:
return "Device";
case VK_OBJECT_TYPE_QUEUE:
return "Queue";
case VK_OBJECT_TYPE_SEMAPHORE:
return "Semaphore";
case VK_OBJECT_TYPE_COMMAND_BUFFER:
return "Command Buffer";
case VK_OBJECT_TYPE_FENCE:
return "Fence";
case VK_OBJECT_TYPE_DEVICE_MEMORY:
return "Device Memory";
case VK_OBJECT_TYPE_BUFFER:
return "Buffer";
case VK_OBJECT_TYPE_IMAGE:
return "Image";
case VK_OBJECT_TYPE_EVENT:
return "Event";
case VK_OBJECT_TYPE_QUERY_POOL:
return "Query Pool";
case VK_OBJECT_TYPE_BUFFER_VIEW:
return "Buffer View";
case VK_OBJECT_TYPE_IMAGE_VIEW:
return "Image View";
case VK_OBJECT_TYPE_SHADER_MODULE:
return "Shader Module";
case VK_OBJECT_TYPE_PIPELINE_CACHE:
return "Pipeline Cache";
case VK_OBJECT_TYPE_PIPELINE_LAYOUT:
return "Pipeline Layout";
case VK_OBJECT_TYPE_RENDER_PASS:
return "Render Pass";
case VK_OBJECT_TYPE_PIPELINE:
return "Pipeline";
case VK_OBJECT_TYPE_DESCRIPTOR_SET_LAYOUT:
return "Descriptor Set Layout";
case VK_OBJECT_TYPE_SAMPLER:
return "Sampler";
case VK_OBJECT_TYPE_DESCRIPTOR_POOL:
return "Descriptor Pool";
case VK_OBJECT_TYPE_DESCRIPTOR_SET:
return "Descriptor Set";
case VK_OBJECT_TYPE_FRAMEBUFFER:
return "Framebuffer";
case VK_OBJECT_TYPE_COMMAND_POOL:
return "Command Pool";
case VK_OBJECT_TYPE_SAMPLER_YCBCR_CONVERSION:
return "Sampler YCbCr Conversion";
case VK_OBJECT_TYPE_DESCRIPTOR_UPDATE_TEMPLATE:
return "Descriptor Update Template";
case VK_OBJECT_TYPE_SURFACE_KHR:
return "Surface";
case VK_OBJECT_TYPE_SWAPCHAIN_KHR:
return "Swapchain";
case VK_OBJECT_TYPE_DISPLAY_KHR:
return "Display";
case VK_OBJECT_TYPE_DISPLAY_MODE_KHR:
return "Display Mode";
case VK_OBJECT_TYPE_DEBUG_REPORT_CALLBACK_EXT:
return "Debug Report Callback";
case VK_OBJECT_TYPE_OBJECT_TABLE_NVX:
return "Object Table";
case VK_OBJECT_TYPE_INDIRECT_COMMANDS_LAYOUT_NVX:
return "Indirect Commands Layout";
case VK_OBJECT_TYPE_DEBUG_UTILS_MESSENGER_EXT:
return "Debug Utils Messenger";
case VK_OBJECT_TYPE_VALIDATION_CACHE_EXT:
return "Validation Cache";
case VK_OBJECT_TYPE_ACCELERATION_STRUCTURE_NV:
return "Acceleration Structure";
default:
return "<Unrecognized>";
}
}
VKAPI_ATTR VkBool32 VKAPI_CALL
DebugUtilsMessenger(VkDebugUtilsMessageSeverityFlagBitsEXT messageSeverity,
VkDebugUtilsMessageTypeFlagsEXT messageTypes,
const VkDebugUtilsMessengerCallbackDataEXT *callbackData,
void *userData)
{
// See if it's an issue we are aware of and don't want to be spammed about.
if (IsIgnoredDebugMessage(callbackData->pMessageIdName))
{
return VK_FALSE;
}
std::ostringstream log;
if (callbackData->pMessageIdName)
{
log << "[ " << callbackData->pMessageIdName << " ] ";
}
log << callbackData->pMessage << std::endl;
// Aesthetic value based on length of the function name, line number, etc.
constexpr size_t kStartIndent = 28;
// Output the debug marker hierarchy under which this error has occured.
size_t indent = kStartIndent;
if (callbackData->queueLabelCount > 0)
{
log << std::string(indent++, ' ') << "<Queue Label Hierarchy:>" << std::endl;
for (uint32_t i = 0; i < callbackData->queueLabelCount; ++i)
{
log << std::string(indent++, ' ') << callbackData->pQueueLabels[i].pLabelName
<< std::endl;
}
}
if (callbackData->cmdBufLabelCount > 0)
{
log << std::string(indent++, ' ') << "<Command Buffer Label Hierarchy:>" << std::endl;
for (uint32_t i = 0; i < callbackData->cmdBufLabelCount; ++i)
{
log << std::string(indent++, ' ') << callbackData->pCmdBufLabels[i].pLabelName
<< std::endl;
}
}
// Output the objects involved in this error message.
if (callbackData->objectCount > 0)
{
for (uint32_t i = 0; i < callbackData->objectCount; ++i)
{
const char *objectName = callbackData->pObjects[i].pObjectName;
const char *objectType = GetVkObjectTypeName(callbackData->pObjects[i].objectType);
uint64_t objectHandle = callbackData->pObjects[i].objectHandle;
log << std::string(indent, ' ') << "Object: ";
if (objectHandle == 0)
{
log << "VK_NULL_HANDLE";
}
else
{
log << "0x" << std::hex << objectHandle << std::dec;
}
log << " (type = " << objectType << "(" << callbackData->pObjects[i].objectType << "))";
if (objectName)
{
log << " [" << objectName << "]";
}
log << std::endl;
}
}
bool isError = (messageSeverity & VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT) != 0;
std::string msg = log.str();
RendererVk *rendererVk = static_cast<RendererVk *>(userData);
rendererVk->onNewValidationMessage(msg);
if (isError)
{
ERR() << msg;
}
else
{
WARN() << msg;
}
return VK_FALSE;
}
VKAPI_ATTR VkBool32 VKAPI_CALL DebugReportCallback(VkDebugReportFlagsEXT flags,
VkDebugReportObjectTypeEXT objectType,
uint64_t object,
size_t location,
int32_t messageCode,
const char *layerPrefix,
const char *message,
void *userData)
{
if (IsIgnoredDebugMessage(message))
{
return VK_FALSE;
}
if ((flags & VK_DEBUG_REPORT_ERROR_BIT_EXT) != 0)
{
ERR() << message;
#if !defined(NDEBUG)
// Abort the call in Debug builds.
return VK_TRUE;
#endif
}
else if ((flags & VK_DEBUG_REPORT_WARNING_BIT_EXT) != 0)
{
WARN() << message;
}
else
{
// Uncomment this if you want Vulkan spam.
// WARN() << message;
}
return VK_FALSE;
}
// If we're loading the validation layers, we could be running from any random directory.
// Change to the executable directory so we can find the layers, then change back to the
// previous directory to be safe we don't disrupt the application.
class ScopedVkLoaderEnvironment : angle::NonCopyable
{
public:
ScopedVkLoaderEnvironment(bool enableValidationLayers, vk::ICD icd)
: mEnableValidationLayers(enableValidationLayers),
mICD(icd),
mChangedCWD(false),
mChangedICDEnv(false)
{
// Changing CWD and setting environment variables makes no sense on Android,
// since this code is a part of Java application there.
// Android Vulkan loader doesn't need this either.
#if !defined(ANGLE_PLATFORM_ANDROID) && !defined(ANGLE_PLATFORM_FUCHSIA) && \
!defined(ANGLE_PLATFORM_GGP)
if (icd == vk::ICD::Mock)
{
if (!setICDEnvironment(ANGLE_VK_MOCK_ICD_JSON))
{
ERR() << "Error setting environment for Mock/Null Driver.";
}
}
else if (icd == vk::ICD::SwiftShader)
{
if (!setICDEnvironment(ANGLE_VK_SWIFTSHADER_ICD_JSON))
{
ERR() << "Error setting environment for SwiftShader.";
}
}
if (mEnableValidationLayers || icd != vk::ICD::Default)
{
const auto &cwd = angle::GetCWD();
if (!cwd.valid())
{
ERR() << "Error getting CWD for Vulkan layers init.";
mEnableValidationLayers = false;
mICD = vk::ICD::Default;
}
else
{
mPreviousCWD = cwd.value();
std::string exeDir = angle::GetExecutableDirectory();
mChangedCWD = angle::SetCWD(exeDir.c_str());
if (!mChangedCWD)
{
ERR() << "Error setting CWD for Vulkan layers init.";
mEnableValidationLayers = false;
mICD = vk::ICD::Default;
}
}
}
// Override environment variable to use the ANGLE layers.
if (mEnableValidationLayers)
{
if (!angle::PrependPathToEnvironmentVar(vk::gLoaderLayersPathEnv, ANGLE_VK_LAYERS_DIR))
{
ERR() << "Error setting environment for Vulkan layers init.";
mEnableValidationLayers = false;
}
}
#endif // !defined(ANGLE_PLATFORM_ANDROID)
}
~ScopedVkLoaderEnvironment()
{
if (mChangedCWD)
{
#if !defined(ANGLE_PLATFORM_ANDROID)
ASSERT(mPreviousCWD.valid());
angle::SetCWD(mPreviousCWD.value().c_str());
#endif // !defined(ANGLE_PLATFORM_ANDROID)
}
if (mChangedICDEnv)
{
if (mPreviousICDEnv.value().empty())
{
angle::UnsetEnvironmentVar(vk::gLoaderICDFilenamesEnv);
}
else
{
angle::SetEnvironmentVar(vk::gLoaderICDFilenamesEnv,
mPreviousICDEnv.value().c_str());
}
}
}
bool canEnableValidationLayers() const { return mEnableValidationLayers; }
vk::ICD getEnabledICD() const { return mICD; }
private:
bool setICDEnvironment(const char *icd)
{
// Override environment variable to use built Mock ICD
// ANGLE_VK_ICD_JSON gets set to the built mock ICD in BUILD.gn
mPreviousICDEnv = angle::GetEnvironmentVar(vk::gLoaderICDFilenamesEnv);
mChangedICDEnv = angle::SetEnvironmentVar(vk::gLoaderICDFilenamesEnv, icd);
if (!mChangedICDEnv)
{
mICD = vk::ICD::Default;
}
return mChangedICDEnv;
}
bool mEnableValidationLayers;
vk::ICD mICD;
bool mChangedCWD;
Optional<std::string> mPreviousCWD;
bool mChangedICDEnv;
Optional<std::string> mPreviousICDEnv;
};
using ICDFilterFunc = std::function<bool(const VkPhysicalDeviceProperties &)>;
ICDFilterFunc GetFilterForICD(vk::ICD preferredICD)
{
switch (preferredICD)
{
case vk::ICD::Mock:
return [](const VkPhysicalDeviceProperties &deviceProperties) {
return ((deviceProperties.vendorID == kMockVendorID) &&
(deviceProperties.deviceID == kMockDeviceID) &&
(strcmp(deviceProperties.deviceName, kMockDeviceName) == 0));
};
case vk::ICD::SwiftShader:
return [](const VkPhysicalDeviceProperties &deviceProperties) {
return ((deviceProperties.vendorID == VENDOR_ID_GOOGLE) &&
(deviceProperties.deviceID == kSwiftShaderDeviceID) &&
(strcmp(deviceProperties.deviceName, kSwiftShaderDeviceName) == 0));
};
default:
return [](const VkPhysicalDeviceProperties &deviceProperties) { return true; };
}
}
void ChoosePhysicalDevice(const std::vector<VkPhysicalDevice> &physicalDevices,
vk::ICD preferredICD,
VkPhysicalDevice *physicalDeviceOut,
VkPhysicalDeviceProperties *physicalDevicePropertiesOut)
{
ASSERT(!physicalDevices.empty());
ICDFilterFunc filter = GetFilterForICD(preferredICD);
for (const VkPhysicalDevice &physicalDevice : physicalDevices)
{
vkGetPhysicalDeviceProperties(physicalDevice, physicalDevicePropertiesOut);
if (filter(*physicalDevicePropertiesOut))
{
*physicalDeviceOut = physicalDevice;
return;
}
}
WARN() << "Preferred device ICD not found. Using default physicalDevice instead.";
// Fall back to first device.
*physicalDeviceOut = physicalDevices[0];
vkGetPhysicalDeviceProperties(*physicalDeviceOut, physicalDevicePropertiesOut);
}
bool ShouldUseValidationLayers(const egl::AttributeMap &attribs)
{
#if defined(ANGLE_ENABLE_VULKAN_VALIDATION_LAYERS_BY_DEFAULT)
return ShouldUseDebugLayers(attribs);
#else
EGLAttrib debugSetting =
attribs.get(EGL_PLATFORM_ANGLE_DEBUG_LAYERS_ENABLED_ANGLE, EGL_DONT_CARE);
return debugSetting == EGL_TRUE;
#endif // defined(ANGLE_ENABLE_VULKAN_VALIDATION_LAYERS_BY_DEFAULT)
}
} // namespace
// RendererVk implementation.
RendererVk::RendererVk()
: mDisplay(nullptr),
mCapsInitialized(false),
mFeaturesInitialized(false),
mInstance(VK_NULL_HANDLE),
mEnableValidationLayers(false),
mEnabledICD(vk::ICD::Default),
mDebugUtilsMessenger(VK_NULL_HANDLE),
mDebugReportCallback(VK_NULL_HANDLE),
mPhysicalDevice(VK_NULL_HANDLE),
mPhysicalDeviceSubgroupProperties{},
mQueue(VK_NULL_HANDLE),
mCurrentQueueFamilyIndex(std::numeric_limits<uint32_t>::max()),
mMaxVertexAttribDivisor(1),
mDevice(VK_NULL_HANDLE),
mLastCompletedQueueSerial(mQueueSerialFactory.generate()),
mCurrentQueueSerial(mQueueSerialFactory.generate()),
mDeviceLost(false),
mPipelineCacheVkUpdateTimeout(kPipelineCacheVkUpdatePeriod),
mPipelineCacheDirty(false),
mPipelineCacheInitialized(false)
{
mPhysicalDeviceSubgroupProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_PROPERTIES;
VkFormatProperties invalid = {0, 0, kInvalidFormatFeatureFlags};
mFormatProperties.fill(invalid);
}
RendererVk::~RendererVk()
{
ASSERT(mSharedGarbage.empty());
}
void RendererVk::onDestroy(vk::Context *context)
{
(void)cleanupGarbage(context, true);
ASSERT(mSharedGarbage.empty());
mFenceRecycler.destroy(mDevice);
mPipelineLayoutCache.destroy(mDevice);
mDescriptorSetLayoutCache.destroy(mDevice);
mPipelineCache.destroy(mDevice);
GlslangRelease();
if (mDevice)
{
vkDestroyDevice(mDevice, nullptr);
mDevice = VK_NULL_HANDLE;
}
if (mDebugUtilsMessenger)
{
ASSERT(mInstance && vkDestroyDebugUtilsMessengerEXT);
vkDestroyDebugUtilsMessengerEXT(mInstance, mDebugUtilsMessenger, nullptr);
ASSERT(mDebugReportCallback == VK_NULL_HANDLE);
}
else if (mDebugReportCallback)
{
ASSERT(mInstance && vkDestroyDebugReportCallbackEXT);
vkDestroyDebugReportCallbackEXT(mInstance, mDebugReportCallback, nullptr);
}
if (mInstance)
{
vkDestroyInstance(mInstance, nullptr);
mInstance = VK_NULL_HANDLE;
}
mMemoryProperties.destroy();
mPhysicalDevice = VK_NULL_HANDLE;
}
void RendererVk::notifyDeviceLost()
{
mLastCompletedQueueSerial = mLastSubmittedQueueSerial;
mDeviceLost = true;
mDisplay->notifyDeviceLost();
}
bool RendererVk::isDeviceLost() const
{
return mDeviceLost;
}
angle::Result RendererVk::initialize(DisplayVk *displayVk,
egl::Display *display,
const char *wsiExtension,
const char *wsiLayer)
{
mDisplay = display;
const egl::AttributeMap &attribs = mDisplay->getAttributeMap();
ScopedVkLoaderEnvironment scopedEnvironment(ShouldUseValidationLayers(attribs),
ChooseICDFromAttribs(attribs));
mEnableValidationLayers = scopedEnvironment.canEnableValidationLayers();
mEnabledICD = scopedEnvironment.getEnabledICD();
// Gather global layer properties.
uint32_t instanceLayerCount = 0;
ANGLE_VK_TRY(displayVk, vkEnumerateInstanceLayerProperties(&instanceLayerCount, nullptr));
std::vector<VkLayerProperties> instanceLayerProps(instanceLayerCount);
if (instanceLayerCount > 0)
{
ANGLE_VK_TRY(displayVk, vkEnumerateInstanceLayerProperties(&instanceLayerCount,
instanceLayerProps.data()));
}
VulkanLayerVector enabledInstanceLayerNames;
if (mEnableValidationLayers)
{
bool layersRequested =
(attribs.get(EGL_PLATFORM_ANGLE_DEBUG_LAYERS_ENABLED_ANGLE, EGL_DONT_CARE) == EGL_TRUE);
mEnableValidationLayers = GetAvailableValidationLayers(instanceLayerProps, layersRequested,
&enabledInstanceLayerNames);
}
if (wsiLayer)
{
enabledInstanceLayerNames.push_back(wsiLayer);
}
// Enumerate instance extensions that are provided by the vulkan
// implementation and implicit layers.
uint32_t instanceExtensionCount = 0;
ANGLE_VK_TRY(displayVk,
vkEnumerateInstanceExtensionProperties(nullptr, &instanceExtensionCount, nullptr));
std::vector<VkExtensionProperties> instanceExtensionProps(instanceExtensionCount);
if (instanceExtensionCount > 0)
{
ANGLE_VK_TRY(displayVk,
vkEnumerateInstanceExtensionProperties(nullptr, &instanceExtensionCount,
instanceExtensionProps.data()));
}
// Enumerate instance extensions that are provided by explicit layers.
for (const char *layerName : enabledInstanceLayerNames)
{
uint32_t previousExtensionCount = static_cast<uint32_t>(instanceExtensionProps.size());
uint32_t instanceLayerExtensionCount = 0;
ANGLE_VK_TRY(displayVk, vkEnumerateInstanceExtensionProperties(
layerName, &instanceLayerExtensionCount, nullptr));
instanceExtensionProps.resize(previousExtensionCount + instanceLayerExtensionCount);
ANGLE_VK_TRY(displayVk, vkEnumerateInstanceExtensionProperties(
layerName, &instanceLayerExtensionCount,
instanceExtensionProps.data() + previousExtensionCount));
}
ExtensionNameList instanceExtensionNames;
if (!instanceExtensionProps.empty())
{
for (const VkExtensionProperties &i : instanceExtensionProps)
{
instanceExtensionNames.push_back(i.extensionName);
}
std::sort(instanceExtensionNames.begin(), instanceExtensionNames.end(), StrLess);
}
ExtensionNameList enabledInstanceExtensions;
enabledInstanceExtensions.push_back(VK_KHR_SURFACE_EXTENSION_NAME);
enabledInstanceExtensions.push_back(wsiExtension);
#if defined(ANGLE_PLATFORM_ANDROID)
// TODO: Enable DebugUtils on Android
// http://anglebug.com/3852
bool enableDebugUtils = false;
#else
bool enableDebugUtils =
mEnableValidationLayers &&
ExtensionFound(VK_EXT_DEBUG_UTILS_EXTENSION_NAME, instanceExtensionNames);
#endif
bool enableDebugReport =
mEnableValidationLayers && !enableDebugUtils &&
ExtensionFound(VK_EXT_DEBUG_REPORT_EXTENSION_NAME, instanceExtensionNames);
if (enableDebugUtils)
{
enabledInstanceExtensions.push_back(VK_EXT_DEBUG_UTILS_EXTENSION_NAME);
}
else if (enableDebugReport)
{
enabledInstanceExtensions.push_back(VK_EXT_DEBUG_REPORT_EXTENSION_NAME);
}
// Verify the required extensions are in the extension names set. Fail if not.
std::sort(enabledInstanceExtensions.begin(), enabledInstanceExtensions.end(), StrLess);
ANGLE_VK_TRY(displayVk,
VerifyExtensionsPresent(instanceExtensionNames, enabledInstanceExtensions));
// Enable VK_KHR_get_physical_device_properties_2 if available.
if (ExtensionFound(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME,
instanceExtensionNames))
{
enabledInstanceExtensions.push_back(VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME);
}
VkApplicationInfo applicationInfo = {};
applicationInfo.sType = VK_STRUCTURE_TYPE_APPLICATION_INFO;
applicationInfo.pApplicationName = "ANGLE";
applicationInfo.applicationVersion = 1;
applicationInfo.pEngineName = "ANGLE";
applicationInfo.engineVersion = 1;
auto enumerateInstanceVersion = reinterpret_cast<PFN_vkEnumerateInstanceVersion>(
vkGetInstanceProcAddr(mInstance, "vkEnumerateInstanceVersion"));
if (!enumerateInstanceVersion)
{
applicationInfo.apiVersion = VK_API_VERSION_1_0;
}
else
{
uint32_t apiVersion = VK_API_VERSION_1_0;
ANGLE_VK_TRY(displayVk, enumerateInstanceVersion(&apiVersion));
if ((VK_VERSION_MAJOR(apiVersion) > 1) || (VK_VERSION_MINOR(apiVersion) >= 1))
{
// This is the highest version of core Vulkan functionality that ANGLE uses.
applicationInfo.apiVersion = kPreferredVulkanAPIVersion;
}
else
{
// Since only 1.0 instance-level functionality is available, this must set to 1.0.
applicationInfo.apiVersion = VK_API_VERSION_1_0;
}
}
VkInstanceCreateInfo instanceInfo = {};
instanceInfo.sType = VK_STRUCTURE_TYPE_INSTANCE_CREATE_INFO;
instanceInfo.flags = 0;
instanceInfo.pApplicationInfo = &applicationInfo;
// Enable requested layers and extensions.
instanceInfo.enabledExtensionCount = static_cast<uint32_t>(enabledInstanceExtensions.size());
instanceInfo.ppEnabledExtensionNames =
enabledInstanceExtensions.empty() ? nullptr : enabledInstanceExtensions.data();
instanceInfo.enabledLayerCount = static_cast<uint32_t>(enabledInstanceLayerNames.size());
instanceInfo.ppEnabledLayerNames = enabledInstanceLayerNames.data();
ANGLE_VK_TRY(displayVk, vkCreateInstance(&instanceInfo, nullptr, &mInstance));
if (enableDebugUtils)
{
// Try to use the newer EXT_debug_utils if it exists.
InitDebugUtilsEXTFunctions(mInstance);
// Create the messenger callback.
VkDebugUtilsMessengerCreateInfoEXT messengerInfo = {};
constexpr VkDebugUtilsMessageSeverityFlagsEXT kSeveritiesToLog =
VK_DEBUG_UTILS_MESSAGE_SEVERITY_ERROR_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_SEVERITY_WARNING_BIT_EXT;
constexpr VkDebugUtilsMessageTypeFlagsEXT kMessagesToLog =
VK_DEBUG_UTILS_MESSAGE_TYPE_GENERAL_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_VALIDATION_BIT_EXT |
VK_DEBUG_UTILS_MESSAGE_TYPE_PERFORMANCE_BIT_EXT;
messengerInfo.sType = VK_STRUCTURE_TYPE_DEBUG_UTILS_MESSENGER_CREATE_INFO_EXT;
messengerInfo.messageSeverity = kSeveritiesToLog;
messengerInfo.messageType = kMessagesToLog;
messengerInfo.pfnUserCallback = &DebugUtilsMessenger;
messengerInfo.pUserData = this;
ANGLE_VK_TRY(displayVk, vkCreateDebugUtilsMessengerEXT(mInstance, &messengerInfo, nullptr,
&mDebugUtilsMessenger));
}
else if (enableDebugReport)
{
// Fallback to EXT_debug_report.
InitDebugReportEXTFunctions(mInstance);
VkDebugReportCallbackCreateInfoEXT debugReportInfo = {};
debugReportInfo.sType = VK_STRUCTURE_TYPE_DEBUG_REPORT_CREATE_INFO_EXT;
debugReportInfo.flags = VK_DEBUG_REPORT_ERROR_BIT_EXT | VK_DEBUG_REPORT_WARNING_BIT_EXT;
debugReportInfo.pfnCallback = &DebugReportCallback;
debugReportInfo.pUserData = this;
ANGLE_VK_TRY(displayVk, vkCreateDebugReportCallbackEXT(mInstance, &debugReportInfo, nullptr,
&mDebugReportCallback));
}
if (std::find(enabledInstanceExtensions.begin(), enabledInstanceExtensions.end(),
VK_KHR_GET_PHYSICAL_DEVICE_PROPERTIES_2_EXTENSION_NAME) !=
enabledInstanceExtensions.end())
{
InitGetPhysicalDeviceProperties2KHRFunctions(mInstance);
ASSERT(vkGetPhysicalDeviceProperties2KHR);
}
uint32_t physicalDeviceCount = 0;
ANGLE_VK_TRY(displayVk, vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount, nullptr));
ANGLE_VK_CHECK(displayVk, physicalDeviceCount > 0, VK_ERROR_INITIALIZATION_FAILED);
// TODO(jmadill): Handle multiple physical devices. For now, use the first device.
std::vector<VkPhysicalDevice> physicalDevices(physicalDeviceCount);
ANGLE_VK_TRY(displayVk, vkEnumeratePhysicalDevices(mInstance, &physicalDeviceCount,
physicalDevices.data()));
ChoosePhysicalDevice(physicalDevices, mEnabledICD, &mPhysicalDevice,
&mPhysicalDeviceProperties);
mGarbageCollectionFlushThreshold =
static_cast<uint32_t>(mPhysicalDeviceProperties.limits.maxMemoryAllocationCount *
kPercentMaxMemoryAllocationCount);
vkGetPhysicalDeviceFeatures(mPhysicalDevice, &mPhysicalDeviceFeatures);
// Ensure we can find a graphics queue family.
uint32_t queueCount = 0;
vkGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueCount, nullptr);
ANGLE_VK_CHECK(displayVk, queueCount > 0, VK_ERROR_INITIALIZATION_FAILED);
mQueueFamilyProperties.resize(queueCount);
vkGetPhysicalDeviceQueueFamilyProperties(mPhysicalDevice, &queueCount,
mQueueFamilyProperties.data());
size_t graphicsQueueFamilyCount = false;
uint32_t firstGraphicsQueueFamily = 0;
constexpr VkQueueFlags kGraphicsAndCompute = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT;
for (uint32_t familyIndex = 0; familyIndex < queueCount; ++familyIndex)
{
const auto &queueInfo = mQueueFamilyProperties[familyIndex];
if ((queueInfo.queueFlags & kGraphicsAndCompute) == kGraphicsAndCompute)
{
ASSERT(queueInfo.queueCount > 0);
graphicsQueueFamilyCount++;
if (firstGraphicsQueueFamily == 0)
{
firstGraphicsQueueFamily = familyIndex;
}
break;
}
}
ANGLE_VK_CHECK(displayVk, graphicsQueueFamilyCount > 0, VK_ERROR_INITIALIZATION_FAILED);
// If only one queue family, go ahead and initialize the device. If there is more than one
// queue, we'll have to wait until we see a WindowSurface to know which supports present.
if (graphicsQueueFamilyCount == 1)
{
ANGLE_TRY(initializeDevice(displayVk, firstGraphicsQueueFamily));
}
// Store the physical device memory properties so we can find the right memory pools.
mMemoryProperties.init(mPhysicalDevice);
GlslangInitialize();
// Initialize the format table.
mFormatTable.initialize(this, &mNativeTextureCaps, &mNativeCaps.compressedTextureFormats);
return angle::Result::Continue;
}
angle::Result RendererVk::initializeDevice(DisplayVk *displayVk, uint32_t queueFamilyIndex)
{
uint32_t deviceLayerCount = 0;
ANGLE_VK_TRY(displayVk,
vkEnumerateDeviceLayerProperties(mPhysicalDevice, &deviceLayerCount, nullptr));
std::vector<VkLayerProperties> deviceLayerProps(deviceLayerCount);
if (deviceLayerCount > 0)
{
ANGLE_VK_TRY(displayVk, vkEnumerateDeviceLayerProperties(mPhysicalDevice, &deviceLayerCount,
deviceLayerProps.data()));
}
VulkanLayerVector enabledDeviceLayerNames;
if (mEnableValidationLayers)
{
mEnableValidationLayers =
GetAvailableValidationLayers(deviceLayerProps, false, &enabledDeviceLayerNames);
}
const char *wsiLayer = displayVk->getWSILayer();
if (wsiLayer)
{
enabledDeviceLayerNames.push_back(wsiLayer);
}
// Enumerate device extensions that are provided by the vulkan
// implementation and implicit layers.
uint32_t deviceExtensionCount = 0;
ANGLE_VK_TRY(displayVk, vkEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr,
&deviceExtensionCount, nullptr));
std::vector<VkExtensionProperties> deviceExtensionProps(deviceExtensionCount);
if (deviceExtensionCount > 0)
{
ANGLE_VK_TRY(displayVk, vkEnumerateDeviceExtensionProperties(mPhysicalDevice, nullptr,
&deviceExtensionCount,
deviceExtensionProps.data()));
}
// Enumerate device extensions that are provided by explicit layers.
for (const char *layerName : enabledDeviceLayerNames)
{
uint32_t previousExtensionCount = static_cast<uint32_t>(deviceExtensionProps.size());
uint32_t deviceLayerExtensionCount = 0;
ANGLE_VK_TRY(displayVk,
vkEnumerateDeviceExtensionProperties(mPhysicalDevice, layerName,
&deviceLayerExtensionCount, nullptr));
deviceExtensionProps.resize(previousExtensionCount + deviceLayerExtensionCount);
ANGLE_VK_TRY(displayVk, vkEnumerateDeviceExtensionProperties(
mPhysicalDevice, layerName, &deviceLayerExtensionCount,
deviceExtensionProps.data() + previousExtensionCount));
}
ExtensionNameList deviceExtensionNames;
if (!deviceExtensionProps.empty())
{
ASSERT(deviceExtensionNames.size() <= deviceExtensionProps.size());
for (const VkExtensionProperties &prop : deviceExtensionProps)
{
deviceExtensionNames.push_back(prop.extensionName);
}
std::sort(deviceExtensionNames.begin(), deviceExtensionNames.end(), StrLess);
}
ExtensionNameList enabledDeviceExtensions;
enabledDeviceExtensions.push_back(VK_KHR_SWAPCHAIN_EXTENSION_NAME);
float zeroPriority = 0.0f;
VkDeviceQueueCreateInfo queueCreateInfo = {};
queueCreateInfo.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queueCreateInfo.flags = 0;
queueCreateInfo.queueFamilyIndex = queueFamilyIndex;
queueCreateInfo.queueCount = 1;
queueCreateInfo.pQueuePriorities = &zeroPriority;
// Setup device initialization struct
VkDeviceCreateInfo createInfo = {};
createInfo.sType = VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO;
createInfo.flags = 0;
createInfo.queueCreateInfoCount = 1;
createInfo.pQueueCreateInfos = &queueCreateInfo;
createInfo.enabledLayerCount = static_cast<uint32_t>(enabledDeviceLayerNames.size());
createInfo.ppEnabledLayerNames = enabledDeviceLayerNames.data();
mLineRasterizationFeatures = {};
mLineRasterizationFeatures.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT;
ASSERT(mLineRasterizationFeatures.bresenhamLines == VK_FALSE);
if (vkGetPhysicalDeviceFeatures2KHR &&
ExtensionFound(VK_EXT_LINE_RASTERIZATION_EXTENSION_NAME, deviceExtensionNames))
{
enabledDeviceExtensions.push_back(VK_EXT_LINE_RASTERIZATION_EXTENSION_NAME);
// Query line rasterization capabilities
VkPhysicalDeviceFeatures2KHR availableFeatures = {};
availableFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
AppendToPNextChain(reinterpret_cast<vk::CommonStructHeader *>(&availableFeatures),
&mLineRasterizationFeatures);
vkGetPhysicalDeviceFeatures2KHR(mPhysicalDevice, &availableFeatures);
AppendToPNextChain(reinterpret_cast<vk::CommonStructHeader *>(&createInfo),
&mLineRasterizationFeatures);
}
mProvokingVertexFeatures = {};
mProvokingVertexFeatures.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT;
ASSERT(mProvokingVertexFeatures.provokingVertexLast == VK_FALSE);
if (vkGetPhysicalDeviceFeatures2KHR &&
ExtensionFound(VK_EXT_PROVOKING_VERTEX_EXTENSION_NAME, deviceExtensionNames))
{
enabledDeviceExtensions.push_back(VK_EXT_PROVOKING_VERTEX_EXTENSION_NAME);
// Query line rasterization capabilities
VkPhysicalDeviceFeatures2KHR availableFeatures = {};
availableFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
AppendToPNextChain(reinterpret_cast<vk::CommonStructHeader *>(&availableFeatures),
&mProvokingVertexFeatures);
vkGetPhysicalDeviceFeatures2KHR(mPhysicalDevice, &availableFeatures);
AppendToPNextChain(reinterpret_cast<vk::CommonStructHeader *>(&createInfo),
&mProvokingVertexFeatures);
}
initFeatures(deviceExtensionNames);
OverrideFeaturesWithDisplayState(&mFeatures, displayVk->getState());
mFeaturesInitialized = true;
// Selectively enable KHR_MAINTENANCE1 to support viewport flipping.
if ((getFeatures().flipViewportY.enabled) &&
(mPhysicalDeviceProperties.apiVersion < VK_MAKE_VERSION(1, 1, 0)))
{
enabledDeviceExtensions.push_back(VK_KHR_MAINTENANCE1_EXTENSION_NAME);
}
if (getFeatures().supportsIncrementalPresent.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME);
}
if (getFeatures().supportsAndroidHardwareBuffer.enabled ||
getFeatures().supportsExternalMemoryFd.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_MEMORY_EXTENSION_NAME);
}
#if defined(ANGLE_PLATFORM_ANDROID)
if (getFeatures().supportsAndroidHardwareBuffer.enabled)
{
enabledDeviceExtensions.push_back(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME);
enabledDeviceExtensions.push_back(
VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME);
InitExternalMemoryHardwareBufferANDROIDFunctions(mInstance);
}
#else
ASSERT(!getFeatures().supportsAndroidHardwareBuffer.enabled);
#endif
if (getFeatures().supportsExternalMemoryFd.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME);
}
if (getFeatures().supportsExternalSemaphoreFd.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_SEMAPHORE_EXTENSION_NAME);
InitExternalSemaphoreFdFunctions(mInstance);
}
if (getFeatures().supportsExternalSemaphoreFd.enabled)
{
enabledDeviceExtensions.push_back(VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME);
}
if (getFeatures().supportsShaderStencilExport.enabled)
{
enabledDeviceExtensions.push_back(VK_EXT_SHADER_STENCIL_EXPORT_EXTENSION_NAME);
}
std::sort(enabledDeviceExtensions.begin(), enabledDeviceExtensions.end(), StrLess);
ANGLE_VK_TRY(displayVk, VerifyExtensionsPresent(deviceExtensionNames, enabledDeviceExtensions));
// Select additional features to be enabled
VkPhysicalDeviceFeatures2KHR enabledFeatures = {};
enabledFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2;
enabledFeatures.features.independentBlend = mPhysicalDeviceFeatures.independentBlend;
enabledFeatures.features.robustBufferAccess = mPhysicalDeviceFeatures.robustBufferAccess;
enabledFeatures.features.samplerAnisotropy = mPhysicalDeviceFeatures.samplerAnisotropy;
enabledFeatures.features.vertexPipelineStoresAndAtomics =
mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics;
enabledFeatures.features.fragmentStoresAndAtomics =
mPhysicalDeviceFeatures.fragmentStoresAndAtomics;
enabledFeatures.features.geometryShader = mPhysicalDeviceFeatures.geometryShader;
if (!vk::CommandBuffer::ExecutesInline())
{
enabledFeatures.features.inheritedQueries = mPhysicalDeviceFeatures.inheritedQueries;
}
VkPhysicalDeviceVertexAttributeDivisorFeaturesEXT divisorFeatures = {};
divisorFeatures.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_FEATURES_EXT;
if (vkGetPhysicalDeviceProperties2KHR &&
ExtensionFound(VK_EXT_VERTEX_ATTRIBUTE_DIVISOR_EXTENSION_NAME, deviceExtensionNames))
{
enabledDeviceExtensions.push_back(VK_EXT_VERTEX_ATTRIBUTE_DIVISOR_EXTENSION_NAME);
divisorFeatures.vertexAttributeInstanceRateDivisor = true;
AppendToPNextChain(reinterpret_cast<vk::CommonStructHeader *>(&enabledFeatures),
&divisorFeatures);
VkPhysicalDeviceVertexAttributeDivisorPropertiesEXT divisorProperties = {};
divisorProperties.sType =
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_VERTEX_ATTRIBUTE_DIVISOR_PROPERTIES_EXT;
VkPhysicalDeviceProperties2 deviceProperties = {};
deviceProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
AppendToPNextChain(reinterpret_cast<vk::CommonStructHeader *>(&deviceProperties),
&divisorProperties);
vkGetPhysicalDeviceProperties2KHR(mPhysicalDevice, &deviceProperties);
// We only store 8 bit divisor in GraphicsPipelineDesc so capping value & we emulate if
// exceeded
mMaxVertexAttribDivisor =
std::min(divisorProperties.maxVertexAttribDivisor,
static_cast<uint32_t>(std::numeric_limits<uint8_t>::max()));
AppendToPNextChain(reinterpret_cast<vk::CommonStructHeader *>(&createInfo),
&enabledFeatures);
}
else
{
// Enable all available features
createInfo.pEnabledFeatures = &enabledFeatures.features;
}
if (vkGetPhysicalDeviceProperties2KHR)
{
VkPhysicalDeviceProperties2 deviceProperties = {};
deviceProperties.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROPERTIES_2;
AppendToPNextChain(reinterpret_cast<vk::CommonStructHeader *>(&deviceProperties),
&mPhysicalDeviceSubgroupProperties);
vkGetPhysicalDeviceProperties2KHR(mPhysicalDevice, &deviceProperties);
}
createInfo.enabledExtensionCount = static_cast<uint32_t>(enabledDeviceExtensions.size());
createInfo.ppEnabledExtensionNames =
enabledDeviceExtensions.empty() ? nullptr : enabledDeviceExtensions.data();
ANGLE_VK_TRY(displayVk, vkCreateDevice(mPhysicalDevice, &createInfo, nullptr, &mDevice));
mCurrentQueueFamilyIndex = queueFamilyIndex;
vkGetDeviceQueue(mDevice, mCurrentQueueFamilyIndex, 0, &mQueue);
// Initialize the vulkan pipeline cache.
bool success = false;
ANGLE_TRY(initPipelineCache(displayVk, &mPipelineCache, &success));
return angle::Result::Continue;
}
angle::Result RendererVk::selectPresentQueueForSurface(DisplayVk *displayVk,
VkSurfaceKHR surface,
uint32_t *presentQueueOut)
{
// We've already initialized a device, and can't re-create it unless it's never been used.
// TODO(jmadill): Handle the re-creation case if necessary.
if (mDevice != VK_NULL_HANDLE)
{
ASSERT(mCurrentQueueFamilyIndex != std::numeric_limits<uint32_t>::max());
// Check if the current device supports present on this surface.
VkBool32 supportsPresent = VK_FALSE;
ANGLE_VK_TRY(displayVk,
vkGetPhysicalDeviceSurfaceSupportKHR(mPhysicalDevice, mCurrentQueueFamilyIndex,
surface, &supportsPresent));
if (supportsPresent == VK_TRUE)
{
*presentQueueOut = mCurrentQueueFamilyIndex;
return angle::Result::Continue;
}
}
// Find a graphics and present queue.
Optional<uint32_t> newPresentQueue;
uint32_t queueCount = static_cast<uint32_t>(mQueueFamilyProperties.size());
constexpr VkQueueFlags kGraphicsAndCompute = VK_QUEUE_GRAPHICS_BIT | VK_QUEUE_COMPUTE_BIT;
for (uint32_t queueIndex = 0; queueIndex < queueCount; ++queueIndex)
{
const auto &queueInfo = mQueueFamilyProperties[queueIndex];
if ((queueInfo.queueFlags & kGraphicsAndCompute) == kGraphicsAndCompute)
{
VkBool32 supportsPresent = VK_FALSE;
ANGLE_VK_TRY(displayVk, vkGetPhysicalDeviceSurfaceSupportKHR(
mPhysicalDevice, queueIndex, surface, &supportsPresent));
if (supportsPresent == VK_TRUE)
{
newPresentQueue = queueIndex;
break;
}
}
}
ANGLE_VK_CHECK(displayVk, newPresentQueue.valid(), VK_ERROR_INITIALIZATION_FAILED);
ANGLE_TRY(initializeDevice(displayVk, newPresentQueue.value()));
*presentQueueOut = newPresentQueue.value();
return angle::Result::Continue;
}
std::string RendererVk::getVendorString() const
{
return GetVendorString(mPhysicalDeviceProperties.vendorID);
}
std::string RendererVk::getRendererDescription() const
{
std::stringstream strstr;
uint32_t apiVersion = mPhysicalDeviceProperties.apiVersion;
strstr << "Vulkan ";
strstr << VK_VERSION_MAJOR(apiVersion) << ".";
strstr << VK_VERSION_MINOR(apiVersion) << ".";
strstr << VK_VERSION_PATCH(apiVersion);
strstr << "(";
// In the case of NVIDIA, deviceName does not necessarily contain "NVIDIA". Add "NVIDIA" so that
// Vulkan end2end tests can be selectively disabled on NVIDIA. TODO(jmadill): should not be
// needed after http://anglebug.com/1874 is fixed and end2end_tests use more sophisticated
// driver detection.
if (mPhysicalDeviceProperties.vendorID == VENDOR_ID_NVIDIA)
{
strstr << GetVendorString(mPhysicalDeviceProperties.vendorID) << " ";
}
strstr << mPhysicalDeviceProperties.deviceName;
strstr << " (" << gl::FmtHex(mPhysicalDeviceProperties.deviceID) << ")";
strstr << ")";
return strstr.str();
}
gl::Version RendererVk::getMaxSupportedESVersion() const
{
// Current highest supported version
gl::Version maxVersion = gl::Version(3, 1);
// Limit to ES3.0 if there are any blockers for 3.1.
// ES3.1 requires at least one atomic counter buffer and four storage buffers in compute.
// Atomic counter buffers are emulated with storage buffers. For simplicity, we always support
// either none or IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFERS atomic counter buffers. So if
// Vulkan doesn't support at least that many storage buffers in compute, we don't support 3.1.
const uint32_t kMinimumStorageBuffersForES31 =
gl::limits::kMinimumComputeStorageBuffers + gl::IMPLEMENTATION_MAX_ATOMIC_COUNTER_BUFFERS;
if (mPhysicalDeviceProperties.limits.maxPerStageDescriptorStorageBuffers <
kMinimumStorageBuffersForES31)
{
maxVersion = std::min(maxVersion, gl::Version(3, 0));
}
// ES3.1 requires at least a maximum offset of at least 2047.
// If the Vulkan implementation can't support that, we cannot support 3.1.
if (mPhysicalDeviceProperties.limits.maxVertexInputAttributeOffset < 2047)
{
maxVersion = std::min(maxVersion, gl::Version(3, 0));
}
// Limit to ES2.0 if there are any blockers for 3.0.
// TODO: http://anglebug.com/3972 Limit to GLES 2.0 if flat shading can't be emulated
// If the command buffer doesn't support queries, we can't support ES3.
if (!vk::CommandBuffer::SupportsQueries(mPhysicalDeviceFeatures))
{
maxVersion = std::max(maxVersion, gl::Version(2, 0));
}
// If independentBlend is not supported, we can't have a mix of has-alpha and emulated-alpha
// render targets in a framebuffer. We also cannot perform masked clears of multiple render
// targets.
if (!mPhysicalDeviceFeatures.independentBlend)
{
maxVersion = std::max(maxVersion, gl::Version(2, 0));
}
// If vertexPipelineStoresAndAtomics is not supported, we can't currently support transform
// feedback. TODO(syoussefi): this should be conditioned to the extension not being present as
// well, when that code path is implemented. http://anglebug.com/3206
if (!mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics)
{
maxVersion = std::max(maxVersion, gl::Version(2, 0));
}
// Limit to GLES 2.0 if maxPerStageDescriptorUniformBuffers is too low.
// Table 6.31 MAX_VERTEX_UNIFORM_BLOCKS minimum value = 12
// Table 6.32 MAX_FRAGMENT_UNIFORM_BLOCKS minimum value = 12
// NOTE: We reserve some uniform buffers for emulation, so use the mNativeCaps which takes this
// into account, rather than the physical device maxPerStageDescriptorUniformBuffers limits.
for (gl::ShaderType shaderType : gl::AllShaderTypes())
{
if (mNativeCaps.maxShaderUniformBlocks[shaderType] <
gl::limits::kMinimumShaderUniformBlocks)
{
maxVersion = std::max(maxVersion, gl::Version(2, 0));
}
}
// Limit to GLES 2.0 if maxVertexOutputComponents is too low.
// Table 6.31 MAX VERTEX OUTPUT COMPONENTS minimum value = 64
// NOTE: We reserve some vertex output components for emulation, so use the mNativeCaps which
// takes this into account, rather than the physical device maxVertexOutputComponents limits.
if (mNativeCaps.maxVertexOutputComponents < gl::limits::kMinimumVertexOutputComponents)
{
maxVersion = std::max(maxVersion, gl::Version(2, 0));
}
return maxVersion;
}
gl::Version RendererVk::getMaxConformantESVersion() const
{
return std::min(getMaxSupportedESVersion(), gl::Version(2, 0));
}
void RendererVk::initFeatures(const ExtensionNameList &deviceExtensionNames)
{
bool isAMD = IsAMD(mPhysicalDeviceProperties.vendorID);
bool isIntel = IsIntel(mPhysicalDeviceProperties.vendorID);
bool isNvidia = IsNvidia(mPhysicalDeviceProperties.vendorID);
bool isQualcomm = IsQualcomm(mPhysicalDeviceProperties.vendorID);
if (mLineRasterizationFeatures.bresenhamLines == VK_TRUE)
{
ASSERT(mLineRasterizationFeatures.sType ==
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_LINE_RASTERIZATION_FEATURES_EXT);
ANGLE_FEATURE_CONDITION((&mFeatures), bresenhamLineRasterization, true);
}
else
{
// Use OpenGL line rasterization rules if extension not available by default.
// TODO(jmadill): Fix Android support. http://anglebug.com/2830
ANGLE_FEATURE_CONDITION((&mFeatures), basicGLLineRasterization, !IsAndroid());
}
if (mProvokingVertexFeatures.provokingVertexLast == VK_TRUE)
{
ASSERT(mProvokingVertexFeatures.sType ==
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROVOKING_VERTEX_FEATURES_EXT);
ANGLE_FEATURE_CONDITION((&mFeatures), provokingVertex, true);
}
// TODO(lucferron): Currently disabled on Intel only since many tests are failing and need
// investigation. http://anglebug.com/2728
ANGLE_FEATURE_CONDITION(
(&mFeatures), flipViewportY,
!IsIntel(mPhysicalDeviceProperties.vendorID) &&
(mPhysicalDeviceProperties.apiVersion >= VK_MAKE_VERSION(1, 1, 0)) ||
ExtensionFound(VK_KHR_MAINTENANCE1_EXTENSION_NAME, deviceExtensionNames));
// http://anglebug.com/2838
ANGLE_FEATURE_CONDITION((&mFeatures), extraCopyBufferRegion, IsWindows() && isIntel);
// http://anglebug.com/3055
ANGLE_FEATURE_CONDITION((&mFeatures), forceCPUPathForCubeMapCopy, IsWindows() && isIntel);
// Work around incorrect NVIDIA point size range clamping.
// TODO(jmadill): Narrow driver range once fixed. http://anglebug.com/2970
ANGLE_FEATURE_CONDITION((&mFeatures), clampPointSize, isNvidia);
// Work around ineffective compute-graphics barriers on Nexus 5X.
// TODO(syoussefi): Figure out which other vendors and driver versions are affected.
// http://anglebug.com/3019
ANGLE_FEATURE_CONDITION((&mFeatures), flushAfterVertexConversion,
IsAndroid() && IsNexus5X(mPhysicalDeviceProperties.vendorID,
mPhysicalDeviceProperties.deviceID));
ANGLE_FEATURE_CONDITION(
(&mFeatures), supportsIncrementalPresent,
ExtensionFound(VK_KHR_INCREMENTAL_PRESENT_EXTENSION_NAME, deviceExtensionNames));
#if defined(ANGLE_PLATFORM_ANDROID)
ANGLE_FEATURE_CONDITION(
(&mFeatures), supportsAndroidHardwareBuffer,
IsAndroid() &&
ExtensionFound(VK_ANDROID_EXTERNAL_MEMORY_ANDROID_HARDWARE_BUFFER_EXTENSION_NAME,
deviceExtensionNames) &&
ExtensionFound(VK_EXT_QUEUE_FAMILY_FOREIGN_EXTENSION_NAME, deviceExtensionNames));
#endif
ANGLE_FEATURE_CONDITION(
(&mFeatures), supportsExternalMemoryFd,
ExtensionFound(VK_KHR_EXTERNAL_MEMORY_FD_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
(&mFeatures), supportsExternalSemaphoreFd,
ExtensionFound(VK_KHR_EXTERNAL_SEMAPHORE_FD_EXTENSION_NAME, deviceExtensionNames));
ANGLE_FEATURE_CONDITION(
(&mFeatures), supportsShaderStencilExport,
ExtensionFound(VK_EXT_SHADER_STENCIL_EXPORT_EXTENSION_NAME, deviceExtensionNames));
// TODO(syoussefi): when the code path using the extension is implemented, this should be
// conditioned to the extension not being present as well. http://anglebug.com/3206
ANGLE_FEATURE_CONDITION((&mFeatures), emulateTransformFeedback,
mPhysicalDeviceFeatures.vertexPipelineStoresAndAtomics == VK_TRUE);
ANGLE_FEATURE_CONDITION((&mFeatures), disableFifoPresentMode, IsLinux() && isIntel);
ANGLE_FEATURE_CONDITION((&mFeatures), restartRenderPassAfterLoadOpClear,
IsAndroid() && isQualcomm && vk::CommandBuffer::ExecutesInline());
ANGLE_FEATURE_CONDITION((&mFeatures), bindEmptyForUnusedDescriptorSets,
IsAndroid() && isQualcomm);
ANGLE_FEATURE_CONDITION((&mFeatures), forceOldRewriteStructSamplers, IsAndroid());
ANGLE_FEATURE_CONDITION((&mFeatures), perFrameWindowSizeQuery,
isIntel || (IsWindows() && isAMD));
// Disabled on AMD/windows due to buggy behavior.
ANGLE_FEATURE_CONDITION((&mFeatures), disallowSeamfulCubeMapEmulation, IsWindows() && isAMD);
ANGLE_FEATURE_CONDITION((&mFeatures), forceD16TexFilter, IsAndroid() && isQualcomm);
ANGLE_FEATURE_CONDITION((&mFeatures), disableFlippingBlitWithCommand,
IsAndroid() && isQualcomm);
ANGLE_FEATURE_CONDITION(
(&mFeatures), transientCommandBuffer,
IsPixel2(mPhysicalDeviceProperties.vendorID, mPhysicalDeviceProperties.deviceID) ||
IsPixel1XL(mPhysicalDeviceProperties.vendorID, mPhysicalDeviceProperties.deviceID));
angle::PlatformMethods *platform = ANGLEPlatformCurrent();
platform->overrideFeaturesVk(platform, &mFeatures);
}
void RendererVk::initPipelineCacheVkKey()
{
std::ostringstream hashStream("ANGLE Pipeline Cache: ", std::ios_base::ate);
// Add the pipeline cache UUID to make sure the blob cache always gives a compatible pipeline
// cache. It's not particularly necessary to write it as a hex number as done here, so long as
// there is no '\0' in the result.
for (const uint32_t c : mPhysicalDeviceProperties.pipelineCacheUUID)
{
hashStream << std::hex << c;
}
// Add the vendor and device id too for good measure.
hashStream << std::hex << mPhysicalDeviceProperties.vendorID;
hashStream << std::hex << mPhysicalDeviceProperties.deviceID;
const std::string &hashString = hashStream.str();
angle::base::SHA1HashBytes(reinterpret_cast<const unsigned char *>(hashString.c_str()),
hashString.length(), mPipelineCacheVkBlobKey.data());
}
angle::Result RendererVk::initPipelineCache(DisplayVk *display,
vk::PipelineCache *pipelineCache,
bool *success)
{
initPipelineCacheVkKey();
egl::BlobCache::Value initialData;
*success = display->getBlobCache()->get(display->getScratchBuffer(), mPipelineCacheVkBlobKey,
&initialData);
VkPipelineCacheCreateInfo pipelineCacheCreateInfo = {};
pipelineCacheCreateInfo.sType = VK_STRUCTURE_TYPE_PIPELINE_CACHE_CREATE_INFO;
pipelineCacheCreateInfo.flags = 0;
pipelineCacheCreateInfo.initialDataSize = *success ? initialData.size() : 0;
pipelineCacheCreateInfo.pInitialData = *success ? initialData.data() : nullptr;
ANGLE_VK_TRY(display, pipelineCache->init(mDevice, pipelineCacheCreateInfo));
return angle::Result::Continue;
}
angle::Result RendererVk::getPipelineCache(vk::PipelineCache **pipelineCache)
{
if (mPipelineCacheInitialized)
{
*pipelineCache = &mPipelineCache;
return angle::Result::Continue;
}
// We should now recreate the pipeline cache with the blob cache pipeline data.
vk::PipelineCache pCache;
bool success = false;
ANGLE_TRY(initPipelineCache(vk::GetImpl(mDisplay), &pCache, &success));
if (success)
{
// Merge the newly created pipeline cache into the existing one.
mPipelineCache.merge(mDevice, mPipelineCache.getHandle(), 1, pCache.ptr());
}
mPipelineCacheInitialized = true;
pCache.destroy(mDevice);
*pipelineCache = &mPipelineCache;
return angle::Result::Continue;
}
const gl::Caps &RendererVk::getNativeCaps() const
{
ensureCapsInitialized();
return mNativeCaps;
}
const gl::TextureCapsMap &RendererVk::getNativeTextureCaps() const
{
ensureCapsInitialized();
return mNativeTextureCaps;
}
const gl::Extensions &RendererVk::getNativeExtensions() const
{
ensureCapsInitialized();
return mNativeExtensions;
}
const gl::Limitations &RendererVk::getNativeLimitations() const
{
ensureCapsInitialized();
return mNativeLimitations;
}
angle::Result RendererVk::getDescriptorSetLayout(
vk::Context *context,
const vk::DescriptorSetLayoutDesc &desc,
vk::BindingPointer<vk::DescriptorSetLayout> *descriptorSetLayoutOut)
{
std::lock_guard<decltype(mDescriptorSetLayoutCacheMutex)> lock(mDescriptorSetLayoutCacheMutex);
return mDescriptorSetLayoutCache.getDescriptorSetLayout(context, desc, descriptorSetLayoutOut);
}
angle::Result RendererVk::getPipelineLayout(
vk::Context *context,
const vk::PipelineLayoutDesc &desc,
const vk::DescriptorSetLayoutPointerArray &descriptorSetLayouts,
vk::BindingPointer<vk::PipelineLayout> *pipelineLayoutOut)
{
std::lock_guard<decltype(mPipelineLayoutCacheMutex)> lock(mPipelineLayoutCacheMutex);
return mPipelineLayoutCache.getPipelineLayout(context, desc, descriptorSetLayouts,
pipelineLayoutOut);
}
angle::Result RendererVk::getPipelineCacheSize(DisplayVk *displayVk, size_t *pipelineCacheSizeOut)
{
VkResult result = mPipelineCache.getCacheData(mDevice, pipelineCacheSizeOut, nullptr);
ANGLE_VK_TRY(displayVk, result);
return angle::Result::Continue;
}
angle::Result RendererVk::syncPipelineCacheVk(DisplayVk *displayVk)
{
// TODO: Synchronize access to the pipeline/blob caches?
ASSERT(mPipelineCache.valid());
if (--mPipelineCacheVkUpdateTimeout > 0)
{
return angle::Result::Continue;
}
if (!mPipelineCacheDirty)
{
mPipelineCacheVkUpdateTimeout = kPipelineCacheVkUpdatePeriod;
return angle::Result::Continue;
}
mPipelineCacheVkUpdateTimeout = kPipelineCacheVkUpdatePeriod;
size_t pipelineCacheSize = 0;
ANGLE_TRY(getPipelineCacheSize(displayVk, &pipelineCacheSize));
// Make sure we will receive enough data to hold the pipeline cache header
// Table 7. Layout for pipeline cache header version VK_PIPELINE_CACHE_HEADER_VERSION_ONE
const size_t kPipelineCacheHeaderSize = 16 + VK_UUID_SIZE;
if (pipelineCacheSize < kPipelineCacheHeaderSize)
{
// No pipeline cache data to read, so return
return angle::Result::Continue;
}
angle::MemoryBuffer *pipelineCacheData = nullptr;
ANGLE_VK_CHECK_ALLOC(displayVk,
displayVk->getScratchBuffer(pipelineCacheSize, &pipelineCacheData));
size_t oldPipelineCacheSize = pipelineCacheSize;
VkResult result =
mPipelineCache.getCacheData(mDevice, &pipelineCacheSize, pipelineCacheData->data());
// We don't need all of the cache data, so just make sure we at least got the header
// Vulkan Spec 9.6. Pipeline Cache
// https://www.khronos.org/registry/vulkan/specs/1.1-extensions/html/chap9.html#pipelines-cache
// If pDataSize is less than what is necessary to store this header, nothing will be written to
// pData and zero will be written to pDataSize.
// Any data written to pData is valid and can be provided as the pInitialData member of the
// VkPipelineCacheCreateInfo structure passed to vkCreatePipelineCache.
if (ANGLE_UNLIKELY(pipelineCacheSize < kPipelineCacheHeaderSize))
{
WARN() << "Not enough pipeline cache data read.";
return angle::Result::Continue;
}
else if (ANGLE_UNLIKELY(result == VK_INCOMPLETE))
{
WARN() << "Received VK_INCOMPLETE: Old: " << oldPipelineCacheSize
<< ", New: " << pipelineCacheSize;
}
else
{
ANGLE_VK_TRY(displayVk, result);
}
// If vkGetPipelineCacheData ends up writing fewer bytes than requested, zero out the rest of
// the buffer to avoid leaking garbage memory.
ASSERT(pipelineCacheSize <= pipelineCacheData->size());
if (pipelineCacheSize < pipelineCacheData->size())
{
memset(pipelineCacheData->data() + pipelineCacheSize, 0,
pipelineCacheData->size() - pipelineCacheSize);
}
displayVk->getBlobCache()->putApplication(mPipelineCacheVkBlobKey, *pipelineCacheData);
mPipelineCacheDirty = false;
return angle::Result::Continue;
}
Serial RendererVk::issueShaderSerial()
{
return mShaderSerialFactory.generate();
}
// These functions look at the mandatory format for support, and fallback to querying the device (if
// necessary) to test the availability of the bits.
bool RendererVk::hasLinearImageFormatFeatureBits(VkFormat format,
const VkFormatFeatureFlags featureBits)
{
return hasFormatFeatureBits<&VkFormatProperties::linearTilingFeatures>(format, featureBits);
}
VkFormatFeatureFlags RendererVk::getImageFormatFeatureBits(VkFormat format,
const VkFormatFeatureFlags featureBits)
{
return getFormatFeatureBits<&VkFormatProperties::optimalTilingFeatures>(format, featureBits);
}
bool RendererVk::hasImageFormatFeatureBits(VkFormat format, const VkFormatFeatureFlags featureBits)
{
return hasFormatFeatureBits<&VkFormatProperties::optimalTilingFeatures>(format, featureBits);
}
bool RendererVk::hasBufferFormatFeatureBits(VkFormat format, const VkFormatFeatureFlags featureBits)
{
return hasFormatFeatureBits<&VkFormatProperties::bufferFeatures>(format, featureBits);
}
angle::Result RendererVk::queueSubmit(vk::Context *context,
const VkSubmitInfo &submitInfo,
const vk::Fence &fence,
Serial *serialOut)
{
{
std::lock_guard<decltype(mQueueMutex)> lock(mQueueMutex);
ANGLE_VK_TRY(context, vkQueueSubmit(mQueue, 1, &submitInfo, fence.getHandle()));
}
ANGLE_TRY(cleanupGarbage(context, false));
*serialOut = mCurrentQueueSerial;
mLastSubmittedQueueSerial = mCurrentQueueSerial;
mCurrentQueueSerial = mQueueSerialFactory.generate();
return angle::Result::Continue;
}
angle::Result RendererVk::queueWaitIdle(vk::Context *context)
{
{
std::lock_guard<decltype(mQueueMutex)> lock(mQueueMutex);
ANGLE_VK_TRY(context, vkQueueWaitIdle(mQueue));
}
ANGLE_TRY(cleanupGarbage(context, false));
return angle::Result::Continue;
}
VkResult RendererVk::queuePresent(const VkPresentInfoKHR &presentInfo)
{
ANGLE_TRACE_EVENT0("gpu.angle", "RendererVk::queuePresent");
std::lock_guard<decltype(mQueueMutex)> lock(mQueueMutex);
{
ANGLE_TRACE_EVENT0("gpu.angle", "vkQueuePresentKHR");
return vkQueuePresentKHR(mQueue, &presentInfo);
}
}
angle::Result RendererVk::newSharedFence(vk::Context *context,
vk::Shared<vk::Fence> *sharedFenceOut)
{
vk::Fence fence;
if (mFenceRecycler.empty())
{
VkFenceCreateInfo fenceCreateInfo = {};
fenceCreateInfo.sType = VK_STRUCTURE_TYPE_FENCE_CREATE_INFO;
fenceCreateInfo.flags = 0;
ANGLE_VK_TRY(context, fence.init(mDevice, fenceCreateInfo));
}
else
{
mFenceRecycler.fetch(&fence);
ANGLE_VK_TRY(context, fence.reset(mDevice));
}
sharedFenceOut->assign(mDevice, std::move(fence));
return angle::Result::Continue;
}
template <VkFormatFeatureFlags VkFormatProperties::*features>
VkFormatFeatureFlags RendererVk::getFormatFeatureBits(VkFormat format,
const VkFormatFeatureFlags featureBits)
{
ASSERT(static_cast<uint32_t>(format) < vk::kNumVkFormats);
VkFormatProperties &deviceProperties = mFormatProperties[format];
if (deviceProperties.bufferFeatures == kInvalidFormatFeatureFlags)
{
// If we don't have the actual device features, see if the requested features are mandatory.
// If so, there's no need to query the device.
const VkFormatProperties &mandatoryProperties = vk::GetMandatoryFormatSupport(format);
if (IsMaskFlagSet(mandatoryProperties.*features, featureBits))
{
return featureBits;
}
// Otherwise query the format features and cache it.
vkGetPhysicalDeviceFormatProperties(mPhysicalDevice, format, &deviceProperties);
// Workaround for some Android devices that don't indicate filtering
// support on D16_UNORM and they should.
if (mFeatures.forceD16TexFilter.enabled && format == VK_FORMAT_D16_UNORM)
{
deviceProperties.*features |= VK_FORMAT_FEATURE_SAMPLED_IMAGE_FILTER_LINEAR_BIT;
}
}
return deviceProperties.*features & featureBits;
}
template <VkFormatFeatureFlags VkFormatProperties::*features>
bool RendererVk::hasFormatFeatureBits(VkFormat format, const VkFormatFeatureFlags featureBits)
{
return IsMaskFlagSet(getFormatFeatureBits<features>(format, featureBits), featureBits);
}
angle::Result RendererVk::cleanupGarbage(vk::Context *context, bool block)
{
std::lock_guard<decltype(mGarbageMutex)> lock(mGarbageMutex);
for (auto garbageIter = mSharedGarbage.begin(); garbageIter != mSharedGarbage.end();)
{
// Possibly 'counter' should be always zero when we add the object to garbage.
vk::SharedGarbage &garbage = *garbageIter;
if (garbage.destroyIfComplete(mDevice, mLastCompletedQueueSerial))
{
garbageIter = mSharedGarbage.erase(garbageIter);
}
else
{
garbageIter++;
}
}
return angle::Result::Continue;
}
void RendererVk::onNewValidationMessage(const std::string &message)
{
mLastValidationMessage = message;
++mValidationMessageCount;
}
std::string RendererVk::getAndClearLastValidationMessage(uint32_t *countSinceLastClear)
{
*countSinceLastClear = mValidationMessageCount;
mValidationMessageCount = 0;
return std::move(mLastValidationMessage);
}
uint64_t RendererVk::getMaxFenceWaitTimeNs() const
{
constexpr uint64_t kMaxFenceWaitTimeNs = 120'000'000'000llu;
return kMaxFenceWaitTimeNs;
}
void RendererVk::onCompletedSerial(Serial serial)
{
if (serial > mLastCompletedQueueSerial)
{
mLastCompletedQueueSerial = serial;
}
}
} // namespace rx