blob: 9c524f94f33d830910d7b6186c2e2dc33d49cca7 [file] [log] [blame]
// Copyright (c) 2005, 2007, Google Inc.
// All rights reserved.
// Copyright (C) 2005, 2006, 2007, 2008, 2009, 2011 Apple Inc. All rights reserved.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// ---
// Author: Sanjay Ghemawat <opensource@google.com>
//
// A malloc that uses a per-thread cache to satisfy small malloc requests.
// (The time for malloc/free of a small object drops from 300 ns to 50 ns.)
//
// See doc/tcmalloc.html for a high-level
// description of how this malloc works.
//
// SYNCHRONIZATION
// 1. The thread-specific lists are accessed without acquiring any locks.
// This is safe because each such list is only accessed by one thread.
// 2. We have a lock per central free-list, and hold it while manipulating
// the central free list for a particular size.
// 3. The central page allocator is protected by "pageheap_lock".
// 4. The pagemap (which maps from page-number to descriptor),
// can be read without holding any locks, and written while holding
// the "pageheap_lock".
// 5. To improve performance, a subset of the information one can get
// from the pagemap is cached in a data structure, pagemap_cache_,
// that atomically reads and writes its entries. This cache can be
// read and written without locking.
//
// This multi-threaded access to the pagemap is safe for fairly
// subtle reasons. We basically assume that when an object X is
// allocated by thread A and deallocated by thread B, there must
// have been appropriate synchronization in the handoff of object
// X from thread A to thread B. The same logic applies to pagemap_cache_.
//
// THE PAGEID-TO-SIZECLASS CACHE
// Hot PageID-to-sizeclass mappings are held by pagemap_cache_. If this cache
// returns 0 for a particular PageID then that means "no information," not that
// the sizeclass is 0. The cache may have stale information for pages that do
// not hold the beginning of any free()'able object. Staleness is eliminated
// in Populate() for pages with sizeclass > 0 objects, and in do_malloc() and
// do_memalign() for all other relevant pages.
//
// TODO: Bias reclamation to larger addresses
// TODO: implement mallinfo/mallopt
// TODO: Better testing
//
// 9/28/2003 (new page-level allocator replaces ptmalloc2):
// * malloc/free of small objects goes from ~300 ns to ~50 ns.
// * allocation of a reasonably complicated struct
// goes from about 1100 ns to about 300 ns.
#include "config.h"
#include "wtf/FastMalloc.h"
#include "wtf/Assertions.h"
#include "wtf/CPU.h"
#include "wtf/StdLibExtras.h"
#include "wtf/UnusedParam.h"
#if OS(MACOSX)
#include <AvailabilityMacros.h>
#endif
#include <limits>
#if OS(WIN)
#include <windows.h>
#else
#include <pthread.h>
#endif
#include <stdlib.h>
#include <string.h>
#ifndef NO_TCMALLOC_SAMPLES
#define NO_TCMALLOC_SAMPLES
#endif
#if !USE(SYSTEM_MALLOC) && defined(NDEBUG)
#define FORCE_SYSTEM_MALLOC 0
#else
#define FORCE_SYSTEM_MALLOC 1
#endif
// Harden the pointers stored in the TCMalloc linked lists
#if COMPILER(GCC)
#define ENABLE_TCMALLOC_HARDENING 1
#endif
// Use a background thread to periodically scavenge memory to release back to the system
#define USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY 1
#ifndef NDEBUG
namespace WTF {
#if OS(WIN)
// TLS_OUT_OF_INDEXES is not defined on WinCE.
#ifndef TLS_OUT_OF_INDEXES
#define TLS_OUT_OF_INDEXES 0xffffffff
#endif
static DWORD isForibiddenTlsIndex = TLS_OUT_OF_INDEXES;
static const LPVOID kTlsAllowValue = reinterpret_cast<LPVOID>(0); // Must be zero.
static const LPVOID kTlsForbiddenValue = reinterpret_cast<LPVOID>(1);
#if !ASSERT_DISABLED
static bool isForbidden()
{
// By default, fastMalloc is allowed so we don't allocate the
// tls index unless we're asked to make it forbidden. If TlsSetValue
// has not been called on a thread, the value returned by TlsGetValue is 0.
return (isForibiddenTlsIndex != TLS_OUT_OF_INDEXES) && (TlsGetValue(isForibiddenTlsIndex) == kTlsForbiddenValue);
}
#endif
void fastMallocForbid()
{
if (isForibiddenTlsIndex == TLS_OUT_OF_INDEXES)
isForibiddenTlsIndex = TlsAlloc(); // a little racey, but close enough for debug only
TlsSetValue(isForibiddenTlsIndex, kTlsForbiddenValue);
}
void fastMallocAllow()
{
if (isForibiddenTlsIndex == TLS_OUT_OF_INDEXES)
return;
TlsSetValue(isForibiddenTlsIndex, kTlsAllowValue);
}
#else // !OS(WIN)
static pthread_key_t isForbiddenKey;
static pthread_once_t isForbiddenKeyOnce = PTHREAD_ONCE_INIT;
static void initializeIsForbiddenKey()
{
pthread_key_create(&isForbiddenKey, 0);
}
#if !ASSERT_DISABLED
static bool isForbidden()
{
pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
return !!pthread_getspecific(isForbiddenKey);
}
#endif
void fastMallocForbid()
{
pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
pthread_setspecific(isForbiddenKey, &isForbiddenKey);
}
void fastMallocAllow()
{
pthread_once(&isForbiddenKeyOnce, initializeIsForbiddenKey);
pthread_setspecific(isForbiddenKey, 0);
}
#endif // OS(WIN)
} // namespace WTF
#endif // NDEBUG
namespace WTF {
void* fastZeroedMalloc(size_t n)
{
void* result = fastMalloc(n);
memset(result, 0, n);
return result;
}
char* fastStrDup(const char* src)
{
size_t len = strlen(src) + 1;
char* dup = static_cast<char*>(fastMalloc(len));
memcpy(dup, src, len);
return dup;
}
} // namespace WTF
#if FORCE_SYSTEM_MALLOC
#if OS(MACOSX)
#include <malloc/malloc.h>
#elif OS(WIN)
#include <malloc.h>
#endif
namespace WTF {
void* fastMalloc(size_t n)
{
ASSERT(!isForbidden());
void* result = malloc(n);
ASSERT(result); // We expect tcmalloc underneath, which would crash instead of getting here.
return result;
}
void* fastCalloc(size_t n_elements, size_t element_size)
{
ASSERT(!isForbidden());
void* result = calloc(n_elements, element_size);
ASSERT(result); // We expect tcmalloc underneath, which would crash instead of getting here.
return result;
}
void fastFree(void* p)
{
ASSERT(!isForbidden());
free(p);
}
void* fastRealloc(void* p, size_t n)
{
ASSERT(!isForbidden());
void* result = realloc(p, n);
ASSERT(result); // We expect tcmalloc underneath, which would crash instead of getting here.
return result;
}
void releaseFastMallocFreeMemory() { }
FastMallocStatistics fastMallocStatistics()
{
FastMallocStatistics statistics = { 0, 0, 0 };
return statistics;
}
} // namespace WTF
#if OS(MACOSX)
// This symbol is present in the JavaScriptCore exports file even when FastMalloc is disabled.
// It will never be used in this case, so it's type and value are less interesting than its presence.
extern "C" const int jscore_fastmalloc_introspection = 0;
#endif
#else // FORCE_SYSTEM_MALLOC
#include "Compiler.h"
#include "TCPackedCache.h"
#include "TCPageMap.h"
#include "TCSpinLock.h"
#include "TCSystemAlloc.h"
#include <algorithm>
#include <errno.h>
#include <pthread.h>
#include <stdarg.h>
#include <stddef.h>
#if OS(POSIX)
#include <unistd.h>
#endif
#if OS(WIN)
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN
#endif
#include <windows.h>
#endif
#if OS(MACOSX)
#include "MallocZoneSupport.h"
#include "wtf/HashSet.h"
#include "wtf/Vector.h"
#else
#include "wtf/CurrentTime.h"
#endif
#if HAVE(DISPATCH_H)
#include <dispatch/dispatch.h>
#endif
#ifndef PRIuS
#define PRIuS "zu"
#endif
// Calling pthread_getspecific through a global function pointer is faster than a normal
// call to the function on Mac OS X, and it's used in performance-critical code. So we
// use a function pointer. But that's not necessarily faster on other platforms, and we had
// problems with this technique on Windows, so we'll do this only on Mac OS X.
#if OS(MACOSX)
static void* (*pthread_getspecific_function_pointer)(pthread_key_t) = pthread_getspecific;
#define pthread_getspecific(key) pthread_getspecific_function_pointer(key)
#endif
#define DEFINE_VARIABLE(type, name, value, meaning) \
namespace FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead { \
type FLAGS_##name(value); \
char FLAGS_no##name; \
} \
using FLAG__namespace_do_not_use_directly_use_DECLARE_##type##_instead::FLAGS_##name
#define DEFINE_int64(name, value, meaning) \
DEFINE_VARIABLE(int64_t, name, value, meaning)
#define DEFINE_double(name, value, meaning) \
DEFINE_VARIABLE(double, name, value, meaning)
namespace WTF {
#define malloc fastMalloc
#define calloc fastCalloc
#define free fastFree
#define realloc fastRealloc
#define MESSAGE LOG_ERROR
#define CHECK_CONDITION ASSERT
static const char kLLHardeningMask = 0;
template <unsigned> struct EntropySource;
template <> struct EntropySource<4> {
static uint32_t value()
{
#if OS(MACOSX)
return arc4random();
#else
return static_cast<uint32_t>(static_cast<uintptr_t>(currentTime() * 10000) ^ reinterpret_cast<uintptr_t>(&kLLHardeningMask));
#endif
}
};
template <> struct EntropySource<8> {
static uint64_t value()
{
return EntropySource<4>::value() | (static_cast<uint64_t>(EntropySource<4>::value()) << 32);
}
};
#if ENABLE(TCMALLOC_HARDENING)
/*
* To make it harder to exploit use-after free style exploits
* we mask the addresses we put into our linked lists with the
* address of kLLHardeningMask. Due to ASLR the address of
* kLLHardeningMask should be sufficiently randomized to make direct
* freelist manipulation much more difficult.
*/
enum {
MaskKeyShift = 13
};
static ALWAYS_INLINE uintptr_t internalEntropyValue()
{
static uintptr_t value = EntropySource<sizeof(uintptr_t)>::value() | 1;
ASSERT(value);
return value;
}
#define HARDENING_ENTROPY internalEntropyValue()
#define ROTATE_VALUE(value, amount) (((value) >> (amount)) | ((value) << (sizeof(value) * 8 - (amount))))
#define XOR_MASK_PTR_WITH_KEY(ptr, key, entropy) (reinterpret_cast<typeof(ptr)>(reinterpret_cast<uintptr_t>(ptr)^(ROTATE_VALUE(reinterpret_cast<uintptr_t>(key), MaskKeyShift)^entropy)))
static ALWAYS_INLINE uint32_t freedObjectStartPoison()
{
static uint32_t value = EntropySource<sizeof(uint32_t)>::value() | 1;
ASSERT(value);
return value;
}
static ALWAYS_INLINE uint32_t freedObjectEndPoison()
{
static uint32_t value = EntropySource<sizeof(uint32_t)>::value() | 1;
ASSERT(value);
return value;
}
#define PTR_TO_UINT32(ptr) static_cast<uint32_t>(reinterpret_cast<uintptr_t>(ptr))
#define END_POISON_INDEX(allocationSize) (((allocationSize) - sizeof(uint32_t)) / sizeof(uint32_t))
#define POISON_ALLOCATION(allocation, allocationSize) do { \
ASSERT((allocationSize) >= 2 * sizeof(uint32_t)); \
reinterpret_cast<uint32_t*>(allocation)[0] = 0xbadbeef1; \
reinterpret_cast<uint32_t*>(allocation)[1] = 0xbadbeef3; \
if ((allocationSize) < 4 * sizeof(uint32_t)) \
break; \
reinterpret_cast<uint32_t*>(allocation)[2] = 0xbadbeef5; \
reinterpret_cast<uint32_t*>(allocation)[END_POISON_INDEX(allocationSize)] = 0xbadbeef7; \
} while (false);
#define POISON_DEALLOCATION_EXPLICIT(allocation, allocationSize, startPoison, endPoison) do { \
ASSERT((allocationSize) >= 2 * sizeof(uint32_t)); \
reinterpret_cast<uint32_t*>(allocation)[0] = 0xbadbeef9; \
reinterpret_cast<uint32_t*>(allocation)[1] = 0xbadbeefb; \
if ((allocationSize) < 4 * sizeof(uint32_t)) \
break; \
reinterpret_cast<uint32_t*>(allocation)[2] = (startPoison) ^ PTR_TO_UINT32(allocation); \
reinterpret_cast<uint32_t*>(allocation)[END_POISON_INDEX(allocationSize)] = (endPoison) ^ PTR_TO_UINT32(allocation); \
} while (false)
#define POISON_DEALLOCATION(allocation, allocationSize) \
POISON_DEALLOCATION_EXPLICIT(allocation, (allocationSize), freedObjectStartPoison(), freedObjectEndPoison())
#define MAY_BE_POISONED(allocation, allocationSize) (((allocationSize) >= 4 * sizeof(uint32_t)) && ( \
(reinterpret_cast<uint32_t*>(allocation)[2] == (freedObjectStartPoison() ^ PTR_TO_UINT32(allocation))) || \
(reinterpret_cast<uint32_t*>(allocation)[END_POISON_INDEX(allocationSize)] == (freedObjectEndPoison() ^ PTR_TO_UINT32(allocation))) \
))
#define IS_DEFINITELY_POISONED(allocation, allocationSize) (((allocationSize) < 4 * sizeof(uint32_t)) || ( \
(reinterpret_cast<uint32_t*>(allocation)[2] == (freedObjectStartPoison() ^ PTR_TO_UINT32(allocation))) && \
(reinterpret_cast<uint32_t*>(allocation)[END_POISON_INDEX(allocationSize)] == (freedObjectEndPoison() ^ PTR_TO_UINT32(allocation))) \
))
#else
#define POISON_ALLOCATION(allocation, allocationSize)
#define POISON_DEALLOCATION(allocation, allocationSize)
#define POISON_DEALLOCATION_EXPLICIT(allocation, allocationSize, startPoison, endPoison)
#define MAY_BE_POISONED(allocation, allocationSize) (false)
#define IS_DEFINITELY_POISONED(allocation, allocationSize) (true)
#define XOR_MASK_PTR_WITH_KEY(ptr, key, entropy) (((void)entropy), ((void)key), ptr)
#define HARDENING_ENTROPY 0
#endif
//-------------------------------------------------------------------
// Configuration
//-------------------------------------------------------------------
// Not all possible combinations of the following parameters make
// sense. In particular, if kMaxSize increases, you may have to
// increase kNumClasses as well.
static const size_t kPageShift = 12;
static const size_t kPageSize = 1 << kPageShift;
static const size_t kMaxSize = 8u * kPageSize;
static const size_t kAlignShift = 3;
static const size_t kAlignment = 1 << kAlignShift;
static const size_t kNumClasses = 68;
// Allocates a big block of memory for the pagemap once we reach more than
// 128MB
static const size_t kPageMapBigAllocationThreshold = 128 << 20;
// Minimum number of pages to fetch from system at a time. Must be
// significantly bigger than kPageSize to amortize system-call
// overhead, and also to reduce external fragementation. Also, we
// should keep this value big because various incarnations of Linux
// have small limits on the number of mmap() regions per
// address-space.
static const size_t kMinSystemAlloc = 1 << (20 - kPageShift);
// Number of objects to move between a per-thread list and a central
// list in one shot. We want this to be not too small so we can
// amortize the lock overhead for accessing the central list. Making
// it too big may temporarily cause unnecessary memory wastage in the
// per-thread free list until the scavenger cleans up the list.
static int num_objects_to_move[kNumClasses];
// Maximum length we allow a per-thread free-list to have before we
// move objects from it into the corresponding central free-list. We
// want this big to avoid locking the central free-list too often. It
// should not hurt to make this list somewhat big because the
// scavenging code will shrink it down when its contents are not in use.
static const int kMaxFreeListLength = 256;
// Lower and upper bounds on the per-thread cache sizes
static const size_t kMinThreadCacheSize = kMaxSize * 2;
static const size_t kMaxThreadCacheSize = 2 << 20;
// Default bound on the total amount of thread caches
static const size_t kDefaultOverallThreadCacheSize = 16 << 20;
// For all span-lengths < kMaxPages we keep an exact-size list.
// REQUIRED: kMaxPages >= kMinSystemAlloc;
static const size_t kMaxPages = kMinSystemAlloc;
/* The smallest prime > 2^n */
static int primes_list[] = {
// Small values might cause high rates of sampling
// and hence commented out.
// 2, 5, 11, 17, 37, 67, 131, 257,
// 521, 1031, 2053, 4099, 8209, 16411,
32771, 65537, 131101, 262147, 524309, 1048583,
2097169, 4194319, 8388617, 16777259, 33554467 };
// Twice the approximate gap between sampling actions.
// I.e., we take one sample approximately once every
// tcmalloc_sample_parameter/2
// bytes of allocation, i.e., ~ once every 128KB.
// Must be a prime number.
#ifdef NO_TCMALLOC_SAMPLES
DEFINE_int64(tcmalloc_sample_parameter, 0,
"Unused: code is compiled with NO_TCMALLOC_SAMPLES");
static size_t sample_period = 0;
#else
DEFINE_int64(tcmalloc_sample_parameter, 262147,
"Twice the approximate gap between sampling actions."
" Must be a prime number. Otherwise will be rounded up to a "
" larger prime number");
static size_t sample_period = 262147;
#endif
// Protects sample_period above
static SpinLock sample_period_lock = SPINLOCK_INITIALIZER;
// Parameters for controlling how fast memory is returned to the OS.
DEFINE_double(tcmalloc_release_rate, 1,
"Rate at which we release unused memory to the system. "
"Zero means we never release memory back to the system. "
"Increase this flag to return memory faster; decrease it "
"to return memory slower. Reasonable rates are in the "
"range [0,10]");
//-------------------------------------------------------------------
// Mapping from size to size_class and vice versa
//-------------------------------------------------------------------
// Sizes <= 1024 have an alignment >= 8. So for such sizes we have an
// array indexed by ceil(size/8). Sizes > 1024 have an alignment >= 128.
// So for these larger sizes we have an array indexed by ceil(size/128).
//
// We flatten both logical arrays into one physical array and use
// arithmetic to compute an appropriate index. The constants used by
// ClassIndex() were selected to make the flattening work.
//
// Examples:
// Size Expression Index
// -------------------------------------------------------
// 0 (0 + 7) / 8 0
// 1 (1 + 7) / 8 1
// ...
// 1024 (1024 + 7) / 8 128
// 1025 (1025 + 127 + (120<<7)) / 128 129
// ...
// 32768 (32768 + 127 + (120<<7)) / 128 376
static const size_t kMaxSmallSize = 1024;
static const int shift_amount[2] = { 3, 7 }; // For divides by 8 or 128
static const int add_amount[2] = { 7, 127 + (120 << 7) };
static unsigned char class_array[377];
// Compute index of the class_array[] entry for a given size
static inline int ClassIndex(size_t s) {
const int i = (s > kMaxSmallSize);
return static_cast<int>((s + add_amount[i]) >> shift_amount[i]);
}
// Mapping from size class to max size storable in that class
static size_t class_to_size[kNumClasses];
// Mapping from size class to number of pages to allocate at a time
static size_t class_to_pages[kNumClasses];
// Hardened singly linked list. We make this a class to allow compiler to
// statically prevent mismatching hardened and non-hardened list
class HardenedSLL {
public:
static ALWAYS_INLINE HardenedSLL create(void* value)
{
HardenedSLL result;
result.m_value = value;
return result;
}
static ALWAYS_INLINE HardenedSLL null()
{
HardenedSLL result;
result.m_value = 0;
return result;
}
ALWAYS_INLINE void setValue(void* value) { m_value = value; }
ALWAYS_INLINE void* value() const { return m_value; }
ALWAYS_INLINE bool operator!() const { return !m_value; }
typedef void* (HardenedSLL::*UnspecifiedBoolType);
ALWAYS_INLINE operator UnspecifiedBoolType() const { return m_value ? &HardenedSLL::m_value : 0; }
bool operator!=(const HardenedSLL& other) const { return m_value != other.m_value; }
bool operator==(const HardenedSLL& other) const { return m_value == other.m_value; }
private:
void* m_value;
};
// TransferCache is used to cache transfers of num_objects_to_move[size_class]
// back and forth between thread caches and the central cache for a given size
// class.
struct TCEntry {
HardenedSLL head; // Head of chain of objects.
HardenedSLL tail; // Tail of chain of objects.
};
// A central cache freelist can have anywhere from 0 to kNumTransferEntries
// slots to put link list chains into. To keep memory usage bounded the total
// number of TCEntries across size classes is fixed. Currently each size
// class is initially given one TCEntry which also means that the maximum any
// one class can have is kNumClasses.
static const int kNumTransferEntries = kNumClasses;
// Note: the following only works for "n"s that fit in 32-bits, but
// that is fine since we only use it for small sizes.
static inline int LgFloor(size_t n) {
int log = 0;
for (int i = 4; i >= 0; --i) {
int shift = (1 << i);
size_t x = n >> shift;
if (x != 0) {
n = x;
log += shift;
}
}
ASSERT(n == 1);
return log;
}
// Functions for using our simple hardened singly linked list
static ALWAYS_INLINE HardenedSLL SLL_Next(HardenedSLL t, uintptr_t entropy) {
return HardenedSLL::create(XOR_MASK_PTR_WITH_KEY(*(reinterpret_cast<void**>(t.value())), t.value(), entropy));
}
static ALWAYS_INLINE void SLL_SetNext(HardenedSLL t, HardenedSLL n, uintptr_t entropy) {
*(reinterpret_cast<void**>(t.value())) = XOR_MASK_PTR_WITH_KEY(n.value(), t.value(), entropy);
}
static ALWAYS_INLINE void SLL_Push(HardenedSLL* list, HardenedSLL element, uintptr_t entropy) {
SLL_SetNext(element, *list, entropy);
*list = element;
}
static ALWAYS_INLINE HardenedSLL SLL_Pop(HardenedSLL *list, uintptr_t entropy) {
HardenedSLL result = *list;
*list = SLL_Next(*list, entropy);
return result;
}
// Remove N elements from a linked list to which head points. head will be
// modified to point to the new head. start and end will point to the first
// and last nodes of the range. Note that end will point to NULL after this
// function is called.
static ALWAYS_INLINE void SLL_PopRange(HardenedSLL* head, int N, HardenedSLL *start, HardenedSLL *end, uintptr_t entropy) {
if (N == 0) {
*start = HardenedSLL::null();
*end = HardenedSLL::null();
return;
}
HardenedSLL tmp = *head;
for (int i = 1; i < N; ++i) {
tmp = SLL_Next(tmp, entropy);
}
*start = *head;
*end = tmp;
*head = SLL_Next(tmp, entropy);
// Unlink range from list.
SLL_SetNext(tmp, HardenedSLL::null(), entropy);
}
static ALWAYS_INLINE void SLL_PushRange(HardenedSLL *head, HardenedSLL start, HardenedSLL end, uintptr_t entropy) {
if (!start) return;
SLL_SetNext(end, *head, entropy);
*head = start;
}
static ALWAYS_INLINE size_t SLL_Size(HardenedSLL head, uintptr_t entropy) {
int count = 0;
while (head) {
count++;
head = SLL_Next(head, entropy);
}
return count;
}
// Setup helper functions.
static ALWAYS_INLINE size_t SizeClass(size_t size) {
return class_array[ClassIndex(size)];
}
// Get the byte-size for a specified class
static ALWAYS_INLINE size_t ByteSizeForClass(size_t cl) {
return class_to_size[cl];
}
static int NumMoveSize(size_t size) {
if (size == 0) return 0;
// Use approx 64k transfers between thread and central caches.
int num = static_cast<int>(64.0 * 1024.0 / size);
if (num < 2) num = 2;
// Clamp well below kMaxFreeListLength to avoid ping pong between central
// and thread caches.
if (num > static_cast<int>(0.8 * kMaxFreeListLength))
num = static_cast<int>(0.8 * kMaxFreeListLength);
// Also, avoid bringing in too many objects into small object free
// lists. There are lots of such lists, and if we allow each one to
// fetch too many at a time, we end up having to scavenge too often
// (especially when there are lots of threads and each thread gets a
// small allowance for its thread cache).
//
// TODO: Make thread cache free list sizes dynamic so that we do not
// have to equally divide a fixed resource amongst lots of threads.
if (num > 32) num = 32;
return num;
}
// Initialize the mapping arrays
static void InitSizeClasses() {
// Do some sanity checking on add_amount[]/shift_amount[]/class_array[]
if (ClassIndex(0) < 0) {
MESSAGE("Invalid class index %d for size 0\n", ClassIndex(0));
CRASH();
}
if (static_cast<size_t>(ClassIndex(kMaxSize)) >= sizeof(class_array)) {
MESSAGE("Invalid class index %d for kMaxSize\n", ClassIndex(kMaxSize));
CRASH();
}
// Compute the size classes we want to use
size_t sc = 1; // Next size class to assign
unsigned char alignshift = kAlignShift;
int last_lg = -1;
for (size_t size = kAlignment; size <= kMaxSize; size += (1 << alignshift)) {
int lg = LgFloor(size);
if (lg > last_lg) {
// Increase alignment every so often.
//
// Since we double the alignment every time size doubles and
// size >= 128, this means that space wasted due to alignment is
// at most 16/128 i.e., 12.5%. Plus we cap the alignment at 256
// bytes, so the space wasted as a percentage starts falling for
// sizes > 2K.
if ((lg >= 7) && (alignshift < 8)) {
alignshift++;
}
last_lg = lg;
}
// Allocate enough pages so leftover is less than 1/8 of total.
// This bounds wasted space to at most 12.5%.
size_t psize = kPageSize;
while ((psize % size) > (psize >> 3)) {
psize += kPageSize;
}
const size_t my_pages = psize >> kPageShift;
if (sc > 1 && my_pages == class_to_pages[sc-1]) {
// See if we can merge this into the previous class without
// increasing the fragmentation of the previous class.
const size_t my_objects = (my_pages << kPageShift) / size;
const size_t prev_objects = (class_to_pages[sc-1] << kPageShift)
/ class_to_size[sc-1];
if (my_objects == prev_objects) {
// Adjust last class to include this size
class_to_size[sc-1] = size;
continue;
}
}
// Add new class
class_to_pages[sc] = my_pages;
class_to_size[sc] = size;
sc++;
}
if (sc != kNumClasses) {
MESSAGE("wrong number of size classes: found %" PRIuS " instead of %d\n",
sc, int(kNumClasses));
CRASH();
}
// Initialize the mapping arrays
int next_size = 0;
for (unsigned char c = 1; c < kNumClasses; c++) {
const size_t max_size_in_class = class_to_size[c];
for (size_t s = next_size; s <= max_size_in_class; s += kAlignment) {
class_array[ClassIndex(s)] = c;
}
next_size = static_cast<int>(max_size_in_class + kAlignment);
}
// Double-check sizes just to be safe
for (size_t size = 0; size <= kMaxSize; size++) {
const size_t sc = SizeClass(size);
if (sc == 0) {
MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
CRASH();
}
if (sc > 1 && size <= class_to_size[sc-1]) {
MESSAGE("Allocating unnecessarily large class %" PRIuS " for %" PRIuS
"\n", sc, size);
CRASH();
}
if (sc >= kNumClasses) {
MESSAGE("Bad size class %" PRIuS " for %" PRIuS "\n", sc, size);
CRASH();
}
const size_t s = class_to_size[sc];
if (size > s) {
MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
CRASH();
}
if (s == 0) {
MESSAGE("Bad size %" PRIuS " for %" PRIuS " (sc = %" PRIuS ")\n", s, size, sc);
CRASH();
}
}
// Initialize the num_objects_to_move array.
for (size_t cl = 1; cl < kNumClasses; ++cl) {
num_objects_to_move[cl] = NumMoveSize(ByteSizeForClass(cl));
}
}
// -------------------------------------------------------------------------
// Simple allocator for objects of a specified type. External locking
// is required before accessing one of these objects.
// -------------------------------------------------------------------------
// Metadata allocator -- keeps stats about how many bytes allocated
static uint64_t metadata_system_bytes = 0;
static void* MetaDataAlloc(size_t bytes) {
void* result = TCMalloc_SystemAlloc(bytes, 0);
if (result != NULL) {
metadata_system_bytes += bytes;
}
return result;
}
template <class T>
class PageHeapAllocator {
private:
// How much to allocate from system at a time
static const size_t kAllocIncrement = 32 << 10;
// Aligned size of T
static const size_t kAlignedSize
= (((sizeof(T) + kAlignment - 1) / kAlignment) * kAlignment);
// Free area from which to carve new objects
char* free_area_;
size_t free_avail_;
// Linked list of all regions allocated by this allocator
HardenedSLL allocated_regions_;
// Free list of already carved objects
HardenedSLL free_list_;
// Number of allocated but unfreed objects
int inuse_;
uintptr_t entropy_;
public:
void Init(uintptr_t entropy) {
ASSERT(kAlignedSize <= kAllocIncrement);
inuse_ = 0;
allocated_regions_ = HardenedSLL::null();
free_area_ = NULL;
free_avail_ = 0;
free_list_.setValue(NULL);
entropy_ = entropy;
}
T* New() {
// Consult free list
void* result;
if (free_list_) {
result = free_list_.value();
free_list_ = SLL_Next(free_list_, entropy_);
} else {
if (free_avail_ < kAlignedSize) {
// Need more room
char* new_allocation = reinterpret_cast<char*>(MetaDataAlloc(kAllocIncrement));
if (!new_allocation)
CRASH();
HardenedSLL new_head = HardenedSLL::create(new_allocation);
SLL_SetNext(new_head, allocated_regions_, entropy_);
allocated_regions_ = new_head;
free_area_ = new_allocation + kAlignedSize;
free_avail_ = kAllocIncrement - kAlignedSize;
}
result = free_area_;
free_area_ += kAlignedSize;
free_avail_ -= kAlignedSize;
}
inuse_++;
return reinterpret_cast<T*>(result);
}
void Delete(T* p) {
HardenedSLL new_head = HardenedSLL::create(p);
SLL_SetNext(new_head, free_list_, entropy_);
free_list_ = new_head;
inuse_--;
}
int inuse() const { return inuse_; }
#if OS(MACOSX)
template <class Recorder>
void recordAdministrativeRegions(Recorder& recorder, const RemoteMemoryReader& reader)
{
for (HardenedSLL adminAllocation = allocated_regions_; adminAllocation; adminAllocation.setValue(reader.nextEntryInHardenedLinkedList(reinterpret_cast<void**>(adminAllocation.value()), entropy_)))
recorder.recordRegion(reinterpret_cast<vm_address_t>(adminAllocation.value()), kAllocIncrement);
}
#endif
};
// -------------------------------------------------------------------------
// Span - a contiguous run of pages
// -------------------------------------------------------------------------
// Type that can hold a page number
typedef uintptr_t PageID;
// Type that can hold the length of a run of pages
typedef uintptr_t Length;
static const Length kMaxValidPages = (~static_cast<Length>(0)) >> kPageShift;
// Convert byte size into pages. This won't overflow, but may return
// an unreasonably large value if bytes is huge enough.
static inline Length pages(size_t bytes) {
return (bytes >> kPageShift) +
((bytes & (kPageSize - 1)) > 0 ? 1 : 0);
}
// Convert a user size into the number of bytes that will actually be
// allocated
static size_t AllocationSize(size_t bytes) {
if (bytes > kMaxSize) {
// Large object: we allocate an integral number of pages
ASSERT(bytes <= (kMaxValidPages << kPageShift));
return pages(bytes) << kPageShift;
} else {
// Small object: find the size class to which it belongs
return ByteSizeForClass(SizeClass(bytes));
}
}
enum {
kSpanCookieBits = 10,
kSpanCookieMask = (1 << 10) - 1,
kSpanThisShift = 7
};
static uint32_t spanValidationCookie;
static uint32_t spanInitializerCookie()
{
static uint32_t value = EntropySource<sizeof(uint32_t)>::value() & kSpanCookieMask;
spanValidationCookie = value;
return value;
}
// Information kept for a span (a contiguous run of pages).
struct Span {
PageID start; // Starting page number
Length length; // Number of pages in span
Span* next(uintptr_t entropy) const { return XOR_MASK_PTR_WITH_KEY(m_next, this, entropy); }
Span* remoteNext(const Span* remoteSpanPointer, uintptr_t entropy) const { return XOR_MASK_PTR_WITH_KEY(m_next, remoteSpanPointer, entropy); }
Span* prev(uintptr_t entropy) const { return XOR_MASK_PTR_WITH_KEY(m_prev, this, entropy); }
void setNext(Span* next, uintptr_t entropy) { m_next = XOR_MASK_PTR_WITH_KEY(next, this, entropy); }
void setPrev(Span* prev, uintptr_t entropy) { m_prev = XOR_MASK_PTR_WITH_KEY(prev, this, entropy); }
private:
Span* m_next; // Used when in link list
Span* m_prev; // Used when in link list
public:
HardenedSLL objects; // Linked list of free objects
unsigned int free : 1; // Is the span free
#ifndef NO_TCMALLOC_SAMPLES
unsigned int sample : 1; // Sampled object?
#endif
unsigned int sizeclass : 8; // Size-class for small objects (or 0)
unsigned int refcount : 11; // Number of non-free objects
bool decommitted : 1;
void initCookie()
{
m_cookie = ((reinterpret_cast<uintptr_t>(this) >> kSpanThisShift) & kSpanCookieMask) ^ spanInitializerCookie();
}
void clearCookie() { m_cookie = 0; }
bool isValid() const
{
return (((reinterpret_cast<uintptr_t>(this) >> kSpanThisShift) & kSpanCookieMask) ^ m_cookie) == spanValidationCookie;
}
private:
uint32_t m_cookie : kSpanCookieBits;
#undef SPAN_HISTORY
#ifdef SPAN_HISTORY
// For debugging, we can keep a log events per span
int nexthistory;
char history[64];
int value[64];
#endif
};
#define ASSERT_SPAN_COMMITTED(span) ASSERT(!span->decommitted)
#ifdef SPAN_HISTORY
void Event(Span* span, char op, int v = 0) {
span->history[span->nexthistory] = op;
span->value[span->nexthistory] = v;
span->nexthistory++;
if (span->nexthistory == sizeof(span->history)) span->nexthistory = 0;
}
#else
#define Event(s,o,v) ((void) 0)
#endif
// Allocator/deallocator for spans
static PageHeapAllocator<Span> span_allocator;
static Span* NewSpan(PageID p, Length len) {
Span* result = span_allocator.New();
memset(result, 0, sizeof(*result));
result->start = p;
result->length = len;
result->initCookie();
#ifdef SPAN_HISTORY
result->nexthistory = 0;
#endif
return result;
}
static inline void DeleteSpan(Span* span) {
RELEASE_ASSERT(span->isValid());
#ifndef NDEBUG
// In debug mode, trash the contents of deleted Spans
memset(span, 0x3f, sizeof(*span));
#endif
span->clearCookie();
span_allocator.Delete(span);
}
// -------------------------------------------------------------------------
// Doubly linked list of spans.
// -------------------------------------------------------------------------
static inline void DLL_Init(Span* list, uintptr_t entropy) {
list->setNext(list, entropy);
list->setPrev(list, entropy);
}
static inline void DLL_Remove(Span* span, uintptr_t entropy) {
span->prev(entropy)->setNext(span->next(entropy), entropy);
span->next(entropy)->setPrev(span->prev(entropy), entropy);
span->setPrev(NULL, entropy);
span->setNext(NULL, entropy);
}
static ALWAYS_INLINE bool DLL_IsEmpty(const Span* list, uintptr_t entropy) {
return list->next(entropy) == list;
}
static int DLL_Length(const Span* list, uintptr_t entropy) {
int result = 0;
for (Span* s = list->next(entropy); s != list; s = s->next(entropy)) {
result++;
}
return result;
}
#if 0 /* Not needed at the moment -- causes compiler warnings if not used */
static void DLL_Print(const char* label, const Span* list) {
MESSAGE("%-10s %p:", label, list);
for (const Span* s = list->next; s != list; s = s->next) {
MESSAGE(" <%p,%u,%u>", s, s->start, s->length);
}
MESSAGE("\n");
}
#endif
static inline void DLL_Prepend(Span* list, Span* span, uintptr_t entropy) {
span->setNext(list->next(entropy), entropy);
span->setPrev(list, entropy);
list->next(entropy)->setPrev(span, entropy);
list->setNext(span, entropy);
}
//-------------------------------------------------------------------
// Data kept per size-class in central cache
//-------------------------------------------------------------------
class TCMalloc_Central_FreeList {
public:
void Init(size_t cl, uintptr_t entropy);
// These methods all do internal locking.
// Insert the specified range into the central freelist. N is the number of
// elements in the range.
void InsertRange(HardenedSLL start, HardenedSLL end, int N);
// Returns the actual number of fetched elements into N.
void RemoveRange(HardenedSLL* start, HardenedSLL* end, int *N);
// Returns the number of free objects in cache.
size_t length() {
SpinLockHolder h(&lock_);
return counter_;
}
// Returns the number of free objects in the transfer cache.
int tc_length() {
SpinLockHolder h(&lock_);
return used_slots_ * num_objects_to_move[size_class_];
}
template <class Finder, class Reader>
void enumerateFreeObjects(Finder& finder, const Reader& reader, TCMalloc_Central_FreeList* remoteCentralFreeList)
{
{
static const ptrdiff_t emptyOffset = reinterpret_cast<const char*>(&empty_) - reinterpret_cast<const char*>(this);
Span* remoteEmpty = reinterpret_cast<Span*>(reinterpret_cast<char*>(remoteCentralFreeList) + emptyOffset);
Span* remoteSpan = nonempty_.remoteNext(remoteEmpty, entropy_);
for (Span* span = reader(remoteEmpty); span && span != &empty_; remoteSpan = span->remoteNext(remoteSpan, entropy_), span = (remoteSpan ? reader(remoteSpan) : 0))
ASSERT(!span->objects);
}
ASSERT(!nonempty_.objects);
static const ptrdiff_t nonemptyOffset = reinterpret_cast<const char*>(&nonempty_) - reinterpret_cast<const char*>(this);
Span* remoteNonempty = reinterpret_cast<Span*>(reinterpret_cast<char*>(remoteCentralFreeList) + nonemptyOffset);
Span* remoteSpan = nonempty_.remoteNext(remoteNonempty, entropy_);
for (Span* span = reader(remoteSpan); span && remoteSpan != remoteNonempty; remoteSpan = span->remoteNext(remoteSpan, entropy_), span = (remoteSpan ? reader(remoteSpan) : 0)) {
for (HardenedSLL nextObject = span->objects; nextObject; nextObject.setValue(reader.nextEntryInHardenedLinkedList(reinterpret_cast<void**>(nextObject.value()), entropy_))) {
finder.visit(nextObject.value());
}
}
}
uintptr_t entropy() const { return entropy_; }
private:
// REQUIRES: lock_ is held
// Remove object from cache and return.
// Return NULL if no free entries in cache.
HardenedSLL FetchFromSpans();
// REQUIRES: lock_ is held
// Remove object from cache and return. Fetches
// from pageheap if cache is empty. Only returns
// NULL on allocation failure.
HardenedSLL FetchFromSpansSafe();
// REQUIRES: lock_ is held
// Release a linked list of objects to spans.
// May temporarily release lock_.
void ReleaseListToSpans(HardenedSLL start);
// REQUIRES: lock_ is held
// Release an object to spans.
// May temporarily release lock_.
ALWAYS_INLINE void ReleaseToSpans(HardenedSLL object);
// REQUIRES: lock_ is held
// Populate cache by fetching from the page heap.
// May temporarily release lock_.
ALWAYS_INLINE void Populate();
// REQUIRES: lock is held.
// Tries to make room for a TCEntry. If the cache is full it will try to
// expand it at the cost of some other cache size. Return false if there is
// no space.
bool MakeCacheSpace();
// REQUIRES: lock_ for locked_size_class is held.
// Picks a "random" size class to steal TCEntry slot from. In reality it
// just iterates over the sizeclasses but does so without taking a lock.
// Returns true on success.
// May temporarily lock a "random" size class.
static ALWAYS_INLINE bool EvictRandomSizeClass(size_t locked_size_class, bool force);
// REQUIRES: lock_ is *not* held.
// Tries to shrink the Cache. If force is true it will relase objects to
// spans if it allows it to shrink the cache. Return false if it failed to
// shrink the cache. Decrements cache_size_ on succeess.
// May temporarily take lock_. If it takes lock_, the locked_size_class
// lock is released to the thread from holding two size class locks
// concurrently which could lead to a deadlock.
bool ShrinkCache(int locked_size_class, bool force);
// This lock protects all the data members. cached_entries and cache_size_
// may be looked at without holding the lock.
SpinLock lock_;
// We keep linked lists of empty and non-empty spans.
size_t size_class_; // My size class
Span empty_; // Dummy header for list of empty spans
Span nonempty_; // Dummy header for list of non-empty spans
size_t counter_; // Number of free objects in cache entry
// Here we reserve space for TCEntry cache slots. Since one size class can
// end up getting all the TCEntries quota in the system we just preallocate
// sufficient number of entries here.
TCEntry tc_slots_[kNumTransferEntries];
// Number of currently used cached entries in tc_slots_. This variable is
// updated under a lock but can be read without one.
int32_t used_slots_;
// The current number of slots for this size class. This is an
// adaptive value that is increased if there is lots of traffic
// on a given size class.
int32_t cache_size_;
uintptr_t entropy_;
};
#if COMPILER(CLANG) && defined(__has_warning)
#pragma clang diagnostic push
#if __has_warning("-Wunused-private-field")
#pragma clang diagnostic ignored "-Wunused-private-field"
#endif
#endif
// Pad each CentralCache object to multiple of 64 bytes
template <size_t SizeToPad>
class TCMalloc_Central_FreeListPadded_Template : public TCMalloc_Central_FreeList {
private:
char pad[64 - SizeToPad];
};
// Zero-size specialization to avoid compiler error when TCMalloc_Central_FreeList happens
// to be exactly 64 bytes.
template <> class TCMalloc_Central_FreeListPadded_Template<0> : public TCMalloc_Central_FreeList {
};
typedef TCMalloc_Central_FreeListPadded_Template<sizeof(TCMalloc_Central_FreeList) % 64> TCMalloc_Central_FreeListPadded;
#if COMPILER(CLANG) && defined(__has_warning)
#pragma clang diagnostic pop
#endif
#if OS(MACOSX)
struct Span;
class TCMalloc_PageHeap;
class TCMalloc_ThreadCache;
template <typename T> class PageHeapAllocator;
class FastMallocZone {
public:
static void init();
static kern_return_t enumerate(task_t, void*, unsigned typeMmask, vm_address_t zoneAddress, memory_reader_t, vm_range_recorder_t);
static size_t goodSize(malloc_zone_t*, size_t size) { return size; }
static boolean_t check(malloc_zone_t*) { return true; }
static void print(malloc_zone_t*, boolean_t) { }
static void log(malloc_zone_t*, void*) { }
static void forceLock(malloc_zone_t*) { }
static void forceUnlock(malloc_zone_t*) { }
static void statistics(malloc_zone_t*, malloc_statistics_t* stats) { memset(stats, 0, sizeof(malloc_statistics_t)); }
private:
FastMallocZone(TCMalloc_PageHeap*, TCMalloc_ThreadCache**, TCMalloc_Central_FreeListPadded*, PageHeapAllocator<Span>*, PageHeapAllocator<TCMalloc_ThreadCache>*);
static size_t size(malloc_zone_t*, const void*);
static void* zoneMalloc(malloc_zone_t*, size_t);
static void* zoneCalloc(malloc_zone_t*, size_t numItems, size_t size);
static void zoneFree(malloc_zone_t*, void*);
static void* zoneRealloc(malloc_zone_t*, void*, size_t);
static void* zoneValloc(malloc_zone_t*, size_t) { LOG_ERROR("valloc is not supported"); return 0; }
static void zoneDestroy(malloc_zone_t*) { }
malloc_zone_t m_zone;
TCMalloc_PageHeap* m_pageHeap;
TCMalloc_ThreadCache** m_threadHeaps;
TCMalloc_Central_FreeListPadded* m_centralCaches;
PageHeapAllocator<Span>* m_spanAllocator;
PageHeapAllocator<TCMalloc_ThreadCache>* m_pageHeapAllocator;
};
#endif
// Even if we have support for thread-local storage in the compiler
// and linker, the OS may not support it. We need to check that at
// runtime. Right now, we have to keep a manual set of "bad" OSes.
#if defined(HAVE_TLS)
static bool kernel_supports_tls = false; // be conservative
static inline bool KernelSupportsTLS() {
return kernel_supports_tls;
}
# if !HAVE_DECL_UNAME // if too old for uname, probably too old for TLS
static void CheckIfKernelSupportsTLS() {
kernel_supports_tls = false;
}
# else
# include <sys/utsname.h> // DECL_UNAME checked for <sys/utsname.h> too
static void CheckIfKernelSupportsTLS() {
struct utsname buf;
if (uname(&buf) != 0) { // should be impossible
MESSAGE("uname failed assuming no TLS support (errno=%d)\n", errno);
kernel_supports_tls = false;
} else if (strcasecmp(buf.sysname, "linux") == 0) {
// The linux case: the first kernel to support TLS was 2.6.0
if (buf.release[0] < '2' && buf.release[1] == '.') // 0.x or 1.x
kernel_supports_tls = false;
else if (buf.release[0] == '2' && buf.release[1] == '.' &&
buf.release[2] >= '0' && buf.release[2] < '6' &&
buf.release[3] == '.') // 2.0 - 2.5
kernel_supports_tls = false;
else
kernel_supports_tls = true;
} else { // some other kernel, we'll be optimisitic
kernel_supports_tls = true;
}
// TODO(csilvers): VLOG(1) the tls status once we support RAW_VLOG
}
# endif // HAVE_DECL_UNAME
#endif // HAVE_TLS
// __THROW is defined in glibc systems. It means, counter-intuitively,
// "This function will never throw an exception." It's an optional
// optimization tool, but we may need to use it to match glibc prototypes.
#ifndef __THROW // I guess we're not on a glibc system
# define __THROW // __THROW is just an optimization, so ok to make it ""
#endif
// -------------------------------------------------------------------------
// Stack traces kept for sampled allocations
// The following state is protected by pageheap_lock_.
// -------------------------------------------------------------------------
// size/depth are made the same size as a pointer so that some generic
// code below can conveniently cast them back and forth to void*.
static const int kMaxStackDepth = 31;
struct StackTrace {
uintptr_t size; // Size of object
uintptr_t depth; // Number of PC values stored in array below
void* stack[kMaxStackDepth];
};
static PageHeapAllocator<StackTrace> stacktrace_allocator;
static Span sampled_objects;
// -------------------------------------------------------------------------
// Map from page-id to per-page data
// -------------------------------------------------------------------------
// We use PageMap2<> for 32-bit and PageMap3<> for 64-bit machines.
// We also use a simple one-level cache for hot PageID-to-sizeclass mappings,
// because sometimes the sizeclass is all the information we need.
// Selector class -- general selector uses 3-level map
template <int BITS> class MapSelector {
public:
typedef TCMalloc_PageMap3<BITS-kPageShift> Type;
typedef PackedCache<BITS, uint64_t> CacheType;
};
#if CPU(X86_64)
// On all known X86-64 platforms, the upper 16 bits are always unused and therefore
// can be excluded from the PageMap key.
// See http://en.wikipedia.org/wiki/X86-64#Virtual_address_space_details
static const size_t kBitsUnusedOn64Bit = 16;
#else
static const size_t kBitsUnusedOn64Bit = 0;
#endif
// A three-level map for 64-bit machines
template <> class MapSelector<64> {
public:
typedef TCMalloc_PageMap3<64 - kPageShift - kBitsUnusedOn64Bit> Type;
typedef PackedCache<64, uint64_t> CacheType;
};
// A two-level map for 32-bit machines
template <> class MapSelector<32> {
public:
typedef TCMalloc_PageMap2<32 - kPageShift> Type;
typedef PackedCache<32 - kPageShift, uint16_t> CacheType;
};
// -------------------------------------------------------------------------
// Page-level allocator
// * Eager coalescing
//
// Heap for page-level allocation. We allow allocating and freeing a
// contiguous runs of pages (called a "span").
// -------------------------------------------------------------------------
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
// The page heap maintains a free list for spans that are no longer in use by
// the central cache or any thread caches. We use a background thread to
// periodically scan the free list and release a percentage of it back to the OS.
// If free_committed_pages_ exceeds kMinimumFreeCommittedPageCount, the
// background thread:
// - wakes up
// - pauses for kScavengeDelayInSeconds
// - returns to the OS a percentage of the memory that remained unused during
// that pause (kScavengePercentage * min_free_committed_pages_since_last_scavenge_)
// The goal of this strategy is to reduce memory pressure in a timely fashion
// while avoiding thrashing the OS allocator.
// Time delay before the page heap scavenger will consider returning pages to
// the OS.
static const int kScavengeDelayInSeconds = 2;
// Approximate percentage of free committed pages to return to the OS in one
// scavenge.
static const float kScavengePercentage = .5f;
// number of span lists to keep spans in when memory is returned.
static const int kMinSpanListsWithSpans = 32;
// Number of free committed pages that we want to keep around. The minimum number of pages used when there
// is 1 span in each of the first kMinSpanListsWithSpans spanlists. Currently 528 pages.
static const size_t kMinimumFreeCommittedPageCount = kMinSpanListsWithSpans * ((1.0f+kMinSpanListsWithSpans) / 2.0f);
#endif
static SpinLock pageheap_lock = SPINLOCK_INITIALIZER;
class TCMalloc_PageHeap {
public:
void init();
// Allocate a run of "n" pages. Returns zero if out of memory.
Span* New(Length n);
// Delete the span "[p, p+n-1]".
// REQUIRES: span was returned by earlier call to New() and
// has not yet been deleted.
void Delete(Span* span);
// Mark an allocated span as being used for small objects of the
// specified size-class.
// REQUIRES: span was returned by an earlier call to New()
// and has not yet been deleted.
void RegisterSizeClass(Span* span, size_t sc);
// Split an allocated span into two spans: one of length "n" pages
// followed by another span of length "span->length - n" pages.
// Modifies "*span" to point to the first span of length "n" pages.
// Returns a pointer to the second span.
//
// REQUIRES: "0 < n < span->length"
// REQUIRES: !span->free
// REQUIRES: span->sizeclass == 0
Span* Split(Span* span, Length n);
// Return the descriptor for the specified page.
inline Span* GetDescriptor(PageID p) const {
return reinterpret_cast<Span*>(pagemap_.get(p));
}
inline Span* GetDescriptorEnsureSafe(PageID p)
{
pagemap_.Ensure(p, 1);
return GetDescriptor(p);
}
size_t ReturnedBytes() const;
// Return number of bytes allocated from system
inline uint64_t SystemBytes() const { return system_bytes_; }
// Return number of free bytes in heap
uint64_t FreeBytes() const {
return (static_cast<uint64_t>(free_pages_) << kPageShift);
}
bool Check();
size_t CheckList(Span* list, Length min_pages, Length max_pages, bool decommitted);
// Release all pages on the free list for reuse by the OS:
void ReleaseFreePages();
void ReleaseFreeList(Span*, Span*);
// Return 0 if we have no information, or else the correct sizeclass for p.
// Reads and writes to pagemap_cache_ do not require locking.
// The entries are 64 bits on 64-bit hardware and 16 bits on
// 32-bit hardware, and we don't mind raciness as long as each read of
// an entry yields a valid entry, not a partially updated entry.
size_t GetSizeClassIfCached(PageID p) const {
return pagemap_cache_.GetOrDefault(p, 0);
}
void CacheSizeClass(PageID p, size_t cl) const { pagemap_cache_.Put(p, cl); }
private:
// Pick the appropriate map and cache types based on pointer size
typedef MapSelector<8*sizeof(uintptr_t)>::Type PageMap;
typedef MapSelector<8*sizeof(uintptr_t)>::CacheType PageMapCache;
PageMap pagemap_;
mutable PageMapCache pagemap_cache_;
// We segregate spans of a given size into two circular linked
// lists: one for normal spans, and one for spans whose memory
// has been returned to the system.
struct SpanList {
Span normal;
Span returned;
};
// List of free spans of length >= kMaxPages
SpanList large_;
// Array mapping from span length to a doubly linked list of free spans
SpanList free_[kMaxPages];
// Number of pages kept in free lists
uintptr_t free_pages_;
// Used for hardening
uintptr_t entropy_;
// Bytes allocated from system
uint64_t system_bytes_;
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
// Number of pages kept in free lists that are still committed.
Length free_committed_pages_;
// Minimum number of free committed pages since last scavenge. (Can be 0 if
// we've committed new pages since the last scavenge.)
Length min_free_committed_pages_since_last_scavenge_;
#endif
bool GrowHeap(Length n);
// REQUIRES span->length >= n
// Remove span from its free list, and move any leftover part of
// span into appropriate free lists. Also update "span" to have
// length exactly "n" and mark it as non-free so it can be returned
// to the client.
//
// "released" is true iff "span" was found on a "returned" list.
void Carve(Span* span, Length n, bool released);
void RecordSpan(Span* span) {
pagemap_.set(span->start, span);
if (span->length > 1) {
pagemap_.set(span->start + span->length - 1, span);
}
}
// Allocate a large span of length == n. If successful, returns a
// span of exactly the specified length. Else, returns NULL.
Span* AllocLarge(Length n);
#if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
// Incrementally release some memory to the system.
// IncrementalScavenge(n) is called whenever n pages are freed.
void IncrementalScavenge(Length n);
#endif
// Number of pages to deallocate before doing more scavenging
int64_t scavenge_counter_;
// Index of last free list we scavenged
size_t scavenge_index_;
#if OS(MACOSX)
friend class FastMallocZone;
#endif
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
void initializeScavenger();
ALWAYS_INLINE void signalScavenger();
void scavenge();
ALWAYS_INLINE bool shouldScavenge() const;
#if HAVE(DISPATCH_H) || OS(WIN)
void periodicScavenge();
ALWAYS_INLINE bool isScavengerSuspended();
ALWAYS_INLINE void scheduleScavenger();
ALWAYS_INLINE void rescheduleScavenger();
ALWAYS_INLINE void suspendScavenger();
#endif
#if HAVE(DISPATCH_H)
dispatch_queue_t m_scavengeQueue;
dispatch_source_t m_scavengeTimer;
bool m_scavengingSuspended;
#elif OS(WIN)
static void CALLBACK scavengerTimerFired(void*, BOOLEAN);
HANDLE m_scavengeQueueTimer;
#else
static NO_RETURN_WITH_VALUE void* runScavengerThread(void*);
NO_RETURN void scavengerThread();
// Keeps track of whether the background thread is actively scavenging memory every kScavengeDelayInSeconds, or
// it's blocked waiting for more pages to be deleted.
bool m_scavengeThreadActive;
pthread_mutex_t m_scavengeMutex;
pthread_cond_t m_scavengeCondition;
#endif
#endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
};
void TCMalloc_PageHeap::init()
{
pagemap_.init(MetaDataAlloc);
pagemap_cache_ = PageMapCache(0);
free_pages_ = 0;
system_bytes_ = 0;
entropy_ = HARDENING_ENTROPY;
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
free_committed_pages_ = 0;
min_free_committed_pages_since_last_scavenge_ = 0;
#endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
scavenge_counter_ = 0;
// Start scavenging at kMaxPages list
scavenge_index_ = kMaxPages-1;
COMPILE_ASSERT(kNumClasses <= (1 << PageMapCache::kValuebits), valuebits);
DLL_Init(&large_.normal, entropy_);
DLL_Init(&large_.returned, entropy_);
for (size_t i = 0; i < kMaxPages; i++) {
DLL_Init(&free_[i].normal, entropy_);
DLL_Init(&free_[i].returned, entropy_);
}
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
initializeScavenger();
#endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
}
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
#if HAVE(DISPATCH_H)
void TCMalloc_PageHeap::initializeScavenger()
{
m_scavengeQueue = dispatch_queue_create("com.apple.JavaScriptCore.FastMallocSavenger", NULL);
m_scavengeTimer = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, m_scavengeQueue);
uint64_t scavengeDelayInNanoseconds = kScavengeDelayInSeconds * NSEC_PER_SEC;
dispatch_time_t startTime = dispatch_time(DISPATCH_TIME_NOW, scavengeDelayInNanoseconds);
dispatch_source_set_timer(m_scavengeTimer, startTime, scavengeDelayInNanoseconds, scavengeDelayInNanoseconds / 10);
dispatch_source_set_event_handler(m_scavengeTimer, ^{ periodicScavenge(); });
m_scavengingSuspended = true;
}
ALWAYS_INLINE bool TCMalloc_PageHeap::isScavengerSuspended()
{
ASSERT(pageheap_lock.IsHeld());
return m_scavengingSuspended;
}
ALWAYS_INLINE void TCMalloc_PageHeap::scheduleScavenger()
{
ASSERT(pageheap_lock.IsHeld());
m_scavengingSuspended = false;
dispatch_resume(m_scavengeTimer);
}
ALWAYS_INLINE void TCMalloc_PageHeap::rescheduleScavenger()
{
// Nothing to do here for libdispatch.
}
ALWAYS_INLINE void TCMalloc_PageHeap::suspendScavenger()
{
ASSERT(pageheap_lock.IsHeld());
m_scavengingSuspended = true;
dispatch_suspend(m_scavengeTimer);
}
#elif OS(WIN)
void TCMalloc_PageHeap::scavengerTimerFired(void* context, BOOLEAN)
{
static_cast<TCMalloc_PageHeap*>(context)->periodicScavenge();
}
void TCMalloc_PageHeap::initializeScavenger()
{
m_scavengeQueueTimer = 0;
}
ALWAYS_INLINE bool TCMalloc_PageHeap::isScavengerSuspended()
{
ASSERT(pageheap_lock.IsHeld());
return !m_scavengeQueueTimer;
}
ALWAYS_INLINE void TCMalloc_PageHeap::scheduleScavenger()
{
// We need to use WT_EXECUTEONLYONCE here and reschedule the timer, because
// Windows will fire the timer event even when the function is already running.
ASSERT(pageheap_lock.IsHeld());
CreateTimerQueueTimer(&m_scavengeQueueTimer, 0, scavengerTimerFired, this, kScavengeDelayInSeconds * 1000, 0, WT_EXECUTEONLYONCE);
}
ALWAYS_INLINE void TCMalloc_PageHeap::rescheduleScavenger()
{
// We must delete the timer and create it again, because it is not possible to retrigger a timer on Windows.
suspendScavenger();
scheduleScavenger();
}
ALWAYS_INLINE void TCMalloc_PageHeap::suspendScavenger()
{
ASSERT(pageheap_lock.IsHeld());
HANDLE scavengeQueueTimer = m_scavengeQueueTimer;
m_scavengeQueueTimer = 0;
DeleteTimerQueueTimer(0, scavengeQueueTimer, 0);
}
#else
void TCMalloc_PageHeap::initializeScavenger()
{
// Create a non-recursive mutex.
#if !defined(PTHREAD_MUTEX_NORMAL) || PTHREAD_MUTEX_NORMAL == PTHREAD_MUTEX_DEFAULT
pthread_mutex_init(&m_scavengeMutex, 0);
#else
pthread_mutexattr_t attr;
pthread_mutexattr_init(&attr);
pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_NORMAL);
pthread_mutex_init(&m_scavengeMutex, &attr);
pthread_mutexattr_destroy(&attr);
#endif
pthread_cond_init(&m_scavengeCondition, 0);
m_scavengeThreadActive = true;
pthread_t thread;
pthread_create(&thread, 0, runScavengerThread, this);
}
void* TCMalloc_PageHeap::runScavengerThread(void* context)
{
static_cast<TCMalloc_PageHeap*>(context)->scavengerThread();
#if COMPILER(MSVC)
// Without this, Visual Studio will complain that this method does not return a value.
return 0;
#endif
}
ALWAYS_INLINE void TCMalloc_PageHeap::signalScavenger()
{
// shouldScavenge() should be called only when the pageheap_lock spinlock is held, additionally,
// m_scavengeThreadActive is only set to false whilst pageheap_lock is held. The caller must ensure this is
// taken prior to calling this method. If the scavenger thread is sleeping and shouldScavenge() indicates there
// is memory to free the scavenger thread is signalled to start.
ASSERT(pageheap_lock.IsHeld());
if (!m_scavengeThreadActive && shouldScavenge())
pthread_cond_signal(&m_scavengeCondition);
}
#endif
void TCMalloc_PageHeap::scavenge()
{
size_t pagesToRelease = min_free_committed_pages_since_last_scavenge_ * kScavengePercentage;
size_t targetPageCount = std::max<size_t>(kMinimumFreeCommittedPageCount, free_committed_pages_ - pagesToRelease);
Length lastFreeCommittedPages = free_committed_pages_;
while (free_committed_pages_ > targetPageCount) {
ASSERT(Check());
for (int i = kMaxPages; i > 0 && free_committed_pages_ >= targetPageCount; i--) {
SpanList* slist = (static_cast<size_t>(i) == kMaxPages) ? &large_ : &free_[i];
// If the span size is bigger than kMinSpanListsWithSpans pages return all the spans in the list, else return all but 1 span.
// Return only 50% of a spanlist at a time so spans of size 1 are not the only ones left.
size_t length = DLL_Length(&slist->normal, entropy_);
size_t numSpansToReturn = (i > kMinSpanListsWithSpans) ? length : length / 2;
for (int j = 0; static_cast<size_t>(j) < numSpansToReturn && !DLL_IsEmpty(&slist->normal, entropy_) && free_committed_pages_ > targetPageCount; j++) {
Span* s = slist->normal.prev(entropy_);
DLL_Remove(s, entropy_);
ASSERT(!s->decommitted);
if (!s->decommitted) {
TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
static_cast<size_t>(s->length << kPageShift));
ASSERT(free_committed_pages_ >= s->length);
free_committed_pages_ -= s->length;
s->decommitted = true;
}
DLL_Prepend(&slist->returned, s, entropy_);
}
}
if (lastFreeCommittedPages == free_committed_pages_)
break;
lastFreeCommittedPages = free_committed_pages_;
}
min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
}
ALWAYS_INLINE bool TCMalloc_PageHeap::shouldScavenge() const
{
return free_committed_pages_ > kMinimumFreeCommittedPageCount;
}
#endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
inline Span* TCMalloc_PageHeap::New(Length n) {
ASSERT(Check());
ASSERT(n > 0);
// Find first size >= n that has a non-empty list
for (Length s = n; s < kMaxPages; s++) {
Span* ll = NULL;
bool released = false;
if (!DLL_IsEmpty(&free_[s].normal, entropy_)) {
// Found normal span
ll = &free_[s].normal;
} else if (!DLL_IsEmpty(&free_[s].returned, entropy_)) {
// Found returned span; reallocate it
ll = &free_[s].returned;
released = true;
} else {
// Keep looking in larger classes
continue;
}
Span* result = ll->next(entropy_);
Carve(result, n, released);
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
// The newly allocated memory is from a span that's in the normal span list (already committed). Update the
// free committed pages count.
ASSERT(free_committed_pages_ >= n);
free_committed_pages_ -= n;
if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_)
min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
#endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
ASSERT(Check());
free_pages_ -= n;
return result;
}
Span* result = AllocLarge(n);
if (result != NULL) {
ASSERT_SPAN_COMMITTED(result);
return result;
}
// Grow the heap and try again
if (!GrowHeap(n)) {
ASSERT(Check());
return NULL;
}
return New(n);
}
Span* TCMalloc_PageHeap::AllocLarge(Length n) {
// find the best span (closest to n in size).
// The following loops implements address-ordered best-fit.
bool from_released = false;
Span *best = NULL;
// Search through normal list
for (Span* span = large_.normal.next(entropy_);
span != &large_.normal;
span = span->next(entropy_)) {
if (span->length >= n) {
if ((best == NULL)
|| (span->length < best->length)
|| ((span->length == best->length) && (span->start < best->start))) {
best = span;
from_released = false;
}
}
}
// Search through released list in case it has a better fit
for (Span* span = large_.returned.next(entropy_);
span != &large_.returned;
span = span->next(entropy_)) {
if (span->length >= n) {
if ((best == NULL)
|| (span->length < best->length)
|| ((span->length == best->length) && (span->start < best->start))) {
best = span;
from_released = true;
}
}
}
if (best != NULL) {
Carve(best, n, from_released);
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
// The newly allocated memory is from a span that's in the normal span list (already committed). Update the
// free committed pages count.
ASSERT(free_committed_pages_ >= n);
free_committed_pages_ -= n;
if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_)
min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
#endif // USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
ASSERT(Check());
free_pages_ -= n;
return best;
}
return NULL;
}
Span* TCMalloc_PageHeap::Split(Span* span, Length n) {
ASSERT(0 < n);
ASSERT(n < span->length);
ASSERT(!span->free);
ASSERT(span->sizeclass == 0);
Event(span, 'T', n);
const Length extra = span->length - n;
Span* leftover = NewSpan(span->start + n, extra);
Event(leftover, 'U', extra);
RecordSpan(leftover);
pagemap_.set(span->start + n - 1, span); // Update map from pageid to span
span->length = n;
return leftover;
}
inline void TCMalloc_PageHeap::Carve(Span* span, Length n, bool released) {
ASSERT(n > 0);
DLL_Remove(span, entropy_);
span->free = 0;
Event(span, 'A', n);
if (released) {
// If the span chosen to carve from is decommited, commit the entire span at once to avoid committing spans 1 page at a time.
ASSERT(span->decommitted);
TCMalloc_SystemCommit(reinterpret_cast<void*>(span->start << kPageShift), static_cast<size_t>(span->length << kPageShift));
span->decommitted = false;
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
free_committed_pages_ += span->length;
#endif
}
const int extra = static_cast<int>(span->length - n);
ASSERT(extra >= 0);
if (extra > 0) {
Span* leftover = NewSpan(span->start + n, extra);
leftover->free = 1;
leftover->decommitted = false;
Event(leftover, 'S', extra);
RecordSpan(leftover);
// Place leftover span on appropriate free list
SpanList* listpair = (static_cast<size_t>(extra) < kMaxPages) ? &free_[extra] : &large_;
Span* dst = &listpair->normal;
DLL_Prepend(dst, leftover, entropy_);
span->length = n;
pagemap_.set(span->start + n - 1, span);
}
}
static ALWAYS_INLINE void mergeDecommittedStates(Span* destination, Span* other)
{
if (destination->decommitted && !other->decommitted) {
TCMalloc_SystemRelease(reinterpret_cast<void*>(other->start << kPageShift),
static_cast<size_t>(other->length << kPageShift));
} else if (other->decommitted && !destination->decommitted) {
TCMalloc_SystemRelease(reinterpret_cast<void*>(destination->start << kPageShift),
static_cast<size_t>(destination->length << kPageShift));
destination->decommitted = true;
}
}
inline void TCMalloc_PageHeap::Delete(Span* span) {
ASSERT(Check());
ASSERT(!span->free);
ASSERT(span->length > 0);
ASSERT(GetDescriptor(span->start) == span);
ASSERT(GetDescriptor(span->start + span->length - 1) == span);
span->sizeclass = 0;
#ifndef NO_TCMALLOC_SAMPLES
span->sample = 0;
#endif
// Coalesce -- we guarantee that "p" != 0, so no bounds checking
// necessary. We do not bother resetting the stale pagemap
// entries for the pieces we are merging together because we only
// care about the pagemap entries for the boundaries.
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
// Track the total size of the neighboring free spans that are committed.
Length neighboringCommittedSpansLength = 0;
#endif
const PageID p = span->start;
const Length n = span->length;
Span* prev = GetDescriptor(p-1);
if (prev != NULL && prev->free) {
// Merge preceding span into this span
ASSERT(prev->start + prev->length == p);
const Length len = prev->length;
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
if (!prev->decommitted)
neighboringCommittedSpansLength += len;
#endif
mergeDecommittedStates(span, prev);
DLL_Remove(prev, entropy_);
DeleteSpan(prev);
span->start -= len;
span->length += len;
pagemap_.set(span->start, span);
Event(span, 'L', len);
}
Span* next = GetDescriptor(p+n);
if (next != NULL && next->free) {
// Merge next span into this span
ASSERT(next->start == p+n);
const Length len = next->length;
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
if (!next->decommitted)
neighboringCommittedSpansLength += len;
#endif
mergeDecommittedStates(span, next);
DLL_Remove(next, entropy_);
DeleteSpan(next);
span->length += len;
pagemap_.set(span->start + span->length - 1, span);
Event(span, 'R', len);
}
Event(span, 'D', span->length);
span->free = 1;
if (span->decommitted) {
if (span->length < kMaxPages)
DLL_Prepend(&free_[span->length].returned, span, entropy_);
else
DLL_Prepend(&large_.returned, span, entropy_);
} else {
if (span->length < kMaxPages)
DLL_Prepend(&free_[span->length].normal, span, entropy_);
else
DLL_Prepend(&large_.normal, span, entropy_);
}
free_pages_ += n;
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
if (span->decommitted) {
// If the merged span is decommitted, that means we decommitted any neighboring spans that were
// committed. Update the free committed pages count.
free_committed_pages_ -= neighboringCommittedSpansLength;
if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_)
min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
} else {
// If the merged span remains committed, add the deleted span's size to the free committed pages count.
free_committed_pages_ += n;
}
// Make sure the scavenge thread becomes active if we have enough freed pages to release some back to the system.
signalScavenger();
#else
IncrementalScavenge(n);
#endif
ASSERT(Check());
}
#if !USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
void TCMalloc_PageHeap::IncrementalScavenge(Length n) {
// Fast path; not yet time to release memory
scavenge_counter_ -= n;
if (scavenge_counter_ >= 0) return; // Not yet time to scavenge
// If there is nothing to release, wait for so many pages before
// scavenging again. With 4K pages, this comes to 16MB of memory.
static const size_t kDefaultReleaseDelay = 1 << 8;
// Find index of free list to scavenge
size_t index = scavenge_index_ + 1;
uintptr_t entropy = entropy_;
for (size_t i = 0; i < kMaxPages+1; i++) {
if (index > kMaxPages) index = 0;
SpanList* slist = (index == kMaxPages) ? &large_ : &free_[index];
if (!DLL_IsEmpty(&slist->normal, entropy)) {
// Release the last span on the normal portion of this list
Span* s = slist->normal.prev(entropy);
DLL_Remove(s, entropy_);
TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
static_cast<size_t>(s->length << kPageShift));
s->decommitted = true;
DLL_Prepend(&slist->returned, s, entropy);
scavenge_counter_ = std::max<size_t>(64UL, std::min<size_t>(kDefaultReleaseDelay, kDefaultReleaseDelay - (free_pages_ / kDefaultReleaseDelay)));
if (index == kMaxPages && !DLL_IsEmpty(&slist->normal, entropy))
scavenge_index_ = index - 1;
else
scavenge_index_ = index;
return;
}
index++;
}
// Nothing to scavenge, delay for a while
scavenge_counter_ = kDefaultReleaseDelay;
}
#endif
void TCMalloc_PageHeap::RegisterSizeClass(Span* span, size_t sc) {
// Associate span object with all interior pages as well
ASSERT(!span->free);
ASSERT(GetDescriptor(span->start) == span);
ASSERT(GetDescriptor(span->start+span->length-1) == span);
Event(span, 'C', sc);
span->sizeclass = static_cast<unsigned int>(sc);
for (Length i = 1; i < span->length-1; i++) {
pagemap_.set(span->start+i, span);
}
}
size_t TCMalloc_PageHeap::ReturnedBytes() const {
size_t result = 0;
for (unsigned s = 0; s < kMaxPages; s++) {
const int r_length = DLL_Length(&free_[s].returned, entropy_);
unsigned r_pages = s * r_length;
result += r_pages << kPageShift;
}
for (Span* s = large_.returned.next(entropy_); s != &large_.returned; s = s->next(entropy_))
result += s->length << kPageShift;
return result;
}
bool TCMalloc_PageHeap::GrowHeap(Length n) {
ASSERT(kMaxPages >= kMinSystemAlloc);
if (n > kMaxValidPages) return false;
Length ask = (n>kMinSystemAlloc) ? n : static_cast<Length>(kMinSystemAlloc);
size_t actual_size;
void* ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
if (ptr == NULL) {
if (n < ask) {
// Try growing just "n" pages
ask = n;
ptr = TCMalloc_SystemAlloc(ask << kPageShift, &actual_size, kPageSize);
}
if (ptr == NULL) return false;
}
ask = actual_size >> kPageShift;
uint64_t old_system_bytes = system_bytes_;
system_bytes_ += (ask << kPageShift);
const PageID p = reinterpret_cast<uintptr_t>(ptr) >> kPageShift;
ASSERT(p > 0);
// If we have already a lot of pages allocated, just pre allocate a bunch of
// memory for the page map. This prevents fragmentation by pagemap metadata
// when a program keeps allocating and freeing large blocks.
if (old_system_bytes < kPageMapBigAllocationThreshold
&& system_bytes_ >= kPageMapBigAllocationThreshold) {
pagemap_.PreallocateMoreMemory();
}
// Make sure pagemap_ has entries for all of the new pages.
// Plus ensure one before and one after so coalescing code
// does not need bounds-checking.
if (pagemap_.Ensure(p-1, ask+2)) {
// Pretend the new area is allocated and then Delete() it to
// cause any necessary coalescing to occur.
//
// We do not adjust free_pages_ here since Delete() will do it for us.
Span* span = NewSpan(p, ask);
RecordSpan(span);
Delete(span);
ASSERT(Check());
return true;
} else {
// We could not allocate memory within "pagemap_"
// TODO: Once we can return memory to the system, return the new span
return false;
}
}
bool TCMalloc_PageHeap::Check() {
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
size_t totalFreeCommitted = 0;
#endif
ASSERT(free_[0].normal.next(entropy_) == &free_[0].normal);
ASSERT(free_[0].returned.next(entropy_) == &free_[0].returned);
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
totalFreeCommitted = CheckList(&large_.normal, kMaxPages, 1000000000, false);
#else
CheckList(&large_.normal, kMaxPages, 1000000000, false);
#endif
CheckList(&large_.returned, kMaxPages, 1000000000, true);
for (Length s = 1; s < kMaxPages; s++) {
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
totalFreeCommitted += CheckList(&free_[s].normal, s, s, false);
#else
CheckList(&free_[s].normal, s, s, false);
#endif
CheckList(&free_[s].returned, s, s, true);
}
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
ASSERT(totalFreeCommitted == free_committed_pages_);
#endif
return true;
}
#if ASSERT_DISABLED
size_t TCMalloc_PageHeap::CheckList(Span*, Length, Length, bool) {
return 0;
}
#else
size_t TCMalloc_PageHeap::CheckList(Span* list, Length min_pages, Length max_pages, bool decommitted) {
size_t freeCount = 0;
for (Span* s = list->next(entropy_); s != list; s = s->next(entropy_)) {
CHECK_CONDITION(s->free);
CHECK_CONDITION(s->length >= min_pages);
CHECK_CONDITION(s->length <= max_pages);
CHECK_CONDITION(GetDescriptor(s->start) == s);
CHECK_CONDITION(GetDescriptor(s->start+s->length-1) == s);
CHECK_CONDITION(s->decommitted == decommitted);
freeCount += s->length;
}
return freeCount;
}
#endif
void TCMalloc_PageHeap::ReleaseFreeList(Span* list, Span* returned) {
// Walk backwards through list so that when we push these
// spans on the "returned" list, we preserve the order.
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
size_t freePageReduction = 0;
#endif
while (!DLL_IsEmpty(list, entropy_)) {
Span* s = list->prev(entropy_);
DLL_Remove(s, entropy_);
s->decommitted = true;
DLL_Prepend(returned, s, entropy_);
TCMalloc_SystemRelease(reinterpret_cast<void*>(s->start << kPageShift),
static_cast<size_t>(s->length << kPageShift));
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
freePageReduction += s->length;
#endif
}
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
free_committed_pages_ -= freePageReduction;
if (free_committed_pages_ < min_free_committed_pages_since_last_scavenge_)
min_free_committed_pages_since_last_scavenge_ = free_committed_pages_;
#endif
}
void TCMalloc_PageHeap::ReleaseFreePages() {
for (Length s = 0; s < kMaxPages; s++) {
ReleaseFreeList(&free_[s].normal, &free_[s].returned);
}
ReleaseFreeList(&large_.normal, &large_.returned);
ASSERT(Check());
}
//-------------------------------------------------------------------
// Free list
//-------------------------------------------------------------------
class TCMalloc_ThreadCache_FreeList {
private:
HardenedSLL list_; // Linked list of nodes
uint16_t length_; // Current length
uint16_t lowater_; // Low water mark for list length
uintptr_t entropy_; // Entropy source for hardening
public:
void Init(uintptr_t entropy) {
list_.setValue(NULL);
length_ = 0;
lowater_ = 0;
entropy_ = entropy;
#if ENABLE(TCMALLOC_HARDENING)
ASSERT(entropy_);
#endif
}
// Return current length of list
int length() const {
return length_;
}
// Is list empty?
bool empty() const {
return !list_;
}
// Low-water mark management
int lowwatermark() const { return lowater_; }
void clear_lowwatermark() { lowater_ = length_; }
ALWAYS_INLINE void Push(HardenedSLL ptr) {
SLL_Push(&list_, ptr, entropy_);
length_++;
}
void PushRange(int N, HardenedSLL start, HardenedSLL end) {
SLL_PushRange(&list_, start, end, entropy_);
length_ = length_ + static_cast<uint16_t>(N);
}
void PopRange(int N, HardenedSLL* start, HardenedSLL* end) {
SLL_PopRange(&list_, N, start, end, entropy_);
ASSERT(length_ >= N);
length_ = length_ - static_cast<uint16_t>(N);
if (length_ < lowater_) lowater_ = length_;
}
ALWAYS_INLINE void* Pop() {
ASSERT(list_);
length_--;
if (length_ < lowater_) lowater_ = length_;
return SLL_Pop(&list_, entropy_).value();
}
// Runs through the linked list to ensure that
// we can do that, and ensures that 'missing'
// is not present
NEVER_INLINE void Validate(HardenedSLL missing, size_t size) {
HardenedSLL node = list_;
UNUSED_PARAM(size);
while (node) {
RELEASE_ASSERT(node != missing);
RELEASE_ASSERT(IS_DEFINITELY_POISONED(node.value(), size));
node = SLL_Next(node, entropy_);
}
}
template <class Finder, class Reader>
void enumerateFreeObjects(Finder& finder, const Reader& reader)
{
for (HardenedSLL nextObject = list_; nextObject; nextObject.setValue(reader.nextEntryInHardenedLinkedList(reinterpret_cast<void**>(nextObject.value()), entropy_)))
finder.visit(nextObject.value());
}
};
//-------------------------------------------------------------------
// Data kept per thread
//-------------------------------------------------------------------
class TCMalloc_ThreadCache {
private:
typedef TCMalloc_ThreadCache_FreeList FreeList;
#if OS(WIN)
typedef DWORD ThreadIdentifier;
#else
typedef pthread_t ThreadIdentifier;
#endif
size_t size_; // Combined size of data
ThreadIdentifier tid_; // Which thread owns it
bool in_setspecific_; // Called pthread_setspecific?
FreeList list_[kNumClasses]; // Array indexed by size-class
// We sample allocations, biased by the size of the allocation
uint32_t rnd_; // Cheap random number generator
size_t bytes_until_sample_; // Bytes until we sample next
uintptr_t entropy_; // Entropy value used for hardening
// Allocate a new heap. REQUIRES: pageheap_lock is held.
static inline TCMalloc_ThreadCache* NewHeap(ThreadIdentifier tid, uintptr_t entropy);
// Use only as pthread thread-specific destructor function.
static void DestroyThreadCache(void* ptr);
public:
// All ThreadCache objects are kept in a linked list (for stats collection)
TCMalloc_ThreadCache* next_;
TCMalloc_ThreadCache* prev_;
void Init(ThreadIdentifier tid, uintptr_t entropy);
void Cleanup();
// Accessors (mostly just for printing stats)
int freelist_length(size_t cl) const { return list_[cl].length(); }
// Total byte size in cache
size_t Size() const { return size_; }
ALWAYS_INLINE void* Allocate(size_t size);
void Deallocate(HardenedSLL ptr, size_t size_class);
ALWAYS_INLINE void FetchFromCentralCache(size_t cl, size_t allocationSize);
void ReleaseToCentralCache(size_t cl, int N);
void Scavenge();
void Print() const;
// Record allocation of "k" bytes. Return true iff allocation
// should be sampled
bool SampleAllocation(size_t k);
// Pick next sampling point
void PickNextSample(size_t k);
static void InitModule();
static void InitTSD();
static TCMalloc_ThreadCache* GetThreadHeap();
static TCMalloc_ThreadCache* GetCache();
static TCMalloc_ThreadCache* GetCacheIfPresent();
static TCMalloc_ThreadCache* CreateCacheIfNecessary();
static void DeleteCache(TCMalloc_ThreadCache* heap);
static void BecomeIdle();
static void RecomputeThreadCacheSize();
template <class Finder, class Reader>
void enumerateFreeObjects(Finder& finder, const Reader& reader)
{
for (unsigned sizeClass = 0; sizeClass < kNumClasses; sizeClass++)
list_[sizeClass].enumerateFreeObjects(finder, reader);
}
};
//-------------------------------------------------------------------
// Global variables
//-------------------------------------------------------------------
// Central cache -- a collection of free-lists, one per size-class.
// We have a separate lock per free-list to reduce contention.
static TCMalloc_Central_FreeListPadded central_cache[kNumClasses];
// Page-level allocator
static AllocAlignmentInteger pageheap_memory[(sizeof(TCMalloc_PageHeap) + sizeof(AllocAlignmentInteger) - 1) / sizeof(AllocAlignmentInteger)];
static bool phinited = false;
// Avoid extra level of indirection by making "pageheap" be just an alias
// of pageheap_memory.
typedef union {
void* m_memory;
TCMalloc_PageHeap* m_pageHeap;
} PageHeapUnion;
static inline TCMalloc_PageHeap* getPageHeap()
{
PageHeapUnion u = { &pageheap_memory[0] };
return u.m_pageHeap;
}
#define pageheap getPageHeap()
#if USE_BACKGROUND_THREAD_TO_SCAVENGE_MEMORY
#if HAVE(DISPATCH_H) || OS(WIN)
void TCMalloc_PageHeap::periodicScavenge()
{
SpinLockHolder h(&pageheap_lock);
pageheap->scavenge();
if (shouldScavenge()) {
rescheduleScavenger();
return;
}
suspendScavenger();
}
ALWAYS_INLINE void TCMalloc_PageHeap::signalScavenger()
{
ASSERT(pageheap_lock.IsHeld());
if (isScavengerSuspended() && shouldScavenge())
scheduleScavenger();
}
#else
void TCMalloc_PageHeap::scavengerThread()
{
#if HAVE(PTHREAD_SETNAME_NP)
pthread_setname_np("JavaScriptCore: FastMalloc scavenger");
#endif
while (1) {
pageheap_lock.Lock();
if (!shouldScavenge()) {
// Set to false so that signalScavenger() will check whether we need to be siganlled.
m_scavengeThreadActive = false;
// We need to unlock now, as this thread will block on the condvar until scavenging is required.
pageheap_lock.Unlock();
// Block until there are enough free committed pages to release back to the system.
pthread_mutex_lock(&m_scavengeMutex);
pthread_cond_wait(&m_scavengeCondition, &m_scavengeMutex);
// After exiting the pthread_cond_wait, we hold the lock on m_scavengeMutex. Unlock it to prevent
// deadlock next time round the loop.
pthread_mutex_unlock(&m_scavengeMutex);
// Set to true to prevent unnecessary signalling of the condvar.
m_scavengeThreadActive = true;
} else
pageheap_lock.Unlock();
// Wait for a while to calculate how much memory remains unused during this pause.
sleep(kScavengeDelayInSeconds);
{
SpinLockHolder h(&pageheap_lock);
pageheap->scavenge();
}
}
}
#endif
#endif
// If TLS is available, we also store a copy
// of the per-thread object in a __thread variable
// since __thread variables are faster to read
// than pthread_getspecific(). We still need
// pthread_setspecific() because __thread
// variables provide no way to run cleanup
// code when a thread is destroyed.
#ifdef HAVE_TLS
static __thread TCMalloc_ThreadCache *threadlocal_heap;
#endif
// Thread-specific key. Initialization here is somewhat tricky
// because some Linux startup code invokes malloc() before it
// is in a good enough state to handle pthread_keycreate().
// Therefore, we use TSD keys only after tsd_inited is set to true.
// Until then, we use a slow path to get the heap object.
static bool tsd_inited = false;
static pthread_key_t heap_key;
#if OS(WIN)
DWORD tlsIndex = TLS_OUT_OF_INDEXES;
#endif
static ALWAYS_INLINE void setThreadHeap(TCMalloc_ThreadCache* heap)
{
// Still do pthread_setspecific even if there's an alternate form
// of thread-local storage in use, to benefit from the delete callback.
pthread_setspecific(heap_key, heap);
#if OS(WIN)
TlsSetValue(tlsIndex, heap);
#endif
}
// Allocator for thread heaps
static PageHeapAllocator<TCMalloc_ThreadCache> threadheap_allocator;
// Linked list of heap objects. Protected by pageheap_lock.
static TCMalloc_ThreadCache* thread_heaps = NULL;
static int thread_heap_count = 0;
// Overall thread cache size. Protected by pageheap_lock.
static size_t overall_thread_cache_size = kDefaultOverallThreadCacheSize;
// Global per-thread cache size. Writes are protected by
// pageheap_lock. Reads are done without any locking, which should be
// fine as long as size_t can be written atomically and we don't place
// invariants between this variable and other pieces of state.
static volatile size_t per_thread_cache_size = kMaxThreadCacheSize;
//-------------------------------------------------------------------
// Central cache implementation
//-------------------------------------------------------------------
void TCMalloc_Central_FreeList::Init(size_t cl, uintptr_t entropy) {
lock_.Init();
size_class_ = cl;
entropy_ = entropy;
#if ENABLE(TCMALLOC_HARDENING)
ASSERT(entropy_);
#endif
DLL_Init(&empty_, entropy_);
DLL_Init(&nonempty_, entropy_);
counter_ = 0;
cache_size_ = 1;
used_slots_ = 0;
ASSERT(cache_size_ <= kNumTransferEntries);
}
void TCMalloc_Central_FreeList::ReleaseListToSpans(HardenedSLL start) {
while (start) {
HardenedSLL next = SLL_Next(start, entropy_);
ReleaseToSpans(start);
start = next;
}
}
ALWAYS_INLINE void TCMalloc_Central_FreeList::ReleaseToSpans(HardenedSLL object) {
const PageID p = reinterpret_cast<uintptr_t>(object.value()) >> kPageShift;
Span* span = pageheap->GetDescriptor(p);
ASSERT(span != NULL);
ASSERT(span->refcount > 0);
// If span is empty, move it to non-empty list
if (!span->objects) {
DLL_Remove(span, entropy_);
DLL_Prepend(&nonempty_, span, entropy_);
Event(span, 'N', 0);
}
// The following check is expensive, so it is disabled by default
if (false) {
// Check that object does not occur in list
unsigned got = 0;
for (HardenedSLL p = span->objects; !p; SLL_Next(p, entropy_)) {
ASSERT(p.value() != object.value());
got++;
}
ASSERT(got + span->refcount ==
(span->length<<kPageShift)/ByteSizeForClass(span->sizeclass));
}
counter_++;
span->refcount--;
if (span->refcount == 0) {
Event(span, '#', 0);
counter_ -= (span->length<<kPageShift) / ByteSizeForClass(span->sizeclass);
DLL_Remove(span, entropy_);
// Release central list lock while operating on pageheap
lock_.Unlock();
{
SpinLockHolder h(&pageheap_lock);
pageheap->Delete(span);
}
lock_.Lock();
} else {
SLL_SetNext(object, span->objects, entropy_);
span->objects.setValue(object.value());
}
}
ALWAYS_INLINE bool TCMalloc_Central_FreeList::EvictRandomSizeClass(
size_t locked_size_class, bool force) {
static int race_counter = 0;
int t = race_counter++; // Updated without a lock, but who cares.
if (t >= static_cast<int>(kNumClasses)) {
while (t >= static_cast<int>(kNumClasses)) {
t -= kNumClasses;
}
race_counter = t;
}
ASSERT(t >= 0);
ASSERT(t < static_cast<int>(kNumClasses));
if (t == static_cast<int>(locked_size_class)) return false;
return central_cache[t].ShrinkCache(static_cast<int>(locked_size_class), force);
}
bool TCMalloc_Central_FreeList::MakeCacheSpace() {
// Is there room in the cache?
if (used_slots_ < cache_size_) return true;
// Check if we can expand this cache?
if (cache_size_ == kNumTransferEntries) return false;
// Ok, we'll try to grab an entry from some other size class.
if (EvictRandomSizeClass(size_class_, false) ||
EvictRandomSizeClass(size_class_, true)) {
// Succeeded in evicting, we're going to make our cache larger.
cache_size_++;
return true;
}
return false;
}
namespace {
class LockInverter {
private:
SpinLock *held_, *temp_;
public:
inline explicit LockInverter(SpinLock* held, SpinLock *temp)
: held_(held), temp_(temp) { held_->Unlock(); temp_->Lock(); }
inline ~LockInverter() { temp_->Unlock(); held_->Lock(); }
};
}
bool TCMalloc_Central_FreeList::ShrinkCache(int locked_size_class, bool force) {
// Start with a quick check without taking a lock.
if (cache_size_ == 0) return false;
// We don't evict from a full cache unless we are 'forcing'.
if (force == false && used_slots_ == cache_size_) return false;
// Grab lock, but first release the other lock held by this thread. We use
// the lock inverter to ensure that we never hold two size class locks
// concurrently. That can create a deadlock because there is no well
// defined nesting order.
LockInverter li(&central_cache[locked_size_class].lock_, &lock_);
ASSERT(used_slots_ <= cache_size_);
ASSERT(0 <= cache_size_);
if (cache_size_ == 0) return false;
if (used_slots_ == cache_size_) {
if (force == false) return false;
// ReleaseListToSpans releases the lock, so we have to make all the
// updates to the central list before calling it.
cache_size_--;
used_slots_--;
ReleaseListToSpans(tc_slots_[used_slots_].head);
return true;
}
cache_size_--;
return true;
}
void TCMalloc_Central_FreeList::InsertRange(HardenedSLL start, HardenedSLL end, int N) {
SpinLockHolder h(&lock_);
if (N == num_objects_to_move[size_class_] &&
MakeCacheSpace()) {
int slot = used_slots_++;
ASSERT(slot >=0);
ASSERT(slot < kNumTransferEntries);
TCEntry *entry = &tc_slots_[slot];
entry->head = start;
entry->tail = end;
return;
}
ReleaseListToSpans(start);
}
void TCMalloc_Central_FreeList::RemoveRange(HardenedSLL* start, HardenedSLL* end, int *N) {
int num = *N;
ASSERT(num > 0);
SpinLockHolder h(&lock_);
if (num == num_objects_to_move[size_class_] && used_slots_ > 0) {
int slot = --used_slots_;
ASSERT(slot >= 0);
TCEntry *entry = &tc_slots_[slot];
*start = entry->head;
*end = entry->tail;
return;
}
// TODO: Prefetch multiple TCEntries?
HardenedSLL tail = FetchFromSpansSafe();
if (!tail) {
// We are completely out of memory.
*start = *end = HardenedSLL::null();
*N = 0;
return;
}
SLL_SetNext(tail, HardenedSLL::null(), entropy_);
HardenedSLL head = tail;
int count = 1;
while (count < num) {
HardenedSLL t = FetchFromSpans();
if (!t) break;
SLL_Push(&head, t, entropy_);
count++;
}
*start = head;
*end = tail;
*N = count;
}
HardenedSLL TCMalloc_Central_FreeList::FetchFromSpansSafe() {
HardenedSLL t = FetchFromSpans();
if (!t) {
Populate();
t = FetchFromSpans();
}
return t;
}
HardenedSLL TCMalloc_Central_FreeList::FetchFromSpans() {
if (DLL_IsEmpty(&nonempty_, entropy_)) return HardenedSLL::null();
Span* span = nonempty_.next(entropy_);
ASSERT(span->objects);
ASSERT_SPAN_COMMITTED(span);
span->refcount++;
HardenedSLL result = span->objects;
span->objects = SLL_Next(result, entropy_);
if (!span->objects) {
// Move to empty list
DLL_Remove(span, entropy_);
DLL_Prepend(&empty_, span, entropy_);
Event(span, 'E', 0);
}
counter_--;
return result;
}
// Fetch memory from the system and add to the central cache freelist.
ALWAYS_INLINE void TCMalloc_Central_FreeList::Populate() {
// Release central list lock while operating on pageheap
lock_.Unlock();
const size_t npages = class_to_pages[size_class_];
Span* span;
{
SpinLockHolder h(&pageheap_lock);
span = pageheap->New(npages);
if (span) pageheap->RegisterSizeClass(span, size_class_);
}
if (span == NULL) {
#if OS(WIN)
MESSAGE("allocation failed: %d\n", ::GetLastError());
#else
MESSAGE("allocation failed: %d\n", errno);
#endif
lock_.Lock();
return;
}
ASSERT_SPAN_COMMITTED(span);
ASSERT(span->length == npages);
// Cache sizeclass info eagerly. Locking is not necessary.
// (Instead of being eager, we could just replace any stale info
// about this span, but that seems to be no better in practice.)
for (size_t i = 0; i < npages; i++) {
pageheap->CacheSizeClass(span->start + i, size_class_);
}
// Split the block into pieces and add to the free-list
// TODO: coloring of objects to avoid cache conflicts?
HardenedSLL head = HardenedSLL::null();
char* start = reinterpret_cast<char*>(span->start << kPageShift);
const size_t size = ByteSizeForClass(size_class_);
char* ptr = start + (npages << kPageShift) - ((npages << kPageShift) % size);
int num = 0;
#if ENABLE(TCMALLOC_HARDENING)
uint32_t startPoison = freedObjectStartPoison();
uint32_t endPoison = freedObjectEndPoison();
#endif
while (ptr > start) {
ptr -= size;
HardenedSLL node = HardenedSLL::create(ptr);
POISON_DEALLOCATION_EXPLICIT(ptr, size, startPoison, endPoison);
SLL_SetNext(node, head, entropy_);
head = node;
num++;
}
ASSERT(ptr == start);
ASSERT(ptr == head.value());
#ifndef NDEBUG
{
HardenedSLL node = head;
while (node) {
ASSERT(IS_DEFINITELY_POISONED(node.value(), size));
node = SLL_Next(node, entropy_);
}
}
#endif
span->objects = head;
ASSERT(span->objects.value() == head.value());
span->refcount = 0; // No sub-object in use yet
// Add span to list of non-empty spans
lock_.Lock();
DLL_Prepend(&nonempty_, span, entropy_);
counter_ += num;
}
//-------------------------------------------------------------------
// TCMalloc_ThreadCache implementation
//-------------------------------------------------------------------
inline bool TCMalloc_ThreadCache::SampleAllocation(size_t k) {
if (bytes_until_sample_ < k) {
PickNextSample(k);
return true;
} else {
bytes_until_sample_ -= k;
return false;
}
}
void TCMalloc_ThreadCache::Init(ThreadIdentifier tid, uintptr_t entropy) {
size_ = 0;
next_ = NULL;
prev_ = NULL;
tid_ = tid;
in_setspecific_ = false;
entropy_ = entropy;
#if ENABLE(TCMALLOC_HARDENING)
ASSERT(entropy_);
#endif
for (size_t cl = 0; cl < kNumClasses; ++cl) {
list_[cl].Init(entropy_);
}
// Initialize RNG -- run it for a bit to get to good values
bytes_until_sample_ = 0;
rnd_ = static_cast<uint32_t>(reinterpret_cast<uintptr_t>(this));
for (int i = 0; i < 100; i++) {
PickNextSample(static_cast<size_t>(FLAGS_tcmalloc_sample_parameter * 2));
}
}
void TCMalloc_ThreadCache::Cleanup() {
// Put unused memory back into central cache
for (size_t cl = 0; cl < kNumClasses; ++cl) {
if (list_[cl].length() > 0) {
ReleaseToCentralCache(cl, list_[cl].length());
}
}
}
ALWAYS_INLINE void* TCMalloc_ThreadCache::Allocate(size_t size) {
ASSERT(size <= kMaxSize);
const size_t cl = SizeClass(size);
FreeList* list = &list_[cl];
size_t allocationSize = ByteSizeForClass(cl);
if (list->empty()) {
FetchFromCentralCache(cl, allocationSize);
if (list->empty()) return NULL;
}
size_ -= allocationSize;
void* result = list->Pop();
if (!result)
return 0;
RELEASE_ASSERT(IS_DEFINITELY_POISONED(result, allocationSize));
POISON_ALLOCATION(result, allocationSize);
return result;
}
inline void TCMalloc_ThreadCache::Deallocate(HardenedSLL ptr, size_t cl) {
size_t allocationSize = ByteSizeForClass(cl);
size_ += allocationSize;
FreeList* list = &list_[cl];
if (MAY_BE_POISONED(ptr.value(), allocationSize))
list->Validate(ptr, allocationSize);
POISON_DEALLOCATION(ptr.value(), allocationSize);
list->Push(ptr);
// If enough data is free, put back into central cache
if (list->length() > kMaxFreeListLength) {
ReleaseToCentralCache(cl, num_objects_to_move[cl]);
}
if (size_ >= per_thread_cache_size) Scavenge();
}
// Remove some objects of class "cl" from central cache and add to thread heap
ALWAYS_INLINE void TCMalloc_ThreadCache::FetchFromCentralCache(size_t cl, size_t allocationSize) {
int fetch_count = num_objects_to_move[cl];
HardenedSLL start, end;
central_cache[cl].RemoveRange(&start, &end, &fetch_count);
list_[cl].PushRange(fetch_count, start, end);
size_ += allocationSize * fetch_count;
}
// Remove some objects of class "cl" from thread heap and add to central cache
inline void TCMalloc_ThreadCache::ReleaseToCentralCache(size_t cl, int N) {
ASSERT(N > 0);
FreeList* src = &list_[cl];
if (N > src->length()) N = src->length();
size_ -= N*ByteSizeForClass(cl);
// We return prepackaged chains of the correct size to the central cache.
// TODO: Use the same format internally in the thread caches?
int batch_size = num_objects_to_move[cl];
while (N > batch_size) {
HardenedSLL tail, head;
src->PopRange(batch_size, &head, &tail);
central_cache[cl].InsertRange(head, tail, batch_size);
N -= batch_size;
}
HardenedSLL tail, head;
src->PopRange(N, &head, &tail);
central_cache[cl].InsertRange(head, tail, N);
}
// Release idle memory to the central cache
inline void TCMalloc_ThreadCache::Scavenge() {
// If the low-water mark for the free list is L, it means we would
// not have had to allocate anything from the central cache even if
// we had reduced the free list size by L. We aim to get closer to
// that situation by dropping L/2 nodes from the free list. This
// may not release much memory, but if so we will call scavenge again
// pretty soon and the low-water marks will be high on that call.
//int64 start = CycleClock::Now();
for (size_t cl = 0; cl < kNumClasses; cl++) {
FreeList* list = &list_[cl];
const int lowmark = list->lowwatermark();
if (lowmark > 0) {
const int drop = (lowmark > 1) ? lowmark/2 : 1;
ReleaseToCentralCache(cl, drop);<