blob: bc4176fdebd23956830b06e2a8dc7908730df997 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <stdint.h>
#include <vector>
#include "base/bind.h"
#include "base/bind_helpers.h"
#include "base/compiler_specific.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/memory/ref_counted.h"
#include "base/message_loop/message_loop.h"
#include "base/message_loop/message_loop_test.h"
#include "base/pending_task.h"
#include "base/posix/eintr_wrapper.h"
#include "base/run_loop.h"
#include "base/synchronization/waitable_event.h"
#include "base/test/test_simple_task_runner.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread.h"
#include "base/threading/thread_task_runner_handle.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(OS_WIN)
#include "base/message_loop/message_pump_win.h"
#include "base/process/memory.h"
#include "base/strings/string16.h"
#include "base/win/current_module.h"
#include "base/win/scoped_handle.h"
#endif
namespace base {
// TODO(darin): Platform-specific MessageLoop tests should be grouped together
// to avoid chopping this file up with so many #ifdefs.
namespace {
std::unique_ptr<MessagePump> TypeDefaultMessagePumpFactory() {
return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_DEFAULT);
}
std::unique_ptr<MessagePump> TypeIOMessagePumpFactory() {
return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_IO);
}
std::unique_ptr<MessagePump> TypeUIMessagePumpFactory() {
return MessageLoop::CreateMessagePumpForType(MessageLoop::TYPE_UI);
}
class Foo : public RefCounted<Foo> {
public:
Foo() : test_count_(0) {
}
void Test1ConstRef(const std::string& a) {
++test_count_;
result_.append(a);
}
int test_count() const { return test_count_; }
const std::string& result() const { return result_; }
private:
friend class RefCounted<Foo>;
~Foo() {}
int test_count_;
std::string result_;
};
#if defined(OS_WIN)
// This function runs slowly to simulate a large amount of work being done.
static void SlowFunc(TimeDelta pause, int* quit_counter) {
PlatformThread::Sleep(pause);
if (--(*quit_counter) == 0)
MessageLoop::current()->QuitWhenIdle();
}
// This function records the time when Run was called in a Time object, which is
// useful for building a variety of MessageLoop tests.
static void RecordRunTimeFunc(Time* run_time, int* quit_counter) {
*run_time = Time::Now();
// Cause our Run function to take some time to execute. As a result we can
// count on subsequent RecordRunTimeFunc()s running at a future time,
// without worry about the resolution of our system clock being an issue.
SlowFunc(TimeDelta::FromMilliseconds(10), quit_counter);
}
void SubPumpFunc() {
MessageLoop::current()->SetNestableTasksAllowed(true);
MSG msg;
while (GetMessage(&msg, NULL, 0, 0)) {
TranslateMessage(&msg);
DispatchMessage(&msg);
}
MessageLoop::current()->QuitWhenIdle();
}
void RunTest_PostDelayedTask_SharedTimer_SubPump() {
MessageLoop loop(MessageLoop::TYPE_UI);
// Test that the interval of the timer, used to run the next delayed task, is
// set to a value corresponding to when the next delayed task should run.
// By setting num_tasks to 1, we ensure that the first task to run causes the
// run loop to exit.
int num_tasks = 1;
Time run_time;
loop.PostTask(FROM_HERE, Bind(&SubPumpFunc));
// This very delayed task should never run.
loop.PostDelayedTask(
FROM_HERE,
Bind(&RecordRunTimeFunc, &run_time, &num_tasks),
TimeDelta::FromSeconds(1000));
// This slightly delayed task should run from within SubPumpFunc.
loop.PostDelayedTask(
FROM_HERE,
Bind(&PostQuitMessage, 0),
TimeDelta::FromMilliseconds(10));
Time start_time = Time::Now();
loop.Run();
EXPECT_EQ(1, num_tasks);
// Ensure that we ran in far less time than the slower timer.
TimeDelta total_time = Time::Now() - start_time;
EXPECT_GT(5000, total_time.InMilliseconds());
// In case both timers somehow run at nearly the same time, sleep a little
// and then run all pending to force them both to have run. This is just
// encouraging flakiness if there is any.
PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
RunLoop().RunUntilIdle();
EXPECT_TRUE(run_time.is_null());
}
const wchar_t kMessageBoxTitle[] = L"MessageLoop Unit Test";
enum TaskType {
MESSAGEBOX,
ENDDIALOG,
RECURSIVE,
TIMEDMESSAGELOOP,
QUITMESSAGELOOP,
ORDERED,
PUMPS,
SLEEP,
RUNS,
};
// Saves the order in which the tasks executed.
struct TaskItem {
TaskItem(TaskType t, int c, bool s)
: type(t),
cookie(c),
start(s) {
}
TaskType type;
int cookie;
bool start;
bool operator == (const TaskItem& other) const {
return type == other.type && cookie == other.cookie && start == other.start;
}
};
std::ostream& operator <<(std::ostream& os, TaskType type) {
switch (type) {
case MESSAGEBOX: os << "MESSAGEBOX"; break;
case ENDDIALOG: os << "ENDDIALOG"; break;
case RECURSIVE: os << "RECURSIVE"; break;
case TIMEDMESSAGELOOP: os << "TIMEDMESSAGELOOP"; break;
case QUITMESSAGELOOP: os << "QUITMESSAGELOOP"; break;
case ORDERED: os << "ORDERED"; break;
case PUMPS: os << "PUMPS"; break;
case SLEEP: os << "SLEEP"; break;
default:
NOTREACHED();
os << "Unknown TaskType";
break;
}
return os;
}
std::ostream& operator <<(std::ostream& os, const TaskItem& item) {
if (item.start)
return os << item.type << " " << item.cookie << " starts";
else
return os << item.type << " " << item.cookie << " ends";
}
class TaskList {
public:
void RecordStart(TaskType type, int cookie) {
TaskItem item(type, cookie, true);
DVLOG(1) << item;
task_list_.push_back(item);
}
void RecordEnd(TaskType type, int cookie) {
TaskItem item(type, cookie, false);
DVLOG(1) << item;
task_list_.push_back(item);
}
size_t Size() {
return task_list_.size();
}
TaskItem Get(int n) {
return task_list_[n];
}
private:
std::vector<TaskItem> task_list_;
};
// MessageLoop implicitly start a "modal message loop". Modal dialog boxes,
// common controls (like OpenFile) and StartDoc printing function can cause
// implicit message loops.
void MessageBoxFunc(TaskList* order, int cookie, bool is_reentrant) {
order->RecordStart(MESSAGEBOX, cookie);
if (is_reentrant)
MessageLoop::current()->SetNestableTasksAllowed(true);
MessageBox(NULL, L"Please wait...", kMessageBoxTitle, MB_OK);
order->RecordEnd(MESSAGEBOX, cookie);
}
// Will end the MessageBox.
void EndDialogFunc(TaskList* order, int cookie) {
order->RecordStart(ENDDIALOG, cookie);
HWND window = GetActiveWindow();
if (window != NULL) {
EXPECT_NE(EndDialog(window, IDCONTINUE), 0);
// Cheap way to signal that the window wasn't found if RunEnd() isn't
// called.
order->RecordEnd(ENDDIALOG, cookie);
}
}
void RecursiveFunc(TaskList* order, int cookie, int depth,
bool is_reentrant) {
order->RecordStart(RECURSIVE, cookie);
if (depth > 0) {
if (is_reentrant)
MessageLoop::current()->SetNestableTasksAllowed(true);
MessageLoop::current()->PostTask(
FROM_HERE,
Bind(&RecursiveFunc, order, cookie, depth - 1, is_reentrant));
}
order->RecordEnd(RECURSIVE, cookie);
}
void QuitFunc(TaskList* order, int cookie) {
order->RecordStart(QUITMESSAGELOOP, cookie);
MessageLoop::current()->QuitWhenIdle();
order->RecordEnd(QUITMESSAGELOOP, cookie);
}
void RecursiveFuncWin(MessageLoop* target,
HANDLE event,
bool expect_window,
TaskList* order,
bool is_reentrant) {
target->PostTask(FROM_HERE,
Bind(&RecursiveFunc, order, 1, 2, is_reentrant));
target->PostTask(FROM_HERE,
Bind(&MessageBoxFunc, order, 2, is_reentrant));
target->PostTask(FROM_HERE,
Bind(&RecursiveFunc, order, 3, 2, is_reentrant));
// The trick here is that for recursive task processing, this task will be
// ran _inside_ the MessageBox message loop, dismissing the MessageBox
// without a chance.
// For non-recursive task processing, this will be executed _after_ the
// MessageBox will have been dismissed by the code below, where
// expect_window_ is true.
target->PostTask(FROM_HERE,
Bind(&EndDialogFunc, order, 4));
target->PostTask(FROM_HERE,
Bind(&QuitFunc, order, 5));
// Enforce that every tasks are sent before starting to run the main thread
// message loop.
ASSERT_TRUE(SetEvent(event));
// Poll for the MessageBox. Don't do this at home! At the speed we do it,
// you will never realize one MessageBox was shown.
for (; expect_window;) {
HWND window = FindWindow(L"#32770", kMessageBoxTitle);
if (window) {
// Dismiss it.
for (;;) {
HWND button = FindWindowEx(window, NULL, L"Button", NULL);
if (button != NULL) {
EXPECT_EQ(0, SendMessage(button, WM_LBUTTONDOWN, 0, 0));
EXPECT_EQ(0, SendMessage(button, WM_LBUTTONUP, 0, 0));
break;
}
}
break;
}
}
}
// TODO(darin): These tests need to be ported since they test critical
// message loop functionality.
// A side effect of this test is the generation a beep. Sorry.
void RunTest_RecursiveDenial2(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
Thread worker("RecursiveDenial2_worker");
Thread::Options options;
options.message_loop_type = message_loop_type;
ASSERT_EQ(true, worker.StartWithOptions(options));
TaskList order;
win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
worker.message_loop()->PostTask(FROM_HERE,
Bind(&RecursiveFuncWin,
MessageLoop::current(),
event.Get(),
true,
&order,
false));
// Let the other thread execute.
WaitForSingleObject(event.Get(), INFINITE);
MessageLoop::current()->Run();
ASSERT_EQ(17u, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
EXPECT_EQ(order.Get(3), TaskItem(MESSAGEBOX, 2, false));
EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(5), TaskItem(RECURSIVE, 3, false));
// When EndDialogFunc is processed, the window is already dismissed, hence no
// "end" entry.
EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, true));
EXPECT_EQ(order.Get(7), TaskItem(QUITMESSAGELOOP, 5, true));
EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, false));
EXPECT_EQ(order.Get(9), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, false));
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, false));
}
// A side effect of this test is the generation a beep. Sorry. This test also
// needs to process windows messages on the current thread.
void RunTest_RecursiveSupport2(MessageLoop::Type message_loop_type) {
MessageLoop loop(message_loop_type);
Thread worker("RecursiveSupport2_worker");
Thread::Options options;
options.message_loop_type = message_loop_type;
ASSERT_EQ(true, worker.StartWithOptions(options));
TaskList order;
win::ScopedHandle event(CreateEvent(NULL, FALSE, FALSE, NULL));
worker.message_loop()->PostTask(FROM_HERE,
Bind(&RecursiveFuncWin,
MessageLoop::current(),
event.Get(),
false,
&order,
true));
// Let the other thread execute.
WaitForSingleObject(event.Get(), INFINITE);
MessageLoop::current()->Run();
ASSERT_EQ(18u, order.Size());
EXPECT_EQ(order.Get(0), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(1), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(2), TaskItem(MESSAGEBOX, 2, true));
// Note that this executes in the MessageBox modal loop.
EXPECT_EQ(order.Get(3), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(4), TaskItem(RECURSIVE, 3, false));
EXPECT_EQ(order.Get(5), TaskItem(ENDDIALOG, 4, true));
EXPECT_EQ(order.Get(6), TaskItem(ENDDIALOG, 4, false));
EXPECT_EQ(order.Get(7), TaskItem(MESSAGEBOX, 2, false));
/* The order can subtly change here. The reason is that when RecursiveFunc(1)
is called in the main thread, if it is faster than getting to the
PostTask(FROM_HERE, Bind(&QuitFunc) execution, the order of task
execution can change. We don't care anyway that the order isn't correct.
EXPECT_EQ(order.Get(8), TaskItem(QUITMESSAGELOOP, 5, true));
EXPECT_EQ(order.Get(9), TaskItem(QUITMESSAGELOOP, 5, false));
EXPECT_EQ(order.Get(10), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(11), TaskItem(RECURSIVE, 1, false));
*/
EXPECT_EQ(order.Get(12), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(13), TaskItem(RECURSIVE, 3, false));
EXPECT_EQ(order.Get(14), TaskItem(RECURSIVE, 1, true));
EXPECT_EQ(order.Get(15), TaskItem(RECURSIVE, 1, false));
EXPECT_EQ(order.Get(16), TaskItem(RECURSIVE, 3, true));
EXPECT_EQ(order.Get(17), TaskItem(RECURSIVE, 3, false));
}
#endif // defined(OS_WIN)
void PostNTasksThenQuit(int posts_remaining) {
if (posts_remaining > 1) {
MessageLoop::current()->PostTask(
FROM_HERE,
Bind(&PostNTasksThenQuit, posts_remaining - 1));
} else {
MessageLoop::current()->QuitWhenIdle();
}
}
#if defined(OS_WIN)
class TestIOHandler : public MessageLoopForIO::IOHandler {
public:
TestIOHandler(const wchar_t* name, HANDLE signal, bool wait);
void OnIOCompleted(MessageLoopForIO::IOContext* context,
DWORD bytes_transfered,
DWORD error) override;
void Init();
void WaitForIO();
OVERLAPPED* context() { return &context_.overlapped; }
DWORD size() { return sizeof(buffer_); }
private:
char buffer_[48];
MessageLoopForIO::IOContext context_;
HANDLE signal_;
win::ScopedHandle file_;
bool wait_;
};
TestIOHandler::TestIOHandler(const wchar_t* name, HANDLE signal, bool wait)
: signal_(signal), wait_(wait) {
memset(buffer_, 0, sizeof(buffer_));
file_.Set(CreateFile(name, GENERIC_READ, 0, NULL, OPEN_EXISTING,
FILE_FLAG_OVERLAPPED, NULL));
EXPECT_TRUE(file_.IsValid());
}
void TestIOHandler::Init() {
MessageLoopForIO::current()->RegisterIOHandler(file_.Get(), this);
DWORD read;
EXPECT_FALSE(ReadFile(file_.Get(), buffer_, size(), &read, context()));
EXPECT_EQ(static_cast<DWORD>(ERROR_IO_PENDING), GetLastError());
if (wait_)
WaitForIO();
}
void TestIOHandler::OnIOCompleted(MessageLoopForIO::IOContext* context,
DWORD bytes_transfered, DWORD error) {
ASSERT_TRUE(context == &context_);
ASSERT_TRUE(SetEvent(signal_));
}
void TestIOHandler::WaitForIO() {
EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(300, this));
EXPECT_TRUE(MessageLoopForIO::current()->WaitForIOCompletion(400, this));
}
void RunTest_IOHandler() {
win::ScopedHandle callback_called(CreateEvent(NULL, TRUE, FALSE, NULL));
ASSERT_TRUE(callback_called.IsValid());
const wchar_t* kPipeName = L"\\\\.\\pipe\\iohandler_pipe";
win::ScopedHandle server(
CreateNamedPipe(kPipeName, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
ASSERT_TRUE(server.IsValid());
Thread thread("IOHandler test");
Thread::Options options;
options.message_loop_type = MessageLoop::TYPE_IO;
ASSERT_TRUE(thread.StartWithOptions(options));
MessageLoop* thread_loop = thread.message_loop();
ASSERT_TRUE(NULL != thread_loop);
TestIOHandler handler(kPipeName, callback_called.Get(), false);
thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
Unretained(&handler)));
// Make sure the thread runs and sleeps for lack of work.
PlatformThread::Sleep(TimeDelta::FromMilliseconds(100));
const char buffer[] = "Hello there!";
DWORD written;
EXPECT_TRUE(WriteFile(server.Get(), buffer, sizeof(buffer), &written, NULL));
DWORD result = WaitForSingleObject(callback_called.Get(), 1000);
EXPECT_EQ(WAIT_OBJECT_0, result);
thread.Stop();
}
void RunTest_WaitForIO() {
win::ScopedHandle callback1_called(
CreateEvent(NULL, TRUE, FALSE, NULL));
win::ScopedHandle callback2_called(
CreateEvent(NULL, TRUE, FALSE, NULL));
ASSERT_TRUE(callback1_called.IsValid());
ASSERT_TRUE(callback2_called.IsValid());
const wchar_t* kPipeName1 = L"\\\\.\\pipe\\iohandler_pipe1";
const wchar_t* kPipeName2 = L"\\\\.\\pipe\\iohandler_pipe2";
win::ScopedHandle server1(
CreateNamedPipe(kPipeName1, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
win::ScopedHandle server2(
CreateNamedPipe(kPipeName2, PIPE_ACCESS_OUTBOUND, 0, 1, 0, 0, 0, NULL));
ASSERT_TRUE(server1.IsValid());
ASSERT_TRUE(server2.IsValid());
Thread thread("IOHandler test");
Thread::Options options;
options.message_loop_type = MessageLoop::TYPE_IO;
ASSERT_TRUE(thread.StartWithOptions(options));
MessageLoop* thread_loop = thread.message_loop();
ASSERT_TRUE(NULL != thread_loop);
TestIOHandler handler1(kPipeName1, callback1_called.Get(), false);
TestIOHandler handler2(kPipeName2, callback2_called.Get(), true);
thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
Unretained(&handler1)));
// TODO(ajwong): Do we really need such long Sleeps in this function?
// Make sure the thread runs and sleeps for lack of work.
TimeDelta delay = TimeDelta::FromMilliseconds(100);
PlatformThread::Sleep(delay);
thread_loop->PostTask(FROM_HERE, Bind(&TestIOHandler::Init,
Unretained(&handler2)));
PlatformThread::Sleep(delay);
// At this time handler1 is waiting to be called, and the thread is waiting
// on the Init method of handler2, filtering only handler2 callbacks.
const char buffer[] = "Hello there!";
DWORD written;
EXPECT_TRUE(WriteFile(server1.Get(), buffer, sizeof(buffer), &written, NULL));
PlatformThread::Sleep(2 * delay);
EXPECT_EQ(static_cast<DWORD>(WAIT_TIMEOUT),
WaitForSingleObject(callback1_called.Get(), 0))
<< "handler1 has not been called";
EXPECT_TRUE(WriteFile(server2.Get(), buffer, sizeof(buffer), &written, NULL));
HANDLE objects[2] = { callback1_called.Get(), callback2_called.Get() };
DWORD result = WaitForMultipleObjects(2, objects, TRUE, 1000);
EXPECT_EQ(WAIT_OBJECT_0, result);
thread.Stop();
}
#endif // defined(OS_WIN)
} // namespace
//-----------------------------------------------------------------------------
// Each test is run against each type of MessageLoop. That way we are sure
// that message loops work properly in all configurations. Of course, in some
// cases, a unit test may only be for a particular type of loop.
RUN_MESSAGE_LOOP_TESTS(Default, &TypeDefaultMessagePumpFactory);
RUN_MESSAGE_LOOP_TESTS(UI, &TypeUIMessagePumpFactory);
RUN_MESSAGE_LOOP_TESTS(IO, &TypeIOMessagePumpFactory);
#if defined(OS_WIN)
TEST(MessageLoopTest, PostDelayedTask_SharedTimer_SubPump) {
RunTest_PostDelayedTask_SharedTimer_SubPump();
}
// This test occasionally hangs. See http://crbug.com/44567.
TEST(MessageLoopTest, DISABLED_RecursiveDenial2) {
RunTest_RecursiveDenial2(MessageLoop::TYPE_DEFAULT);
RunTest_RecursiveDenial2(MessageLoop::TYPE_UI);
RunTest_RecursiveDenial2(MessageLoop::TYPE_IO);
}
TEST(MessageLoopTest, RecursiveSupport2) {
// This test requires a UI loop.
RunTest_RecursiveSupport2(MessageLoop::TYPE_UI);
}
#endif // defined(OS_WIN)
class DummyTaskObserver : public MessageLoop::TaskObserver {
public:
explicit DummyTaskObserver(int num_tasks)
: num_tasks_started_(0),
num_tasks_processed_(0),
num_tasks_(num_tasks) {}
~DummyTaskObserver() override {}
void WillProcessTask(const PendingTask& pending_task) override {
num_tasks_started_++;
EXPECT_LE(num_tasks_started_, num_tasks_);
EXPECT_EQ(num_tasks_started_, num_tasks_processed_ + 1);
}
void DidProcessTask(const PendingTask& pending_task) override {
num_tasks_processed_++;
EXPECT_LE(num_tasks_started_, num_tasks_);
EXPECT_EQ(num_tasks_started_, num_tasks_processed_);
}
int num_tasks_started() const { return num_tasks_started_; }
int num_tasks_processed() const { return num_tasks_processed_; }
private:
int num_tasks_started_;
int num_tasks_processed_;
const int num_tasks_;
DISALLOW_COPY_AND_ASSIGN(DummyTaskObserver);
};
TEST(MessageLoopTest, TaskObserver) {
const int kNumPosts = 6;
DummyTaskObserver observer(kNumPosts);
MessageLoop loop;
loop.AddTaskObserver(&observer);
loop.PostTask(FROM_HERE, Bind(&PostNTasksThenQuit, kNumPosts));
loop.Run();
loop.RemoveTaskObserver(&observer);
EXPECT_EQ(kNumPosts, observer.num_tasks_started());
EXPECT_EQ(kNumPosts, observer.num_tasks_processed());
}
#if defined(OS_WIN)
TEST(MessageLoopTest, IOHandler) {
RunTest_IOHandler();
}
TEST(MessageLoopTest, WaitForIO) {
RunTest_WaitForIO();
}
TEST(MessageLoopTest, HighResolutionTimer) {
MessageLoop loop;
Time::EnableHighResolutionTimer(true);
const TimeDelta kFastTimer = TimeDelta::FromMilliseconds(5);
const TimeDelta kSlowTimer = TimeDelta::FromMilliseconds(100);
EXPECT_FALSE(loop.HasHighResolutionTasks());
// Post a fast task to enable the high resolution timers.
loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
kFastTimer);
EXPECT_TRUE(loop.HasHighResolutionTasks());
loop.Run();
EXPECT_FALSE(loop.HasHighResolutionTasks());
EXPECT_FALSE(Time::IsHighResolutionTimerInUse());
// Check that a slow task does not trigger the high resolution logic.
loop.PostDelayedTask(FROM_HERE, Bind(&PostNTasksThenQuit, 1),
kSlowTimer);
EXPECT_FALSE(loop.HasHighResolutionTasks());
loop.Run();
EXPECT_FALSE(loop.HasHighResolutionTasks());
Time::EnableHighResolutionTimer(false);
}
#endif // defined(OS_WIN)
#if defined(OS_POSIX) && !defined(OS_NACL)
namespace {
class QuitDelegate : public MessageLoopForIO::Watcher {
public:
void OnFileCanWriteWithoutBlocking(int fd) override {
MessageLoop::current()->QuitWhenIdle();
}
void OnFileCanReadWithoutBlocking(int fd) override {
MessageLoop::current()->QuitWhenIdle();
}
};
TEST(MessageLoopTest, FileDescriptorWatcherOutlivesMessageLoop) {
// Simulate a MessageLoop that dies before an FileDescriptorWatcher.
// This could happen when people use the Singleton pattern or atexit.
// Create a file descriptor. Doesn't need to be readable or writable,
// as we don't need to actually get any notifications.
// pipe() is just the easiest way to do it.
int pipefds[2];
int err = pipe(pipefds);
ASSERT_EQ(0, err);
int fd = pipefds[1];
{
// Arrange for controller to live longer than message loop.
MessageLoopForIO::FileDescriptorWatcher controller;
{
MessageLoopForIO message_loop;
QuitDelegate delegate;
message_loop.WatchFileDescriptor(fd,
true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
// and don't run the message loop, just destroy it.
}
}
if (IGNORE_EINTR(close(pipefds[0])) < 0)
PLOG(ERROR) << "close";
if (IGNORE_EINTR(close(pipefds[1])) < 0)
PLOG(ERROR) << "close";
}
TEST(MessageLoopTest, FileDescriptorWatcherDoubleStop) {
// Verify that it's ok to call StopWatchingFileDescriptor().
// (Errors only showed up in valgrind.)
int pipefds[2];
int err = pipe(pipefds);
ASSERT_EQ(0, err);
int fd = pipefds[1];
{
// Arrange for message loop to live longer than controller.
MessageLoopForIO message_loop;
{
MessageLoopForIO::FileDescriptorWatcher controller;
QuitDelegate delegate;
message_loop.WatchFileDescriptor(fd,
true, MessageLoopForIO::WATCH_WRITE, &controller, &delegate);
controller.StopWatchingFileDescriptor();
}
}
if (IGNORE_EINTR(close(pipefds[0])) < 0)
PLOG(ERROR) << "close";
if (IGNORE_EINTR(close(pipefds[1])) < 0)
PLOG(ERROR) << "close";
}
} // namespace
#endif // defined(OS_POSIX) && !defined(OS_NACL)
namespace {
// Inject a test point for recording the destructor calls for Closure objects
// send to MessageLoop::PostTask(). It is awkward usage since we are trying to
// hook the actual destruction, which is not a common operation.
class DestructionObserverProbe :
public RefCounted<DestructionObserverProbe> {
public:
DestructionObserverProbe(bool* task_destroyed,
bool* destruction_observer_called)
: task_destroyed_(task_destroyed),
destruction_observer_called_(destruction_observer_called) {
}
virtual void Run() {
// This task should never run.
ADD_FAILURE();
}
private:
friend class RefCounted<DestructionObserverProbe>;
virtual ~DestructionObserverProbe() {
EXPECT_FALSE(*destruction_observer_called_);
*task_destroyed_ = true;
}
bool* task_destroyed_;
bool* destruction_observer_called_;
};
class MLDestructionObserver : public MessageLoop::DestructionObserver {
public:
MLDestructionObserver(bool* task_destroyed, bool* destruction_observer_called)
: task_destroyed_(task_destroyed),
destruction_observer_called_(destruction_observer_called),
task_destroyed_before_message_loop_(false) {
}
void WillDestroyCurrentMessageLoop() override {
task_destroyed_before_message_loop_ = *task_destroyed_;
*destruction_observer_called_ = true;
}
bool task_destroyed_before_message_loop() const {
return task_destroyed_before_message_loop_;
}
private:
bool* task_destroyed_;
bool* destruction_observer_called_;
bool task_destroyed_before_message_loop_;
};
} // namespace
TEST(MessageLoopTest, DestructionObserverTest) {
// Verify that the destruction observer gets called at the very end (after
// all the pending tasks have been destroyed).
MessageLoop* loop = new MessageLoop;
const TimeDelta kDelay = TimeDelta::FromMilliseconds(100);
bool task_destroyed = false;
bool destruction_observer_called = false;
MLDestructionObserver observer(&task_destroyed, &destruction_observer_called);
loop->AddDestructionObserver(&observer);
loop->PostDelayedTask(
FROM_HERE,
Bind(&DestructionObserverProbe::Run,
new DestructionObserverProbe(&task_destroyed,
&destruction_observer_called)),
kDelay);
delete loop;
EXPECT_TRUE(observer.task_destroyed_before_message_loop());
// The task should have been destroyed when we deleted the loop.
EXPECT_TRUE(task_destroyed);
EXPECT_TRUE(destruction_observer_called);
}
// Verify that MessageLoop sets ThreadMainTaskRunner::current() and it
// posts tasks on that message loop.
TEST(MessageLoopTest, ThreadMainTaskRunner) {
MessageLoop loop;
scoped_refptr<Foo> foo(new Foo());
std::string a("a");
ThreadTaskRunnerHandle::Get()->PostTask(FROM_HERE, Bind(
&Foo::Test1ConstRef, foo.get(), a));
// Post quit task;
MessageLoop::current()->PostTask(
FROM_HERE,
Bind(&MessageLoop::QuitWhenIdle, Unretained(MessageLoop::current())));
// Now kick things off
MessageLoop::current()->Run();
EXPECT_EQ(foo->test_count(), 1);
EXPECT_EQ(foo->result(), "a");
}
TEST(MessageLoopTest, IsType) {
MessageLoop loop(MessageLoop::TYPE_UI);
EXPECT_TRUE(loop.IsType(MessageLoop::TYPE_UI));
EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_IO));
EXPECT_FALSE(loop.IsType(MessageLoop::TYPE_DEFAULT));
}
#if defined(OS_WIN)
void EmptyFunction() {}
void PostMultipleTasks() {
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&EmptyFunction));
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&EmptyFunction));
}
static const int kSignalMsg = WM_USER + 2;
void PostWindowsMessage(HWND message_hwnd) {
PostMessage(message_hwnd, kSignalMsg, 0, 2);
}
void EndTest(bool* did_run, HWND hwnd) {
*did_run = true;
PostMessage(hwnd, WM_CLOSE, 0, 0);
}
int kMyMessageFilterCode = 0x5002;
LRESULT CALLBACK TestWndProcThunk(HWND hwnd, UINT message,
WPARAM wparam, LPARAM lparam) {
if (message == WM_CLOSE)
EXPECT_TRUE(DestroyWindow(hwnd));
if (message != kSignalMsg)
return DefWindowProc(hwnd, message, wparam, lparam);
switch (lparam) {
case 1:
// First, we post a task that will post multiple no-op tasks to make sure
// that the pump's incoming task queue does not become empty during the
// test.
MessageLoop::current()->PostTask(FROM_HERE, base::Bind(&PostMultipleTasks));
// Next, we post a task that posts a windows message to trigger the second
// stage of the test.
MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&PostWindowsMessage, hwnd));
break;
case 2:
// Since we're about to enter a modal loop, tell the message loop that we
// intend to nest tasks.
MessageLoop::current()->SetNestableTasksAllowed(true);
bool did_run = false;
MessageLoop::current()->PostTask(FROM_HERE,
base::Bind(&EndTest, &did_run, hwnd));
// Run a nested windows-style message loop and verify that our task runs. If
// it doesn't, then we'll loop here until the test times out.
MSG msg;
while (GetMessage(&msg, 0, 0, 0)) {
if (!CallMsgFilter(&msg, kMyMessageFilterCode))
DispatchMessage(&msg);
// If this message is a WM_CLOSE, explicitly exit the modal loop. Posting
// a WM_QUIT should handle this, but unfortunately MessagePumpWin eats
// WM_QUIT messages even when running inside a modal loop.
if (msg.message == WM_CLOSE)
break;
}
EXPECT_TRUE(did_run);
MessageLoop::current()->QuitWhenIdle();
break;
}
return 0;
}
TEST(MessageLoopTest, AlwaysHaveUserMessageWhenNesting) {
MessageLoop loop(MessageLoop::TYPE_UI);
HINSTANCE instance = CURRENT_MODULE();
WNDCLASSEX wc = {0};
wc.cbSize = sizeof(wc);
wc.lpfnWndProc = TestWndProcThunk;
wc.hInstance = instance;
wc.lpszClassName = L"MessageLoopTest_HWND";
ATOM atom = RegisterClassEx(&wc);
ASSERT_TRUE(atom);
HWND message_hwnd = CreateWindow(MAKEINTATOM(atom), 0, 0, 0, 0, 0, 0,
HWND_MESSAGE, 0, instance, 0);
ASSERT_TRUE(message_hwnd) << GetLastError();
ASSERT_TRUE(PostMessage(message_hwnd, kSignalMsg, 0, 1));
loop.Run();
ASSERT_TRUE(UnregisterClass(MAKEINTATOM(atom), instance));
}
#endif // defined(OS_WIN)
TEST(MessageLoopTest, SetTaskRunner) {
MessageLoop loop;
scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
loop.SetTaskRunner(new_runner);
EXPECT_EQ(new_runner, loop.task_runner());
EXPECT_EQ(new_runner, ThreadTaskRunnerHandle::Get());
}
TEST(MessageLoopTest, OriginalRunnerWorks) {
MessageLoop loop;
scoped_refptr<SingleThreadTaskRunner> new_runner(new TestSimpleTaskRunner());
scoped_refptr<SingleThreadTaskRunner> original_runner(loop.task_runner());
loop.SetTaskRunner(new_runner);
scoped_refptr<Foo> foo(new Foo());
original_runner->PostTask(FROM_HERE,
Bind(&Foo::Test1ConstRef, foo.get(), "a"));
loop.RunUntilIdle();
EXPECT_EQ(1, foo->test_count());
}
TEST(MessageLoopTest, DeleteUnboundLoop) {
// It should be possible to delete an unbound message loop on a thread which
// already has another active loop. This happens when thread creation fails.
MessageLoop loop;
std::unique_ptr<MessageLoop> unbound_loop(MessageLoop::CreateUnbound(
MessageLoop::TYPE_DEFAULT, MessageLoop::MessagePumpFactoryCallback()));
unbound_loop.reset();
EXPECT_EQ(&loop, MessageLoop::current());
EXPECT_EQ(loop.task_runner(), ThreadTaskRunnerHandle::Get());
}
} // namespace base