blob: be4c24994c262d499ff6f958d61b8e9f4817f2cb [file] [log] [blame]
/*
* Copyright (C) 2010 Google Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE AND ITS CONTRIBUTORS "AS IS" AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL APPLE OR ITS CONTRIBUTORS BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
// A red-black tree, which is a form of a balanced binary tree. It
// supports efficient insertion, deletion and queries of comparable
// elements. The same element may be inserted multiple times. The
// algorithmic complexity of common operations is:
//
// Insertion: O(lg(n))
// Deletion: O(lg(n))
// Querying: O(lg(n))
//
// The data type T that is stored in this red-black tree must be only
// Plain Old Data (POD), or bottom out into POD. It must _not_ rely on
// having its destructor called. This implementation internally
// allocates storage in large chunks and does not call the destructor
// on each object.
//
// Type T must supply a default constructor, a copy constructor, and
// the "<" and "==" operators.
//
// In debug mode, printing of the data contained in the tree is
// enabled. This requires the template specialization to be available:
//
// template<> struct WebCore::ValueToString<T> {
// static String string(const T& t);
// };
//
// Note that when complex types are stored in this red/black tree, it
// is possible that single invocations of the "<" and "==" operators
// will be insufficient to describe the ordering of elements in the
// tree during queries. As a concrete example, consider the case where
// intervals are stored in the tree sorted by low endpoint. The "<"
// operator on the Interval class only compares the low endpoint, but
// the "==" operator takes into account the high endpoint as well.
// This makes the necessary logic for querying and deletion somewhat
// more complex. In order to properly handle such situations, the
// property "needsFullOrderingComparisons" must be set to true on
// the tree.
//
// This red-black tree is designed to be _augmented_; subclasses can
// add additional and summary information to each node to efficiently
// store and index more complex data structures. A concrete example is
// the IntervalTree, which extends each node with a summary statistic
// to efficiently store one-dimensional intervals.
//
// The design of this red-black tree comes from Cormen, Leiserson,
// and Rivest, _Introduction to Algorithms_, MIT Press, 1990.
#ifndef PODRedBlackTree_h
#define PODRedBlackTree_h
#include "platform/PODFreeListArena.h"
#include "wtf/Assertions.h"
#include "wtf/Noncopyable.h"
#include "wtf/RefPtr.h"
#ifndef NDEBUG
#include "wtf/text/CString.h"
#include "wtf/text/StringBuilder.h"
#include "wtf/text/WTFString.h"
#endif
namespace WebCore {
#ifndef NDEBUG
template<class T>
struct ValueToString;
#endif
enum UninitializedTreeEnum {
UninitializedTree
};
template<class T>
class PODRedBlackTree {
public:
class Node;
// Visitor interface for walking all of the tree's elements.
class Visitor {
public:
virtual void visit(const T& data) = 0;
protected:
virtual ~Visitor() { }
};
// Constructs a new red-black tree without allocating an arena.
// isInitialized will return false in this case. initIfNeeded can be used
// to init the structure. This constructor is usefull for creating
// lazy initialized tree.
explicit PODRedBlackTree(UninitializedTreeEnum)
: m_root(0)
, m_needsFullOrderingComparisons(false)
#ifndef NDEBUG
, m_verboseDebugging(false)
#endif
{
}
// Constructs a new red-black tree, allocating temporary objects
// from a newly constructed PODFreeListArena.
PODRedBlackTree()
: m_arena(PODFreeListArena<Node>::create())
, m_root(0)
, m_needsFullOrderingComparisons(false)
#ifndef NDEBUG
, m_verboseDebugging(false)
#endif
{
}
// Constructs a new red-black tree, allocating temporary objects
// from the given PODArena.
explicit PODRedBlackTree(PassRefPtr<PODFreeListArena<Node> > arena)
: m_arena(arena)
, m_root(0)
, m_needsFullOrderingComparisons(false)
#ifndef NDEBUG
, m_verboseDebugging(false)
#endif
{
}
virtual ~PODRedBlackTree() { }
// Clearing will delete the contents of the tree. After this call
// isInitialized will return false.
void clear()
{
markFree(m_root);
m_arena = 0;
m_root = 0;
}
bool isInitialized() const
{
return m_arena;
}
void initIfNeeded()
{
if (!m_arena)
m_arena = PODFreeListArena<Node>::create();
}
void initIfNeeded(PODFreeListArena<Node>* arena)
{
if (!m_arena)
m_arena = arena;
}
void add(const T& data)
{
ASSERT(isInitialized());
Node* node = m_arena->template allocateObject<T>(data);
insertNode(node);
}
// Returns true if the datum was found in the tree.
bool remove(const T& data)
{
ASSERT(isInitialized());
Node* node = treeSearch(data);
if (node) {
deleteNode(node);
return true;
}
return false;
}
bool contains(const T& data) const
{
ASSERT(isInitialized());
return treeSearch(data);
}
void visitInorder(Visitor* visitor) const
{
ASSERT(isInitialized());
if (!m_root)
return;
visitInorderImpl(m_root, visitor);
}
int size() const
{
ASSERT(isInitialized());
Counter counter;
visitInorder(&counter);
return counter.count();
}
// See the class documentation for an explanation of this property.
void setNeedsFullOrderingComparisons(bool needsFullOrderingComparisons)
{
m_needsFullOrderingComparisons = needsFullOrderingComparisons;
}
virtual bool checkInvariants() const
{
ASSERT(isInitialized());
int blackCount;
return checkInvariantsFromNode(m_root, &blackCount);
}
#ifndef NDEBUG
// Dumps the tree's contents to the logging info stream for
// debugging purposes.
void dump() const
{
if (m_arena)
dumpFromNode(m_root, 0);
}
// Turns on or off verbose debugging of the tree, causing many
// messages to be logged during insertion and other operations in
// debug mode.
void setVerboseDebugging(bool verboseDebugging)
{
m_verboseDebugging = verboseDebugging;
}
#endif
enum Color {
Red = 1,
Black
};
// The base Node class which is stored in the tree. Nodes are only
// an internal concept; users of the tree deal only with the data
// they store in it.
class Node {
WTF_MAKE_NONCOPYABLE(Node);
public:
// Constructor. Newly-created nodes are colored red.
explicit Node(const T& data)
: m_left(0)
, m_right(0)
, m_parent(0)
, m_color(Red)
, m_data(data)
{
}
virtual ~Node() { }
Color color() const { return m_color; }
void setColor(Color color) { m_color = color; }
// Fetches the user data.
T& data() { return m_data; }
// Copies all user-level fields from the source node, but not
// internal fields. For example, the base implementation of this
// method copies the "m_data" field, but not the child or parent
// fields. Any augmentation information also does not need to be
// copied, as it will be recomputed. Subclasses must call the
// superclass implementation.
virtual void copyFrom(Node* src) { m_data = src->data(); }
Node* left() const { return m_left; }
void setLeft(Node* node) { m_left = node; }
Node* right() const { return m_right; }
void setRight(Node* node) { m_right = node; }
Node* parent() const { return m_parent; }
void setParent(Node* node) { m_parent = node; }
private:
Node* m_left;
Node* m_right;
Node* m_parent;
Color m_color;
T m_data;
};
protected:
// Returns the root of the tree, which is needed by some subclasses.
Node* root() const { return m_root; }
private:
// This virtual method is the hook that subclasses should use when
// augmenting the red-black tree with additional per-node summary
// information. For example, in the case of an interval tree, this
// is used to compute the maximum endpoint of the subtree below the
// given node based on the values in the left and right children. It
// is guaranteed that this will be called in the correct order to
// properly update such summary information based only on the values
// in the left and right children. This method should return true if
// the node's summary information changed.
virtual bool updateNode(Node*) { return false; }
//----------------------------------------------------------------------
// Generic binary search tree operations
//
// Searches the tree for the given datum.
Node* treeSearch(const T& data) const
{
if (m_needsFullOrderingComparisons)
return treeSearchFullComparisons(m_root, data);
return treeSearchNormal(m_root, data);
}
// Searches the tree using the normal comparison operations,
// suitable for simple data types such as numbers.
Node* treeSearchNormal(Node* current, const T& data) const
{
while (current) {
if (current->data() == data)
return current;
if (data < current->data())
current = current->left();
else
current = current->right();
}
return 0;
}
// Searches the tree using multiple comparison operations, required
// for data types with more complex behavior such as intervals.
Node* treeSearchFullComparisons(Node* current, const T& data) const
{
if (!current)
return 0;
if (data < current->data())
return treeSearchFullComparisons(current->left(), data);
if (current->data() < data)
return treeSearchFullComparisons(current->right(), data);
if (data == current->data())
return current;
// We may need to traverse both the left and right subtrees.
Node* result = treeSearchFullComparisons(current->left(), data);
if (!result)
result = treeSearchFullComparisons(current->right(), data);
return result;
}
void treeInsert(Node* z)
{
Node* y = 0;
Node* x = m_root;
while (x) {
y = x;
if (z->data() < x->data())
x = x->left();
else
x = x->right();
}
z->setParent(y);
if (!y) {
m_root = z;
} else {
if (z->data() < y->data())
y->setLeft(z);
else
y->setRight(z);
}
}
// Finds the node following the given one in sequential ordering of
// their data, or null if none exists.
Node* treeSuccessor(Node* x)
{
if (x->right())
return treeMinimum(x->right());
Node* y = x->parent();
while (y && x == y->right()) {
x = y;
y = y->parent();
}
return y;
}
// Finds the minimum element in the sub-tree rooted at the given
// node.
Node* treeMinimum(Node* x)
{
while (x->left())
x = x->left();
return x;
}
// Helper for maintaining the augmented red-black tree.
void propagateUpdates(Node* start)
{
bool shouldContinue = true;
while (start && shouldContinue) {
shouldContinue = updateNode(start);
start = start->parent();
}
}
//----------------------------------------------------------------------
// Red-Black tree operations
//
// Left-rotates the subtree rooted at x.
// Returns the new root of the subtree (x's right child).
Node* leftRotate(Node* x)
{
// Set y.
Node* y = x->right();
// Turn y's left subtree into x's right subtree.
x->setRight(y->left());
if (y->left())
y->left()->setParent(x);
// Link x's parent to y.
y->setParent(x->parent());
if (!x->parent()) {
m_root = y;
} else {
if (x == x->parent()->left())
x->parent()->setLeft(y);
else
x->parent()->setRight(y);
}
// Put x on y's left.
y->setLeft(x);
x->setParent(y);
// Update nodes lowest to highest.
updateNode(x);
updateNode(y);
return y;
}
// Right-rotates the subtree rooted at y.
// Returns the new root of the subtree (y's left child).
Node* rightRotate(Node* y)
{
// Set x.
Node* x = y->left();
// Turn x's right subtree into y's left subtree.
y->setLeft(x->right());
if (x->right())
x->right()->setParent(y);
// Link y's parent to x.
x->setParent(y->parent());
if (!y->parent()) {
m_root = x;
} else {
if (y == y->parent()->left())
y->parent()->setLeft(x);
else
y->parent()->setRight(x);
}
// Put y on x's right.
x->setRight(y);
y->setParent(x);
// Update nodes lowest to highest.
updateNode(y);
updateNode(x);
return x;
}
// Inserts the given node into the tree.
void insertNode(Node* x)
{
treeInsert(x);
x->setColor(Red);
updateNode(x);
logIfVerbose(" PODRedBlackTree::InsertNode");
// The node from which to start propagating updates upwards.
Node* updateStart = x->parent();
while (x != m_root && x->parent()->color() == Red) {
if (x->parent() == x->parent()->parent()->left()) {
Node* y = x->parent()->parent()->right();
if (y && y->color() == Red) {
// Case 1
logIfVerbose(" Case 1/1");
x->parent()->setColor(Black);
y->setColor(Black);
x->parent()->parent()->setColor(Red);
updateNode(x->parent());
x = x->parent()->parent();
updateNode(x);
updateStart = x->parent();
} else {
if (x == x->parent()->right()) {
logIfVerbose(" Case 1/2");
// Case 2
x = x->parent();
leftRotate(x);
}
// Case 3
logIfVerbose(" Case 1/3");
x->parent()->setColor(Black);
x->parent()->parent()->setColor(Red);
Node* newSubTreeRoot = rightRotate(x->parent()->parent());
updateStart = newSubTreeRoot->parent();
}
} else {
// Same as "then" clause with "right" and "left" exchanged.
Node* y = x->parent()->parent()->left();
if (y && y->color() == Red) {
// Case 1
logIfVerbose(" Case 2/1");
x->parent()->setColor(Black);
y->setColor(Black);
x->parent()->parent()->setColor(Red);
updateNode(x->parent());
x = x->parent()->parent();
updateNode(x);
updateStart = x->parent();
} else {
if (x == x->parent()->left()) {
// Case 2
logIfVerbose(" Case 2/2");
x = x->parent();
rightRotate(x);
}
// Case 3
logIfVerbose(" Case 2/3");
x->parent()->setColor(Black);
x->parent()->parent()->setColor(Red);
Node* newSubTreeRoot = leftRotate(x->parent()->parent());
updateStart = newSubTreeRoot->parent();
}
}
}
propagateUpdates(updateStart);
m_root->setColor(Black);
}
// Restores the red-black property to the tree after splicing out
// a node. Note that x may be null, which is why xParent must be
// supplied.
void deleteFixup(Node* x, Node* xParent)
{
while (x != m_root && (!x || x->color() == Black)) {
if (x == xParent->left()) {
// Note: the text points out that w can not be null.
// The reason is not obvious from simply looking at
// the code; it comes about from the properties of the
// red-black tree.
Node* w = xParent->right();
ASSERT(w); // x's sibling should not be null.
if (w->color() == Red) {
// Case 1
w->setColor(Black);
xParent->setColor(Red);
leftRotate(xParent);
w = xParent->right();
}
if ((!w->left() || w->left()->color() == Black)
&& (!w->right() || w->right()->color() == Black)) {
// Case 2
w->setColor(Red);
x = xParent;
xParent = x->parent();
} else {
if (!w->right() || w->right()->color() == Black) {
// Case 3
w->left()->setColor(Black);
w->setColor(Red);
rightRotate(w);
w = xParent->right();
}
// Case 4
w->setColor(xParent->color());
xParent->setColor(Black);
if (w->right())
w->right()->setColor(Black);
leftRotate(xParent);
x = m_root;
xParent = x->parent();
}
} else {
// Same as "then" clause with "right" and "left"
// exchanged.
// Note: the text points out that w can not be null.
// The reason is not obvious from simply looking at
// the code; it comes about from the properties of the
// red-black tree.
Node* w = xParent->left();
ASSERT(w); // x's sibling should not be null.
if (w->color() == Red) {
// Case 1
w->setColor(Black);
xParent->setColor(Red);
rightRotate(xParent);
w = xParent->left();
}
if ((!w->right() || w->right()->color() == Black)
&& (!w->left() || w->left()->color() == Black)) {
// Case 2
w->setColor(Red);
x = xParent;
xParent = x->parent();
} else {
if (!w->left() || w->left()->color() == Black) {
// Case 3
w->right()->setColor(Black);
w->setColor(Red);
leftRotate(w);
w = xParent->left();
}
// Case 4
w->setColor(xParent->color());
xParent->setColor(Black);
if (w->left())
w->left()->setColor(Black);
rightRotate(xParent);
x = m_root;
xParent = x->parent();
}
}
}
if (x)
x->setColor(Black);
}
// Deletes the given node from the tree. Note that this
// particular node may not actually be removed from the tree;
// instead, another node might be removed and its contents
// copied into z.
void deleteNode(Node* z)
{
// Y is the node to be unlinked from the tree.
Node* y;
if (!z->left() || !z->right())
y = z;
else
y = treeSuccessor(z);
// Y is guaranteed to be non-null at this point.
Node* x;
if (y->left())
x = y->left();
else
x = y->right();
// X is the child of y which might potentially replace y in
// the tree. X might be null at this point.
Node* xParent;
if (x) {
x->setParent(y->parent());
xParent = x->parent();
} else {
xParent = y->parent();
}
if (!y->parent()) {
m_root = x;
} else {
if (y == y->parent()->left())
y->parent()->setLeft(x);
else
y->parent()->setRight(x);
}
if (y != z) {
z->copyFrom(y);
// This node has changed location in the tree and must be updated.
updateNode(z);
// The parent and its parents may now be out of date.
propagateUpdates(z->parent());
}
// If we haven't already updated starting from xParent, do so now.
if (xParent && xParent != y && xParent != z)
propagateUpdates(xParent);
if (y->color() == Black)
deleteFixup(x, xParent);
m_arena->freeObject(y);
}
// Visits the subtree rooted at the given node in order.
void visitInorderImpl(Node* node, Visitor* visitor) const
{
if (node->left())
visitInorderImpl(node->left(), visitor);
visitor->visit(node->data());
if (node->right())
visitInorderImpl(node->right(), visitor);
}
void markFree(Node *node)
{
if (!node)
return;
if (node->left())
markFree(node->left());
if (node->right())
markFree(node->right());
m_arena->freeObject(node);
}
//----------------------------------------------------------------------
// Helper class for size()
// A Visitor which simply counts the number of visited elements.
class Counter : public Visitor {
WTF_MAKE_NONCOPYABLE(Counter);
public:
Counter()
: m_count(0) { }
virtual void visit(const T&) { ++m_count; }
int count() const { return m_count; }
private:
int m_count;
};
//----------------------------------------------------------------------
// Verification and debugging routines
//
// Returns in the "blackCount" parameter the number of black
// children along all paths to all leaves of the given node.
bool checkInvariantsFromNode(Node* node, int* blackCount) const
{
// Base case is a leaf node.
if (!node) {
*blackCount = 1;
return true;
}
// Each node is either red or black.
if (!(node->color() == Red || node->color() == Black))
return false;
// Every leaf (or null) is black.
if (node->color() == Red) {
// Both of its children are black.
if (!((!node->left() || node->left()->color() == Black)))
return false;
if (!((!node->right() || node->right()->color() == Black)))
return false;
}
// Every simple path to a leaf node contains the same number of
// black nodes.
int leftCount = 0, rightCount = 0;
bool leftValid = checkInvariantsFromNode(node->left(), &leftCount);
bool rightValid = checkInvariantsFromNode(node->right(), &rightCount);
if (!leftValid || !rightValid)
return false;
*blackCount = leftCount + (node->color() == Black ? 1 : 0);
return leftCount == rightCount;
}
#ifdef NDEBUG
void logIfVerbose(const char*) const { }
#else
void logIfVerbose(const char* output) const
{
if (m_verboseDebugging)
LOG_ERROR("%s", output);
}
#endif
#ifndef NDEBUG
// Dumps the subtree rooted at the given node.
void dumpFromNode(Node* node, int indentation) const
{
StringBuilder builder;
for (int i = 0; i < indentation; i++)
builder.append(" ");
builder.append("-");
if (node) {
builder.append(" ");
builder.append(ValueToString<T>::string(node->data()));
builder.append((node->color() == Black) ? " (black)" : " (red)");
}
LOG_ERROR("%s", builder.toString().ascii().data());
if (node) {
dumpFromNode(node->left(), indentation + 2);
dumpFromNode(node->right(), indentation + 2);
}
}
#endif
//----------------------------------------------------------------------
// Data members
RefPtr<PODFreeListArena<Node> > m_arena;
Node* m_root;
bool m_needsFullOrderingComparisons;
#ifndef NDEBUG
bool m_verboseDebugging;
#endif
};
} // namespace WebCore
#endif // PODRedBlackTree_h