blob: 406c5b180cd6a38866b28e5882f423e23e7270ef [file] [log] [blame]
/*
* Copyright (C) 2006, 2007 Eric Seidel <eric@webkit.org>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*/
#include "config.h"
#include "platform/graphics/PathTraversalState.h"
#include "wtf/MathExtras.h"
#include "wtf/Vector.h"
namespace WebCore {
static const float kPathSegmentLengthTolerance = 0.00001f;
static inline FloatPoint midPoint(const FloatPoint& first, const FloatPoint& second)
{
return FloatPoint((first.x() + second.x()) / 2.0f, (first.y() + second.y()) / 2.0f);
}
static inline float distanceLine(const FloatPoint& start, const FloatPoint& end)
{
return sqrtf((end.x() - start.x()) * (end.x() - start.x()) + (end.y() - start.y()) * (end.y() - start.y()));
}
struct QuadraticBezier {
QuadraticBezier() { }
QuadraticBezier(const FloatPoint& s, const FloatPoint& c, const FloatPoint& e)
: start(s)
, control(c)
, end(e)
{
}
float approximateDistance() const
{
return distanceLine(start, control) + distanceLine(control, end);
}
void split(QuadraticBezier& left, QuadraticBezier& right) const
{
left.control = midPoint(start, control);
right.control = midPoint(control, end);
FloatPoint leftControlToRightControl = midPoint(left.control, right.control);
left.end = leftControlToRightControl;
right.start = leftControlToRightControl;
left.start = start;
right.end = end;
}
FloatPoint start;
FloatPoint control;
FloatPoint end;
};
struct CubicBezier {
CubicBezier() { }
CubicBezier(const FloatPoint& s, const FloatPoint& c1, const FloatPoint& c2, const FloatPoint& e)
: start(s)
, control1(c1)
, control2(c2)
, end(e)
{
}
float approximateDistance() const
{
return distanceLine(start, control1) + distanceLine(control1, control2) + distanceLine(control2, end);
}
void split(CubicBezier& left, CubicBezier& right) const
{
FloatPoint startToControl1 = midPoint(control1, control2);
left.start = start;
left.control1 = midPoint(start, control1);
left.control2 = midPoint(left.control1, startToControl1);
right.control2 = midPoint(control2, end);
right.control1 = midPoint(right.control2, startToControl1);
right.end = end;
FloatPoint leftControl2ToRightControl1 = midPoint(left.control2, right.control1);
left.end = leftControl2ToRightControl1;
right.start = leftControl2ToRightControl1;
}
FloatPoint start;
FloatPoint control1;
FloatPoint control2;
FloatPoint end;
};
// FIXME: This function is possibly very slow due to the ifs required for proper path measuring
// A simple speed-up would be to use an additional boolean template parameter to control whether
// to use the "fast" version of this function with no PathTraversalState updating, vs. the slow
// version which does update the PathTraversalState. We'll have to shark it to see if that's necessary.
// Another check which is possible up-front (to send us down the fast path) would be to check if
// approximateDistance() + current total distance > desired distance
template<class CurveType>
static float curveLength(PathTraversalState& traversalState, CurveType curve)
{
static const unsigned curveStackDepthLimit = 20;
Vector<CurveType> curveStack;
curveStack.append(curve);
float totalLength = 0;
do {
float length = curve.approximateDistance();
if ((length - distanceLine(curve.start, curve.end)) > kPathSegmentLengthTolerance && curveStack.size() <= curveStackDepthLimit) {
CurveType leftCurve;
CurveType rightCurve;
curve.split(leftCurve, rightCurve);
curve = leftCurve;
curveStack.append(rightCurve);
} else {
totalLength += length;
if (traversalState.m_action == PathTraversalState::TraversalPointAtLength || traversalState.m_action == PathTraversalState::TraversalNormalAngleAtLength) {
traversalState.m_previous = curve.start;
traversalState.m_current = curve.end;
if (traversalState.m_totalLength + totalLength > traversalState.m_desiredLength)
return totalLength;
}
curve = curveStack.last();
curveStack.removeLast();
}
} while (!curveStack.isEmpty());
return totalLength;
}
PathTraversalState::PathTraversalState(PathTraversalAction action)
: m_action(action)
, m_success(false)
, m_totalLength(0)
, m_segmentIndex(0)
, m_desiredLength(0)
, m_normalAngle(0)
{
}
float PathTraversalState::closeSubpath()
{
float distance = distanceLine(m_current, m_start);
m_current = m_control1 = m_control2 = m_start;
return distance;
}
float PathTraversalState::moveTo(const FloatPoint& point)
{
m_current = m_start = m_control1 = m_control2 = point;
return 0;
}
float PathTraversalState::lineTo(const FloatPoint& point)
{
float distance = distanceLine(m_current, point);
m_current = m_control1 = m_control2 = point;
return distance;
}
float PathTraversalState::quadraticBezierTo(const FloatPoint& newControl, const FloatPoint& newEnd)
{
float distance = curveLength<QuadraticBezier>(*this, QuadraticBezier(m_current, newControl, newEnd));
m_control1 = newControl;
m_control2 = newEnd;
if (m_action != TraversalPointAtLength && m_action != TraversalNormalAngleAtLength)
m_current = newEnd;
return distance;
}
float PathTraversalState::cubicBezierTo(const FloatPoint& newControl1, const FloatPoint& newControl2, const FloatPoint& newEnd)
{
float distance = curveLength<CubicBezier>(*this, CubicBezier(m_current, newControl1, newControl2, newEnd));
m_control1 = newEnd;
m_control2 = newControl2;
if (m_action != TraversalPointAtLength && m_action != TraversalNormalAngleAtLength)
m_current = newEnd;
return distance;
}
void PathTraversalState::processSegment()
{
if (m_action == TraversalSegmentAtLength && m_totalLength >= m_desiredLength)
m_success = true;
if ((m_action == TraversalPointAtLength || m_action == TraversalNormalAngleAtLength) && m_totalLength >= m_desiredLength) {
float slope = FloatPoint(m_current - m_previous).slopeAngleRadians();
if (m_action == TraversalPointAtLength) {
float offset = m_desiredLength - m_totalLength;
m_current.move(offset * cosf(slope), offset * sinf(slope));
} else {
m_normalAngle = rad2deg(slope);
}
m_success = true;
}
m_previous = m_current;
}
}