blob: d588017289cb8fe99c8e53417b3c4549d6d5a4c3 [file] [log] [blame] [edit]
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/renderer/safe_browsing/scorer.h"
#include "base/file_path.h"
#include "base/file_util.h"
#include "base/format_macros.h"
#include "base/hash_tables.h"
#include "base/memory/scoped_ptr.h"
#include "base/message_loop.h"
#include "base/scoped_temp_dir.h"
#include "base/threading/thread.h"
#include "chrome/common/safe_browsing/client_model.pb.h"
#include "chrome/renderer/safe_browsing/features.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace safe_browsing {
class PhishingScorerTest : public ::testing::Test {
protected:
virtual void SetUp() {
// Setup a simple model. Note that the scorer does not care about
// how features are encoded so we use readable strings here to make
// the test simpler to follow.
model_.Clear();
model_.add_hashes("feature1");
model_.add_hashes("feature2");
model_.add_hashes("feature3");
model_.add_hashes("token one");
model_.add_hashes("token two");
ClientSideModel::Rule* rule;
rule = model_.add_rule();
rule->set_weight(0.5);
rule = model_.add_rule();
rule->add_feature(0); // feature1
rule->set_weight(2.0);
rule = model_.add_rule();
rule->add_feature(0); // feature1
rule->add_feature(1); // feature2
rule->set_weight(3.0);
model_.add_page_term(3); // token one
model_.add_page_term(4); // token two
// These will be murmur3 hashes, but for this test it's not necessary
// that the hashes correspond to actual words.
model_.add_page_word(1000U);
model_.add_page_word(2000U);
model_.add_page_word(3000U);
model_.set_max_words_per_term(2);
model_.set_murmur_hash_seed(12345U);
}
ClientSideModel model_;
};
TEST_F(PhishingScorerTest, HasValidModel) {
scoped_ptr<Scorer> scorer;
scorer.reset(Scorer::Create(model_.SerializeAsString()));
EXPECT_TRUE(scorer.get() != NULL);
// Invalid model string.
scorer.reset(Scorer::Create("bogus string"));
EXPECT_FALSE(scorer.get());
// Mode is missing a required field.
model_.clear_max_words_per_term();
scorer.reset(Scorer::Create(model_.SerializePartialAsString()));
EXPECT_FALSE(scorer.get());
}
TEST_F(PhishingScorerTest, PageTerms) {
scoped_ptr<Scorer> scorer(Scorer::Create(model_.SerializeAsString()));
ASSERT_TRUE(scorer.get());
base::hash_set<std::string> expected_page_terms;
expected_page_terms.insert("token one");
expected_page_terms.insert("token two");
EXPECT_THAT(scorer->page_terms(),
::testing::ContainerEq(expected_page_terms));
}
TEST_F(PhishingScorerTest, PageWords) {
scoped_ptr<Scorer> scorer(Scorer::Create(model_.SerializeAsString()));
ASSERT_TRUE(scorer.get());
base::hash_set<uint32> expected_page_words;
expected_page_words.insert(1000U);
expected_page_words.insert(2000U);
expected_page_words.insert(3000U);
EXPECT_THAT(scorer->page_words(),
::testing::ContainerEq(expected_page_words));
EXPECT_EQ(2U, scorer->max_words_per_term());
EXPECT_EQ(12345U, scorer->murmurhash3_seed());
}
TEST_F(PhishingScorerTest, ComputeScore) {
scoped_ptr<Scorer> scorer(Scorer::Create(model_.SerializeAsString()));
ASSERT_TRUE(scorer.get());
// An empty feature map should match the empty rule.
FeatureMap features;
// The expected logodds is 0.5 (empty rule) => p = exp(0.5) / (exp(0.5) + 1)
// => 0.62245933120185459
EXPECT_DOUBLE_EQ(0.62245933120185459, scorer->ComputeScore(features));
// Same if the feature does not match any rule.
EXPECT_TRUE(features.AddBooleanFeature("not existing feature"));
EXPECT_DOUBLE_EQ(0.62245933120185459, scorer->ComputeScore(features));
// Feature 1 matches which means that the logodds will be:
// 0.5 (empty rule) + 2.0 (rule weight) * 0.15 (feature weight) = 0.8
// => p = 0.6899744811276125
EXPECT_TRUE(features.AddRealFeature("feature1", 0.15));
EXPECT_DOUBLE_EQ(0.6899744811276125, scorer->ComputeScore(features));
// Now, both feature 1 and feature 2 match. Expected logodds:
// 0.5 (empty rule) + 2.0 (rule weight) * 0.15 (feature weight) +
// 3.0 (rule weight) * 0.15 (feature1 weight) * 1.0 (feature2) weight = 9.8
// => p = 0.99999627336071584
EXPECT_TRUE(features.AddBooleanFeature("feature2"));
EXPECT_DOUBLE_EQ(0.77729986117469119, scorer->ComputeScore(features));
}
} // namespace safe_browsing