blob: f135da33c0c57896f5be527893f22e1ff8d5a6e5 [file] [log] [blame]
/*
* Copyright (C) 2005, 2006, 2007, 2008, 2011 Apple Inc. All rights reserved.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Library General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Library General Public License for more details.
*
* You should have received a copy of the GNU Library General Public License
* along with this library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
* Boston, MA 02110-1301, USA.
*
*/
#ifndef WTF_HashMap_h
#define WTF_HashMap_h
#include "wtf/FastAllocBase.h"
#include "wtf/HashTable.h"
namespace WTF {
template<typename KeyTraits, typename MappedTraits> struct HashMapValueTraits;
template<typename T> struct ReferenceTypeMaker {
typedef T& ReferenceType;
};
template<typename T> struct ReferenceTypeMaker<T&> {
typedef T& ReferenceType;
};
template<typename T> struct KeyValuePairKeyExtractor {
static const typename T::KeyType& extract(const T& p) { return p.key; }
};
template<typename KeyArg, typename MappedArg, typename HashArg = typename DefaultHash<KeyArg>::Hash,
typename KeyTraitsArg = HashTraits<KeyArg>, typename MappedTraitsArg = HashTraits<MappedArg> >
class HashMap {
WTF_MAKE_FAST_ALLOCATED;
private:
typedef KeyTraitsArg KeyTraits;
typedef MappedTraitsArg MappedTraits;
typedef HashMapValueTraits<KeyTraits, MappedTraits> ValueTraits;
public:
typedef typename KeyTraits::TraitType KeyType;
typedef typename MappedTraits::TraitType MappedType;
typedef typename ValueTraits::TraitType ValueType;
private:
typedef typename MappedTraits::PassInType MappedPassInType;
typedef typename MappedTraits::PassOutType MappedPassOutType;
typedef typename MappedTraits::PeekType MappedPeekType;
typedef typename ReferenceTypeMaker<MappedPassInType>::ReferenceType MappedPassInReferenceType;
typedef HashArg HashFunctions;
typedef HashTable<KeyType, ValueType, KeyValuePairKeyExtractor<ValueType>,
HashFunctions, ValueTraits, KeyTraits> HashTableType;
class HashMapKeysProxy;
class HashMapValuesProxy;
public:
typedef HashTableIteratorAdapter<HashTableType, ValueType> iterator;
typedef HashTableConstIteratorAdapter<HashTableType, ValueType> const_iterator;
typedef typename HashTableType::AddResult AddResult;
public:
void swap(HashMap&);
int size() const;
int capacity() const;
bool isEmpty() const;
// iterators iterate over pairs of keys and values
iterator begin();
iterator end();
const_iterator begin() const;
const_iterator end() const;
HashMapKeysProxy& keys() { return static_cast<HashMapKeysProxy&>(*this); }
const HashMapKeysProxy& keys() const { return static_cast<const HashMapKeysProxy&>(*this); }
HashMapValuesProxy& values() { return static_cast<HashMapValuesProxy&>(*this); }
const HashMapValuesProxy& values() const { return static_cast<const HashMapValuesProxy&>(*this); }
iterator find(const KeyType&);
const_iterator find(const KeyType&) const;
bool contains(const KeyType&) const;
MappedPeekType get(const KeyType&) const;
// replaces value but not key if key is already present
// return value is a pair of the iterator to the key location,
// and a boolean that's true if a new value was actually added
AddResult set(const KeyType&, MappedPassInType);
// does nothing if key is already present
// return value is a pair of the iterator to the key location,
// and a boolean that's true if a new value was actually added
AddResult add(const KeyType&, MappedPassInType);
void remove(const KeyType&);
void remove(iterator);
void clear();
MappedPassOutType take(const KeyType&); // efficient combination of get with remove
// An alternate version of find() that finds the object by hashing and comparing
// with some other type, to avoid the cost of type conversion. HashTranslator
// must have the following function members:
// static unsigned hash(const T&);
// static bool equal(const ValueType&, const T&);
template<typename HashTranslator, typename T> iterator find(const T&);
template<typename HashTranslator, typename T> const_iterator find(const T&) const;
template<typename HashTranslator, typename T> bool contains(const T&) const;
// An alternate version of add() that finds the object by hashing and comparing
// with some other type, to avoid the cost of type conversion if the object is already
// in the table. HashTranslator must have the following function members:
// static unsigned hash(const T&);
// static bool equal(const ValueType&, const T&);
// static translate(ValueType&, const T&, unsigned hashCode);
template<typename HashTranslator, typename T> AddResult add(const T&, MappedPassInType);
static bool isValidKey(const KeyType&);
private:
AddResult inlineAdd(const KeyType&, MappedPassInReferenceType);
HashTableType m_impl;
};
template<typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
class HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg>::HashMapKeysProxy :
private HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg> {
public:
typedef HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg> HashMapType;
typedef typename HashMapType::iterator::Keys iterator;
typedef typename HashMapType::const_iterator::Keys const_iterator;
iterator begin()
{
return HashMapType::begin().keys();
}
iterator end()
{
return HashMapType::end().keys();
}
const_iterator begin() const
{
return HashMapType::begin().keys();
}
const_iterator end() const
{
return HashMapType::end().keys();
}
private:
friend class HashMap;
// These are intentionally not implemented.
HashMapKeysProxy();
HashMapKeysProxy(const HashMapKeysProxy&);
HashMapKeysProxy& operator=(const HashMapKeysProxy&);
~HashMapKeysProxy();
};
template<typename KeyArg, typename MappedArg, typename HashArg, typename KeyTraitsArg, typename MappedTraitsArg>
class HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg>::HashMapValuesProxy :
private HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg> {
public:
typedef HashMap<KeyArg, MappedArg, HashArg, KeyTraitsArg, MappedTraitsArg> HashMapType;
typedef typename HashMapType::iterator::Values iterator;
typedef typename HashMapType::const_iterator::Values const_iterator;
iterator begin()
{
return HashMapType::begin().values();
}
iterator end()
{
return HashMapType::end().values();
}
const_iterator begin() const
{
return HashMapType::begin().values();
}
const_iterator end() const
{
return HashMapType::end().values();
}
private:
friend class HashMap;
// These are intentionally not implemented.
HashMapValuesProxy();
HashMapValuesProxy(const HashMapValuesProxy&);
HashMapValuesProxy& operator=(const HashMapValuesProxy&);
~HashMapValuesProxy();
};
template<typename KeyTraits, typename MappedTraits> struct HashMapValueTraits : KeyValuePairHashTraits<KeyTraits, MappedTraits> {
static const bool hasIsEmptyValueFunction = true;
static bool isEmptyValue(const typename KeyValuePairHashTraits<KeyTraits, MappedTraits>::TraitType& value)
{
return isHashTraitsEmptyValue<KeyTraits>(value.key);
}
};
template<typename ValueTraits, typename HashFunctions>
struct HashMapTranslator {
template<typename T> static unsigned hash(const T& key) { return HashFunctions::hash(key); }
template<typename T, typename U> static bool equal(const T& a, const U& b) { return HashFunctions::equal(a, b); }
template<typename T, typename U, typename V> static void translate(T& location, const U& key, const V& mapped)
{
location.key = key;
ValueTraits::ValueTraits::store(mapped, location.value);
}
};
template<typename ValueTraits, typename Translator>
struct HashMapTranslatorAdapter {
template<typename T> static unsigned hash(const T& key) { return Translator::hash(key); }
template<typename T, typename U> static bool equal(const T& a, const U& b) { return Translator::equal(a, b); }
template<typename T, typename U, typename V> static void translate(T& location, const U& key, const V& mapped, unsigned hashCode)
{
Translator::translate(location.key, key, hashCode);
ValueTraits::ValueTraits::store(mapped, location.value);
}
};
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::swap(HashMap& other)
{
m_impl.swap(other.m_impl);
}
template<typename T, typename U, typename V, typename W, typename X>
inline int HashMap<T, U, V, W, X>::size() const
{
return m_impl.size();
}
template<typename T, typename U, typename V, typename W, typename X>
inline int HashMap<T, U, V, W, X>::capacity() const
{
return m_impl.capacity();
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<T, U, V, W, X>::isEmpty() const
{
return m_impl.isEmpty();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::iterator HashMap<T, U, V, W, X>::begin()
{
return m_impl.begin();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::iterator HashMap<T, U, V, W, X>::end()
{
return m_impl.end();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::const_iterator HashMap<T, U, V, W, X>::begin() const
{
return m_impl.begin();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::const_iterator HashMap<T, U, V, W, X>::end() const
{
return m_impl.end();
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::iterator HashMap<T, U, V, W, X>::find(const KeyType& key)
{
return m_impl.find(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline typename HashMap<T, U, V, W, X>::const_iterator HashMap<T, U, V, W, X>::find(const KeyType& key) const
{
return m_impl.find(key);
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<T, U, V, W, X>::contains(const KeyType& key) const
{
return m_impl.contains(key);
}
template<typename T, typename U, typename V, typename W, typename X>
template<typename HashTranslator, typename TYPE>
inline typename HashMap<T, U, V, W, X>::iterator
HashMap<T, U, V, W, X>::find(const TYPE& value)
{
return m_impl.template find<HashMapTranslatorAdapter<ValueTraits, HashTranslator> >(value);
}
template<typename T, typename U, typename V, typename W, typename X>
template<typename HashTranslator, typename TYPE>
inline typename HashMap<T, U, V, W, X>::const_iterator
HashMap<T, U, V, W, X>::find(const TYPE& value) const
{
return m_impl.template find<HashMapTranslatorAdapter<ValueTraits, HashTranslator> >(value);
}
template<typename T, typename U, typename V, typename W, typename X>
template<typename HashTranslator, typename TYPE>
inline bool
HashMap<T, U, V, W, X>::contains(const TYPE& value) const
{
return m_impl.template contains<HashMapTranslatorAdapter<ValueTraits, HashTranslator> >(value);
}
template<typename T, typename U, typename V, typename W, typename X>
typename HashMap<T, U, V, W, X>::AddResult
HashMap<T, U, V, W, X>::inlineAdd(const KeyType& key, MappedPassInReferenceType mapped)
{
return m_impl.template add<HashMapTranslator<ValueTraits, HashFunctions> >(key, mapped);
}
template<typename T, typename U, typename V, typename W, typename X>
typename HashMap<T, U, V, W, X>::AddResult
HashMap<T, U, V, W, X>::set(const KeyType& key, MappedPassInType mapped)
{
AddResult result = inlineAdd(key, mapped);
if (!result.isNewEntry) {
// The inlineAdd call above found an existing hash table entry; we need to set the mapped value.
MappedTraits::store(mapped, result.iterator->value);
}
return result;
}
template<typename T, typename U, typename V, typename W, typename X>
template<typename HashTranslator, typename TYPE>
typename HashMap<T, U, V, W, X>::AddResult
HashMap<T, U, V, W, X>::add(const TYPE& key, MappedPassInType value)
{
return m_impl.template addPassingHashCode<HashMapTranslatorAdapter<ValueTraits, HashTranslator> >(key, value);
}
template<typename T, typename U, typename V, typename W, typename X>
typename HashMap<T, U, V, W, X>::AddResult
HashMap<T, U, V, W, X>::add(const KeyType& key, MappedPassInType mapped)
{
return inlineAdd(key, mapped);
}
template<typename T, typename U, typename V, typename W, typename MappedTraits>
typename HashMap<T, U, V, W, MappedTraits>::MappedPeekType
HashMap<T, U, V, W, MappedTraits>::get(const KeyType& key) const
{
ValueType* entry = const_cast<HashTableType&>(m_impl).lookup(key);
if (!entry)
return MappedTraits::peek(MappedTraits::emptyValue());
return MappedTraits::peek(entry->value);
}
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::remove(iterator it)
{
m_impl.remove(it.m_impl);
}
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::remove(const KeyType& key)
{
remove(find(key));
}
template<typename T, typename U, typename V, typename W, typename X>
inline void HashMap<T, U, V, W, X>::clear()
{
m_impl.clear();
}
template<typename T, typename U, typename V, typename W, typename MappedTraits>
typename HashMap<T, U, V, W, MappedTraits>::MappedPassOutType
HashMap<T, U, V, W, MappedTraits>::take(const KeyType& key)
{
iterator it = find(key);
if (it == end())
return MappedTraits::passOut(MappedTraits::emptyValue());
MappedPassOutType result = MappedTraits::passOut(it->value);
remove(it);
return result;
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool HashMap<T, U, V, W, X>::isValidKey(const KeyType& key)
{
if (KeyTraits::isDeletedValue(key))
return false;
if (HashFunctions::safeToCompareToEmptyOrDeleted) {
if (key == KeyTraits::emptyValue())
return false;
} else {
if (isHashTraitsEmptyValue<KeyTraits>(key))
return false;
}
return true;
}
template<typename T, typename U, typename V, typename W, typename X>
bool operator==(const HashMap<T, U, V, W, X>& a, const HashMap<T, U, V, W, X>& b)
{
if (a.size() != b.size())
return false;
typedef typename HashMap<T, U, V, W, X>::const_iterator const_iterator;
const_iterator aEnd = a.end();
const_iterator bEnd = b.end();
for (const_iterator it = a.begin(); it != aEnd; ++it) {
const_iterator bPos = b.find(it->key);
if (bPos == bEnd || it->value != bPos->value)
return false;
}
return true;
}
template<typename T, typename U, typename V, typename W, typename X>
inline bool operator!=(const HashMap<T, U, V, W, X>& a, const HashMap<T, U, V, W, X>& b)
{
return !(a == b);
}
template<typename T, typename U, typename V, typename W, typename X>
inline void deleteAllValues(const HashMap<T, U, V, W, X>& collection)
{
typedef typename HashMap<T, U, V, W, X>::const_iterator iterator;
iterator end = collection.end();
for (iterator it = collection.begin(); it != end; ++it)
delete it->value;
}
template<typename T, typename U, typename V, typename W, typename X>
inline void deleteAllKeys(const HashMap<T, U, V, W, X>& collection)
{
typedef typename HashMap<T, U, V, W, X>::const_iterator iterator;
iterator end = collection.end();
for (iterator it = collection.begin(); it != end; ++it)
delete it->key;
}
template<typename T, typename U, typename V, typename W, typename X, typename Y>
inline void copyKeysToVector(const HashMap<T, U, V, W, X>& collection, Y& vector)
{
typedef typename HashMap<T, U, V, W, X>::const_iterator::Keys iterator;
vector.resize(collection.size());
iterator it = collection.begin().keys();
iterator end = collection.end().keys();
for (unsigned i = 0; it != end; ++it, ++i)
vector[i] = *it;
}
template<typename T, typename U, typename V, typename W, typename X, typename Y>
inline void copyValuesToVector(const HashMap<T, U, V, W, X>& collection, Y& vector)
{
typedef typename HashMap<T, U, V, W, X>::const_iterator::Values iterator;
vector.resize(collection.size());
iterator it = collection.begin().values();
iterator end = collection.end().values();
for (unsigned i = 0; it != end; ++it, ++i)
vector[i] = *it;
}
} // namespace WTF
using WTF::HashMap;
#include "wtf/RefPtrHashMap.h"
#endif /* WTF_HashMap_h */