| /* |
| * Copyright (C) 2011 Apple Inc. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY |
| * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
| * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR |
| * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
| * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "config.h" |
| #include "core/rendering/RenderGrid.h" |
| |
| #include "core/layout/Layer.h" |
| #include "core/layout/TextAutosizer.h" |
| #include "core/layout/style/GridCoordinate.h" |
| #include "core/layout/style/LayoutStyle.h" |
| #include "core/paint/GridPainter.h" |
| #include "core/rendering/RenderView.h" |
| #include "platform/LengthFunctions.h" |
| |
| namespace blink { |
| |
| static const int infinity = -1; |
| |
| class GridTrack { |
| public: |
| GridTrack() |
| : m_baseSize(0) |
| , m_growthLimit(0) |
| , m_plannedIncrease(0) |
| { |
| } |
| |
| const LayoutUnit& baseSize() const |
| { |
| ASSERT(isGrowthLimitBiggerThanBaseSize()); |
| return m_baseSize; |
| } |
| |
| const LayoutUnit& growthLimit() const |
| { |
| ASSERT(isGrowthLimitBiggerThanBaseSize()); |
| return m_growthLimit; |
| } |
| |
| void setBaseSize(LayoutUnit baseSize) |
| { |
| m_baseSize = baseSize; |
| ensureGrowthLimitIsBiggerThanBaseSize(); |
| } |
| |
| void setGrowthLimit(LayoutUnit growthLimit) |
| { |
| m_growthLimit = growthLimit; |
| ensureGrowthLimitIsBiggerThanBaseSize(); |
| } |
| |
| void growBaseSize(LayoutUnit growth) |
| { |
| ASSERT(growth >= 0); |
| m_baseSize += growth; |
| ensureGrowthLimitIsBiggerThanBaseSize(); |
| } |
| |
| void growGrowthLimit(LayoutUnit growth) |
| { |
| ASSERT(growth >= 0); |
| if (m_growthLimit == infinity) |
| m_growthLimit = m_baseSize + growth; |
| else |
| m_growthLimit += growth; |
| |
| ASSERT(m_growthLimit >= m_baseSize); |
| } |
| |
| bool growthLimitIsInfinite() const |
| { |
| return m_growthLimit == infinity; |
| } |
| |
| const LayoutUnit& growthLimitIfNotInfinite() const |
| { |
| ASSERT(isGrowthLimitBiggerThanBaseSize()); |
| return (m_growthLimit == infinity) ? m_baseSize : m_growthLimit; |
| } |
| |
| const LayoutUnit& plannedIncrease() const { return m_plannedIncrease; } |
| |
| void growPlannedIncrease(const LayoutUnit& plannedIncrease) |
| { |
| ASSERT(plannedIncrease >= 0); |
| m_plannedIncrease += plannedIncrease; |
| } |
| |
| void updateFromPlannedIncrease(RenderGrid::AccumulatorGrowFunction trackGrowthFunction) |
| { |
| if (m_plannedIncrease == 0) |
| return; |
| |
| (this->*trackGrowthFunction)(m_plannedIncrease); |
| m_plannedIncrease = 0; |
| } |
| |
| private: |
| bool isGrowthLimitBiggerThanBaseSize() const { return growthLimitIsInfinite() || m_growthLimit >= m_baseSize; } |
| |
| void ensureGrowthLimitIsBiggerThanBaseSize() |
| { |
| if (m_growthLimit != infinity && m_growthLimit < m_baseSize) |
| m_growthLimit = m_baseSize; |
| } |
| |
| LayoutUnit m_baseSize; |
| LayoutUnit m_growthLimit; |
| LayoutUnit m_plannedIncrease; |
| }; |
| |
| struct GridTrackForNormalization { |
| GridTrackForNormalization(const GridTrack& track, double flex) |
| : m_track(&track) |
| , m_flex(flex) |
| , m_normalizedFlexValue(track.baseSize() / flex) |
| { |
| } |
| |
| // Required by std::sort. |
| GridTrackForNormalization& operator=(const GridTrackForNormalization& o) |
| { |
| m_track = o.m_track; |
| m_flex = o.m_flex; |
| m_normalizedFlexValue = o.m_normalizedFlexValue; |
| return *this; |
| } |
| |
| const GridTrack* m_track; |
| double m_flex; |
| LayoutUnit m_normalizedFlexValue; |
| }; |
| |
| class RenderGrid::GridIterator { |
| WTF_MAKE_NONCOPYABLE(GridIterator); |
| public: |
| // |direction| is the direction that is fixed to |fixedTrackIndex| so e.g |
| // GridIterator(m_grid, ForColumns, 1) will walk over the rows of the 2nd column. |
| GridIterator(const GridRepresentation& grid, GridTrackSizingDirection direction, size_t fixedTrackIndex, size_t varyingTrackIndex = 0) |
| : m_grid(grid) |
| , m_direction(direction) |
| , m_rowIndex((direction == ForColumns) ? varyingTrackIndex : fixedTrackIndex) |
| , m_columnIndex((direction == ForColumns) ? fixedTrackIndex : varyingTrackIndex) |
| , m_childIndex(0) |
| { |
| ASSERT(m_rowIndex < m_grid.size()); |
| ASSERT(m_columnIndex < m_grid[0].size()); |
| } |
| |
| RenderBox* nextGridItem() |
| { |
| ASSERT(!m_grid.isEmpty()); |
| |
| size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex; |
| const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size(); |
| for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) { |
| const GridCell& children = m_grid[m_rowIndex][m_columnIndex]; |
| if (m_childIndex < children.size()) |
| return children[m_childIndex++]; |
| |
| m_childIndex = 0; |
| } |
| return 0; |
| } |
| |
| bool checkEmptyCells(size_t rowSpan, size_t columnSpan) const |
| { |
| // Ignore cells outside current grid as we will grow it later if needed. |
| size_t maxRows = std::min(m_rowIndex + rowSpan, m_grid.size()); |
| size_t maxColumns = std::min(m_columnIndex + columnSpan, m_grid[0].size()); |
| |
| // This adds a O(N^2) behavior that shouldn't be a big deal as we expect spanning areas to be small. |
| for (size_t row = m_rowIndex; row < maxRows; ++row) { |
| for (size_t column = m_columnIndex; column < maxColumns; ++column) { |
| const GridCell& children = m_grid[row][column]; |
| if (!children.isEmpty()) |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| PassOwnPtr<GridCoordinate> nextEmptyGridArea(size_t fixedTrackSpan, size_t varyingTrackSpan) |
| { |
| ASSERT(!m_grid.isEmpty()); |
| ASSERT(fixedTrackSpan >= 1 && varyingTrackSpan >= 1); |
| |
| size_t rowSpan = (m_direction == ForColumns) ? varyingTrackSpan : fixedTrackSpan; |
| size_t columnSpan = (m_direction == ForColumns) ? fixedTrackSpan : varyingTrackSpan; |
| |
| size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex; |
| const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size(); |
| for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) { |
| if (checkEmptyCells(rowSpan, columnSpan)) { |
| OwnPtr<GridCoordinate> result = adoptPtr(new GridCoordinate(GridSpan(m_rowIndex, m_rowIndex + rowSpan - 1), GridSpan(m_columnIndex, m_columnIndex + columnSpan - 1))); |
| // Advance the iterator to avoid an infinite loop where we would return the same grid area over and over. |
| ++varyingTrackIndex; |
| return result.release(); |
| } |
| } |
| return nullptr; |
| } |
| |
| private: |
| const GridRepresentation& m_grid; |
| GridTrackSizingDirection m_direction; |
| size_t m_rowIndex; |
| size_t m_columnIndex; |
| size_t m_childIndex; |
| }; |
| |
| struct RenderGrid::GridSizingData { |
| WTF_MAKE_NONCOPYABLE(GridSizingData); |
| STACK_ALLOCATED(); |
| public: |
| GridSizingData(size_t gridColumnCount, size_t gridRowCount) |
| : columnTracks(gridColumnCount) |
| , rowTracks(gridRowCount) |
| { |
| } |
| |
| Vector<GridTrack> columnTracks; |
| Vector<GridTrack> rowTracks; |
| Vector<size_t> contentSizedTracksIndex; |
| |
| // Performance optimization: hold onto these Vectors until the end of Layout to avoid repeated malloc / free. |
| Vector<GridTrack*> filteredTracks; |
| Vector<GridItemWithSpan> itemsSortedByIncreasingSpan; |
| Vector<GridTrack*> growBeyondGrowthLimitsTracks; |
| }; |
| |
| RenderGrid::RenderGrid(Element* element) |
| : RenderBlock(element) |
| , m_gridIsDirty(true) |
| , m_orderIterator(this) |
| { |
| ASSERT(!childrenInline()); |
| } |
| |
| RenderGrid::~RenderGrid() |
| { |
| } |
| |
| void RenderGrid::addChild(LayoutObject* newChild, LayoutObject* beforeChild) |
| { |
| RenderBlock::addChild(newChild, beforeChild); |
| |
| if (gridIsDirty()) |
| return; |
| |
| // The grid needs to be recomputed as it might contain auto-placed items that will change their position. |
| dirtyGrid(); |
| return; |
| } |
| |
| void RenderGrid::removeChild(LayoutObject* child) |
| { |
| RenderBlock::removeChild(child); |
| |
| if (gridIsDirty()) |
| return; |
| |
| // The grid needs to be recomputed as it might contain auto-placed items that will change their position. |
| dirtyGrid(); |
| return; |
| } |
| |
| void RenderGrid::styleDidChange(StyleDifference diff, const LayoutStyle* oldStyle) |
| { |
| RenderBlock::styleDidChange(diff, oldStyle); |
| if (!oldStyle) |
| return; |
| |
| // FIXME: The following checks could be narrowed down if we kept track of which type of grid items we have: |
| // - explicit grid size changes impact negative explicitely positioned and auto-placed grid items. |
| // - named grid lines only impact grid items with named grid lines. |
| // - auto-flow changes only impacts auto-placed children. |
| |
| if (explicitGridDidResize(*oldStyle) |
| || namedGridLinesDefinitionDidChange(*oldStyle) |
| || oldStyle->gridAutoFlow() != styleRef().gridAutoFlow()) |
| dirtyGrid(); |
| } |
| |
| bool RenderGrid::explicitGridDidResize(const LayoutStyle& oldStyle) const |
| { |
| return oldStyle.gridTemplateColumns().size() != styleRef().gridTemplateColumns().size() |
| || oldStyle.gridTemplateRows().size() != styleRef().gridTemplateRows().size(); |
| } |
| |
| bool RenderGrid::namedGridLinesDefinitionDidChange(const LayoutStyle& oldStyle) const |
| { |
| return oldStyle.namedGridRowLines() != styleRef().namedGridRowLines() |
| || oldStyle.namedGridColumnLines() != styleRef().namedGridColumnLines(); |
| } |
| |
| void RenderGrid::layoutBlock(bool relayoutChildren) |
| { |
| ASSERT(needsLayout()); |
| |
| if (!relayoutChildren && simplifiedLayout()) |
| return; |
| |
| // FIXME: Much of this method is boiler plate that matches RenderBox::layoutBlock and Render*FlexibleBox::layoutBlock. |
| // It would be nice to refactor some of the duplicate code. |
| { |
| // LayoutState needs this deliberate scope to pop before updating scroll information (which |
| // may trigger relayout). |
| LayoutState state(*this, locationOffset()); |
| |
| LayoutSize previousSize = size(); |
| |
| setLogicalHeight(0); |
| updateLogicalWidth(); |
| |
| TextAutosizer::LayoutScope textAutosizerLayoutScope(this); |
| |
| layoutGridItems(); |
| |
| LayoutUnit oldClientAfterEdge = clientLogicalBottom(); |
| updateLogicalHeight(); |
| |
| if (size() != previousSize) |
| relayoutChildren = true; |
| |
| layoutPositionedObjects(relayoutChildren || isDocumentElement()); |
| |
| computeOverflow(oldClientAfterEdge); |
| } |
| |
| updateLayerTransformAfterLayout(); |
| |
| // Update our scroll information if we're overflow:auto/scroll/hidden now that we know if |
| // we overflow or not. |
| if (hasOverflowClip()) |
| layer()->scrollableArea()->updateAfterLayout(); |
| |
| clearNeedsLayout(); |
| } |
| |
| void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const |
| { |
| const_cast<RenderGrid*>(this)->placeItemsOnGrid(); |
| |
| GridSizingData sizingData(gridColumnCount(), gridRowCount()); |
| LayoutUnit availableLogicalSpace = 0; |
| const_cast<RenderGrid*>(this)->computeUsedBreadthOfGridTracks(ForColumns, sizingData, availableLogicalSpace); |
| |
| for (const auto& column : sizingData.columnTracks) { |
| const LayoutUnit& minTrackBreadth = column.baseSize(); |
| const LayoutUnit& maxTrackBreadth = column.growthLimit(); |
| |
| minLogicalWidth += minTrackBreadth; |
| maxLogicalWidth += maxTrackBreadth; |
| |
| LayoutUnit scrollbarWidth = intrinsicScrollbarLogicalWidth(); |
| maxLogicalWidth += scrollbarWidth; |
| minLogicalWidth += scrollbarWidth; |
| } |
| } |
| |
| void RenderGrid::computePreferredLogicalWidths() |
| { |
| ASSERT(preferredLogicalWidthsDirty()); |
| |
| m_minPreferredLogicalWidth = 0; |
| m_maxPreferredLogicalWidth = 0; |
| |
| // FIXME: We don't take our own logical width into account. Once we do, we need to make sure |
| // we apply (and test the interaction with) min-width / max-width. |
| |
| computeIntrinsicLogicalWidths(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth); |
| |
| LayoutUnit borderAndPaddingInInlineDirection = borderAndPaddingLogicalWidth(); |
| m_minPreferredLogicalWidth += borderAndPaddingInInlineDirection; |
| m_maxPreferredLogicalWidth += borderAndPaddingInInlineDirection; |
| |
| clearPreferredLogicalWidthsDirty(); |
| } |
| |
| void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData) |
| { |
| LayoutUnit availableLogicalSpace = (direction == ForColumns) ? availableLogicalWidth() : availableLogicalHeight(IncludeMarginBorderPadding); |
| computeUsedBreadthOfGridTracks(direction, sizingData, availableLogicalSpace); |
| } |
| |
| bool RenderGrid::gridElementIsShrinkToFit() |
| { |
| return isFloatingOrOutOfFlowPositioned(); |
| } |
| |
| void RenderGrid::computeUsedBreadthOfGridTracks(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& freeSpace) |
| { |
| const LayoutUnit initialFreeSpace = freeSpace; |
| Vector<GridTrack>& tracks = (direction == ForColumns) ? sizingData.columnTracks : sizingData.rowTracks; |
| Vector<size_t> flexibleSizedTracksIndex; |
| sizingData.contentSizedTracksIndex.shrink(0); |
| |
| // 1. Initialize per Grid track variables. |
| for (size_t i = 0; i < tracks.size(); ++i) { |
| GridTrack& track = tracks[i]; |
| GridTrackSize trackSize = gridTrackSize(direction, i); |
| const GridLength& minTrackBreadth = trackSize.minTrackBreadth(); |
| const GridLength& maxTrackBreadth = trackSize.maxTrackBreadth(); |
| |
| track.setBaseSize(computeUsedBreadthOfMinLength(direction, minTrackBreadth)); |
| track.setGrowthLimit(computeUsedBreadthOfMaxLength(direction, maxTrackBreadth, track.baseSize())); |
| |
| if (trackSize.isContentSized()) |
| sizingData.contentSizedTracksIndex.append(i); |
| if (trackSize.maxTrackBreadth().isFlex()) |
| flexibleSizedTracksIndex.append(i); |
| } |
| |
| // 2. Resolve content-based TrackSizingFunctions. |
| if (!sizingData.contentSizedTracksIndex.isEmpty()) |
| resolveContentBasedTrackSizingFunctions(direction, sizingData, freeSpace); |
| |
| for (const auto& track: tracks) { |
| ASSERT(!track.growthLimitIsInfinite()); |
| freeSpace -= track.baseSize(); |
| } |
| |
| const bool hasUndefinedRemainingSpace = (direction == ForRows) ? style()->logicalHeight().isAuto() : gridElementIsShrinkToFit(); |
| |
| if (!hasUndefinedRemainingSpace && freeSpace <= 0) |
| return; |
| |
| // 3. Grow all Grid tracks in GridTracks from their baseSize up to their growthLimit value until freeSpace is exhausted. |
| const size_t tracksSize = tracks.size(); |
| if (!hasUndefinedRemainingSpace) { |
| Vector<GridTrack*> tracksForDistribution(tracksSize); |
| for (size_t i = 0; i < tracksSize; ++i) |
| tracksForDistribution[i] = tracks.data() + i; |
| |
| distributeSpaceToTracks(tracksForDistribution, nullptr, &GridTrack::baseSize, &GridTrack::growBaseSize, sizingData, freeSpace); |
| } else { |
| for (auto& track : tracks) |
| track.setBaseSize(track.growthLimit()); |
| } |
| |
| if (flexibleSizedTracksIndex.isEmpty()) |
| return; |
| |
| // 4. Grow all Grid tracks having a fraction as the MaxTrackSizingFunction. |
| double normalizedFractionBreadth = 0; |
| if (!hasUndefinedRemainingSpace) { |
| normalizedFractionBreadth = computeNormalizedFractionBreadth(tracks, GridSpan(0, tracks.size() - 1), direction, initialFreeSpace); |
| } else { |
| for (const auto& trackIndex : flexibleSizedTracksIndex) { |
| GridTrackSize trackSize = gridTrackSize(direction, trackIndex); |
| normalizedFractionBreadth = std::max(normalizedFractionBreadth, tracks[trackIndex].baseSize() / trackSize.maxTrackBreadth().flex()); |
| } |
| |
| for (size_t i = 0; i < flexibleSizedTracksIndex.size(); ++i) { |
| GridIterator iterator(m_grid, direction, flexibleSizedTracksIndex[i]); |
| while (RenderBox* gridItem = iterator.nextGridItem()) { |
| const GridCoordinate coordinate = cachedGridCoordinate(*gridItem); |
| const GridSpan span = (direction == ForColumns) ? coordinate.columns : coordinate.rows; |
| |
| // Do not include already processed items. |
| if (i > 0 && span.resolvedInitialPosition.toInt() <= flexibleSizedTracksIndex[i - 1]) |
| continue; |
| |
| double itemNormalizedFlexBreadth = computeNormalizedFractionBreadth(tracks, span, direction, maxContentForChild(*gridItem, direction, sizingData.columnTracks)); |
| normalizedFractionBreadth = std::max(normalizedFractionBreadth, itemNormalizedFlexBreadth); |
| } |
| } |
| } |
| |
| for (const auto& trackIndex : flexibleSizedTracksIndex) { |
| GridTrackSize trackSize = gridTrackSize(direction, trackIndex); |
| |
| LayoutUnit baseSize = std::max<LayoutUnit>(tracks[trackIndex].baseSize(), normalizedFractionBreadth * trackSize.maxTrackBreadth().flex()); |
| tracks[trackIndex].setBaseSize(baseSize); |
| freeSpace -= baseSize; |
| } |
| |
| // FIXME: Should ASSERT flexible tracks exhaust the freeSpace ? (see issue 739613002). |
| } |
| |
| LayoutUnit RenderGrid::computeUsedBreadthOfMinLength(GridTrackSizingDirection direction, const GridLength& gridLength) const |
| { |
| if (gridLength.isFlex()) |
| return 0; |
| |
| const Length& trackLength = gridLength.length(); |
| ASSERT(!trackLength.isAuto()); |
| if (trackLength.isSpecified()) |
| return computeUsedBreadthOfSpecifiedLength(direction, trackLength); |
| |
| ASSERT(trackLength.isMinContent() || trackLength.isMaxContent()); |
| return 0; |
| } |
| |
| LayoutUnit RenderGrid::computeUsedBreadthOfMaxLength(GridTrackSizingDirection direction, const GridLength& gridLength, LayoutUnit usedBreadth) const |
| { |
| if (gridLength.isFlex()) |
| return usedBreadth; |
| |
| const Length& trackLength = gridLength.length(); |
| ASSERT(!trackLength.isAuto()); |
| if (trackLength.isSpecified()) { |
| LayoutUnit computedBreadth = computeUsedBreadthOfSpecifiedLength(direction, trackLength); |
| ASSERT(computedBreadth != infinity); |
| return computedBreadth; |
| } |
| |
| ASSERT(trackLength.isMinContent() || trackLength.isMaxContent()); |
| return infinity; |
| } |
| |
| LayoutUnit RenderGrid::computeUsedBreadthOfSpecifiedLength(GridTrackSizingDirection direction, const Length& trackLength) const |
| { |
| ASSERT(trackLength.isSpecified()); |
| // FIXME: The -1 here should be replaced by whatever the intrinsic height of the grid is. |
| return valueForLength(trackLength, direction == ForColumns ? logicalWidth() : computeContentLogicalHeight(style()->logicalHeight(), -1)); |
| } |
| |
| static bool sortByGridNormalizedFlexValue(const GridTrackForNormalization& track1, const GridTrackForNormalization& track2) |
| { |
| return track1.m_normalizedFlexValue < track2.m_normalizedFlexValue; |
| } |
| |
| double RenderGrid::computeNormalizedFractionBreadth(Vector<GridTrack>& tracks, const GridSpan& tracksSpan, GridTrackSizingDirection direction, LayoutUnit spaceToFill) const |
| { |
| LayoutUnit allocatedSpace; |
| Vector<GridTrackForNormalization> tracksForNormalization; |
| for (const auto& resolvedPosition : tracksSpan) { |
| GridTrack& track = tracks[resolvedPosition.toInt()]; |
| allocatedSpace += track.baseSize(); |
| |
| GridTrackSize trackSize = gridTrackSize(direction, resolvedPosition.toInt()); |
| if (!trackSize.maxTrackBreadth().isFlex()) |
| continue; |
| |
| tracksForNormalization.append(GridTrackForNormalization(track, trackSize.maxTrackBreadth().flex())); |
| } |
| |
| // The function is not called if we don't have <flex> grid tracks |
| ASSERT(!tracksForNormalization.isEmpty()); |
| |
| std::sort(tracksForNormalization.begin(), tracksForNormalization.end(), sortByGridNormalizedFlexValue); |
| |
| // These values work together: as we walk over our grid tracks, we increase fractionValueBasedOnGridItemsRatio |
| // to match a grid track's usedBreadth to <flex> ratio until the total fractions sized grid tracks wouldn't |
| // fit into availableLogicalSpaceIgnoringFractionTracks. |
| double accumulatedFractions = 0; |
| LayoutUnit fractionValueBasedOnGridItemsRatio = 0; |
| LayoutUnit availableLogicalSpaceIgnoringFractionTracks = spaceToFill - allocatedSpace; |
| |
| for (const auto& track : tracksForNormalization) { |
| if (track.m_normalizedFlexValue > fractionValueBasedOnGridItemsRatio) { |
| // If the normalized flex value (we ordered |tracksForNormalization| by increasing normalized flex value) |
| // will make us overflow our container, then stop. We have the previous step's ratio is the best fit. |
| if (track.m_normalizedFlexValue * accumulatedFractions > availableLogicalSpaceIgnoringFractionTracks) |
| break; |
| |
| fractionValueBasedOnGridItemsRatio = track.m_normalizedFlexValue; |
| } |
| |
| accumulatedFractions += track.m_flex; |
| // This item was processed so we re-add its used breadth to the available space to accurately count the remaining space. |
| availableLogicalSpaceIgnoringFractionTracks += track.m_track->baseSize(); |
| } |
| |
| return availableLogicalSpaceIgnoringFractionTracks / accumulatedFractions; |
| } |
| |
| bool RenderGrid::hasDefiniteLogicalSize(GridTrackSizingDirection direction) const |
| { |
| return (direction == ForRows) ? hasDefiniteLogicalHeight() : hasDefiniteLogicalWidth(); |
| } |
| |
| GridTrackSize RenderGrid::gridTrackSize(GridTrackSizingDirection direction, size_t i) const |
| { |
| bool isForColumns = direction == ForColumns; |
| const Vector<GridTrackSize>& trackStyles = isForColumns ? style()->gridTemplateColumns() : style()->gridTemplateRows(); |
| const GridTrackSize& trackSize = (i >= trackStyles.size()) ? (isForColumns ? style()->gridAutoColumns() : style()->gridAutoRows()) : trackStyles[i]; |
| |
| // If the logical width/height of the grid container is indefinite, percentage values are treated as <auto> (or in |
| // the case of minmax() as min-content for the first position and max-content for the second). |
| if (!hasDefiniteLogicalSize(direction)) { |
| const GridLength& oldMinTrackBreadth = trackSize.minTrackBreadth(); |
| const GridLength& oldMaxTrackBreadth = trackSize.maxTrackBreadth(); |
| return GridTrackSize(oldMinTrackBreadth.isPercentage() ? Length(MinContent) : oldMinTrackBreadth, oldMaxTrackBreadth.isPercentage() ? Length(MaxContent) : oldMaxTrackBreadth); |
| } |
| |
| return trackSize; |
| } |
| |
| LayoutUnit RenderGrid::logicalHeightForChild(RenderBox& child, Vector<GridTrack>& columnTracks) |
| { |
| SubtreeLayoutScope layoutScope(child); |
| LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child.hasOverrideContainingBlockLogicalWidth() ? child.overrideContainingBlockContentLogicalWidth() : LayoutUnit(); |
| LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(child, ForColumns, columnTracks); |
| if (child.style()->logicalHeight().isPercent() || oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth) |
| layoutScope.setNeedsLayout(&child); |
| |
| child.clearOverrideLogicalContentHeight(); |
| |
| child.setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth); |
| // If |child| has a percentage logical height, we shouldn't let it override its intrinsic height, which is |
| // what we are interested in here. Thus we need to set the override logical height to -1 (no possible resolution). |
| child.setOverrideContainingBlockContentLogicalHeight(-1); |
| child.layoutIfNeeded(); |
| return child.logicalHeight() + child.marginLogicalHeight(); |
| } |
| |
| LayoutUnit RenderGrid::minContentForChild(RenderBox& child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks) |
| { |
| bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode(); |
| // FIXME: Properly support orthogonal writing mode. |
| if (hasOrthogonalWritingMode) |
| return 0; |
| |
| if (direction == ForColumns) { |
| // FIXME: It's unclear if we should return the intrinsic width or the preferred width. |
| // See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html |
| return child.minPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child); |
| } |
| |
| return logicalHeightForChild(child, columnTracks); |
| } |
| |
| LayoutUnit RenderGrid::maxContentForChild(RenderBox& child, GridTrackSizingDirection direction, Vector<GridTrack>& columnTracks) |
| { |
| bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode(); |
| // FIXME: Properly support orthogonal writing mode. |
| if (hasOrthogonalWritingMode) |
| return LayoutUnit(); |
| |
| if (direction == ForColumns) { |
| // FIXME: It's unclear if we should return the intrinsic width or the preferred width. |
| // See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html |
| return child.maxPreferredLogicalWidth() + marginIntrinsicLogicalWidthForChild(child); |
| } |
| |
| return logicalHeightForChild(child, columnTracks); |
| } |
| |
| // We're basically using a class instead of a std::pair for two reasons. First of all, accessing gridItem() or |
| // coordinate() is much more self-explanatory that using .first or .second members in the pair. Secondly the class |
| // allows us to precompute the value of the span, something which is quite convenient for the sorting. Having a |
| // std::pair<RenderBox*, size_t> does not work either because we still need the GridCoordinate so we'd have to add an |
| // extra hash lookup for each item at the beginning of RenderGrid::resolveContentBasedTrackSizingFunctionsForItems(). |
| class GridItemWithSpan { |
| public: |
| GridItemWithSpan(RenderBox& gridItem, const GridCoordinate& coordinate, GridTrackSizingDirection direction) |
| : m_gridItem(&gridItem) |
| , m_coordinate(coordinate) |
| { |
| const GridSpan& span = (direction == ForRows) ? coordinate.rows : coordinate.columns; |
| m_span = span.resolvedFinalPosition.toInt() - span.resolvedInitialPosition.toInt() + 1; |
| } |
| |
| RenderBox& gridItem() const { return *m_gridItem; } |
| GridCoordinate coordinate() const { return m_coordinate; } |
| #if ENABLE(ASSERT) |
| size_t span() const { return m_span; } |
| #endif |
| |
| bool operator<(const GridItemWithSpan other) const { return m_span < other.m_span; } |
| |
| private: |
| RenderBox* m_gridItem; |
| GridCoordinate m_coordinate; |
| size_t m_span; |
| }; |
| |
| bool RenderGrid::spanningItemCrossesFlexibleSizedTracks(const GridCoordinate& coordinate, GridTrackSizingDirection direction) const |
| { |
| const GridResolvedPosition initialTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedInitialPosition : coordinate.rows.resolvedInitialPosition; |
| const GridResolvedPosition finalTrackPosition = (direction == ForColumns) ? coordinate.columns.resolvedFinalPosition : coordinate.rows.resolvedFinalPosition; |
| |
| for (GridResolvedPosition trackPosition = initialTrackPosition; trackPosition <= finalTrackPosition; ++trackPosition) { |
| const GridTrackSize& trackSize = gridTrackSize(direction, trackPosition.toInt()); |
| if (trackSize.minTrackBreadth().isFlex() || trackSize.maxTrackBreadth().isFlex()) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static inline size_t integerSpanForDirection(const GridCoordinate& coordinate, GridTrackSizingDirection direction) |
| { |
| return (direction == ForRows) ? coordinate.rows.integerSpan() : coordinate.columns.integerSpan(); |
| } |
| |
| void RenderGrid::resolveContentBasedTrackSizingFunctions(GridTrackSizingDirection direction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace) |
| { |
| sizingData.itemsSortedByIncreasingSpan.shrink(0); |
| HashSet<RenderBox*> itemsSet; |
| for (const auto& trackIndex : sizingData.contentSizedTracksIndex) { |
| GridIterator iterator(m_grid, direction, trackIndex); |
| GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndex] : sizingData.rowTracks[trackIndex]; |
| while (RenderBox* gridItem = iterator.nextGridItem()) { |
| if (itemsSet.add(gridItem).isNewEntry) { |
| const GridCoordinate& coordinate = cachedGridCoordinate(*gridItem); |
| if (integerSpanForDirection(coordinate, direction) == 1) { |
| resolveContentBasedTrackSizingFunctionsForNonSpanningItems(direction, coordinate, *gridItem, track, sizingData.columnTracks); |
| } else if (!spanningItemCrossesFlexibleSizedTracks(coordinate, direction)) { |
| sizingData.itemsSortedByIncreasingSpan.append(GridItemWithSpan(*gridItem, coordinate, direction)); |
| } |
| } |
| } |
| } |
| std::sort(sizingData.itemsSortedByIncreasingSpan.begin(), sizingData.itemsSortedByIncreasingSpan.end()); |
| |
| Vector<GridItemWithSpan>::iterator end = sizingData.itemsSortedByIncreasingSpan.end(); |
| for (Vector<GridItemWithSpan>::iterator it = sizingData.itemsSortedByIncreasingSpan.begin(); it != end; ++it) { |
| GridItemWithSpan itemWithSpan = *it; |
| resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMinOrMaxContentMinTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::baseSize, &GridTrack::growBaseSize, &GridTrackSize::hasMinContentMinTrackBreadthAndMinOrMaxContentMaxTrackBreadth); |
| resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMaxContentMinTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::baseSize, &GridTrack::growBaseSize, &GridTrackSize::hasMaxContentMinTrackBreadthAndMaxContentMaxTrackBreadth); |
| resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMinOrMaxContentMaxTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::growthLimitIfNotInfinite, &GridTrack::growGrowthLimit); |
| resolveContentBasedTrackSizingFunctionsForItems(direction, sizingData, itemWithSpan, &GridTrackSize::hasMaxContentMaxTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::growthLimitIfNotInfinite, &GridTrack::growGrowthLimit); |
| } |
| |
| for (const auto& trackIndex : sizingData.contentSizedTracksIndex) { |
| GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackIndex] : sizingData.rowTracks[trackIndex]; |
| if (track.growthLimitIsInfinite()) |
| track.setGrowthLimit(track.baseSize()); |
| } |
| } |
| |
| void RenderGrid::resolveContentBasedTrackSizingFunctionsForNonSpanningItems(GridTrackSizingDirection direction, const GridCoordinate& coordinate, RenderBox& gridItem, GridTrack& track, Vector<GridTrack>& columnTracks) |
| { |
| const GridResolvedPosition trackPosition = (direction == ForColumns) ? coordinate.columns.resolvedInitialPosition : coordinate.rows.resolvedInitialPosition; |
| GridTrackSize trackSize = gridTrackSize(direction, trackPosition.toInt()); |
| |
| if (trackSize.hasMinContentMinTrackBreadth()) |
| track.setBaseSize(std::max(track.baseSize(), minContentForChild(gridItem, direction, columnTracks))); |
| else if (trackSize.hasMaxContentMinTrackBreadth()) |
| track.setBaseSize(std::max(track.baseSize(), maxContentForChild(gridItem, direction, columnTracks))); |
| |
| if (trackSize.hasMinContentMaxTrackBreadth()) |
| track.setGrowthLimit(std::max(track.growthLimit(), minContentForChild(gridItem, direction, columnTracks))); |
| else if (trackSize.hasMaxContentMaxTrackBreadth()) |
| track.setGrowthLimit(std::max(track.growthLimit(), maxContentForChild(gridItem, direction, columnTracks))); |
| } |
| |
| void RenderGrid::resolveContentBasedTrackSizingFunctionsForItems(GridTrackSizingDirection direction, GridSizingData& sizingData, GridItemWithSpan& gridItemWithSpan, FilterFunction filterFunction, SizingFunction sizingFunction, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction, FilterFunction growAboveMaxBreadthFilterFunction) |
| { |
| ASSERT(gridItemWithSpan.span() > 1); |
| const GridCoordinate coordinate = gridItemWithSpan.coordinate(); |
| const GridSpan& itemSpan = (direction == ForColumns) ? coordinate.columns : coordinate.rows; |
| |
| sizingData.growBeyondGrowthLimitsTracks.shrink(0); |
| sizingData.filteredTracks.shrink(0); |
| LayoutUnit spanningTracksSize; |
| for (const auto& trackPosition : itemSpan) { |
| GridTrackSize trackSize = gridTrackSize(direction, trackPosition.toInt()); |
| GridTrack& track = (direction == ForColumns) ? sizingData.columnTracks[trackPosition.toInt()] : sizingData.rowTracks[trackPosition.toInt()]; |
| spanningTracksSize += (track.*trackGetter)(); |
| if (!(trackSize.*filterFunction)()) |
| continue; |
| |
| sizingData.filteredTracks.append(&track); |
| |
| if (!growAboveMaxBreadthFilterFunction || (trackSize.*growAboveMaxBreadthFilterFunction)()) |
| sizingData.growBeyondGrowthLimitsTracks.append(&track); |
| } |
| |
| if (sizingData.filteredTracks.isEmpty()) |
| return; |
| |
| // Specs mandate to floor extraSpace to 0. Instead we directly avoid the function call in those cases as it will be |
| // a noop in terms of track sizing. |
| LayoutUnit extraSpace = (this->*sizingFunction)(gridItemWithSpan.gridItem(), direction, sizingData.columnTracks) - spanningTracksSize; |
| if (extraSpace > 0) { |
| Vector<GridTrack*>* tracksToGrowBeyondGrowthLimits = sizingData.growBeyondGrowthLimitsTracks.isEmpty() ? &sizingData.filteredTracks : &sizingData.growBeyondGrowthLimitsTracks; |
| distributeSpaceToTracks(sizingData.filteredTracks, tracksToGrowBeyondGrowthLimits, trackGetter, trackGrowthFunction, sizingData, extraSpace); |
| } |
| } |
| |
| static bool sortByGridTrackGrowthPotential(const GridTrack* track1, const GridTrack* track2) |
| { |
| // This check ensures that we respect the irreflexivity property of the strict weak ordering required by std::sort |
| // (forall x: NOT x < x). |
| if (track1->growthLimitIsInfinite() && track2->growthLimitIsInfinite()) |
| return false; |
| |
| if (track1->growthLimitIsInfinite() || track2->growthLimitIsInfinite()) |
| return track2->growthLimitIsInfinite(); |
| |
| return (track1->growthLimit() - track1->baseSize()) < (track2->growthLimit() - track2->baseSize()); |
| } |
| |
| void RenderGrid::distributeSpaceToTracks(Vector<GridTrack*>& tracks, const Vector<GridTrack*>* growBeyondGrowthLimitsTracks, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction, GridSizingData& sizingData, LayoutUnit& availableLogicalSpace) |
| { |
| ASSERT(availableLogicalSpace > 0); |
| std::sort(tracks.begin(), tracks.end(), sortByGridTrackGrowthPotential); |
| |
| size_t tracksSize = tracks.size(); |
| for (size_t i = 0; i < tracksSize; ++i) { |
| GridTrack& track = *tracks[i]; |
| ASSERT(track.plannedIncrease() == 0); |
| LayoutUnit availableLogicalSpaceShare = availableLogicalSpace / (tracksSize - i); |
| const LayoutUnit& trackBreadth = (track.*trackGetter)(); |
| LayoutUnit growthShare = track.growthLimitIsInfinite() ? availableLogicalSpaceShare : std::min(availableLogicalSpaceShare, track.growthLimit() - trackBreadth); |
| // We should never shrink any grid track or else we can't guarantee we abide by our min-sizing function. |
| if (growthShare > 0) { |
| track.growPlannedIncrease(growthShare); |
| availableLogicalSpace -= growthShare; |
| } |
| } |
| |
| if (availableLogicalSpace > 0 && growBeyondGrowthLimitsTracks) { |
| size_t tracksGrowingAboveMaxBreadthSize = growBeyondGrowthLimitsTracks->size(); |
| for (size_t i = 0; i < tracksGrowingAboveMaxBreadthSize; ++i) { |
| GridTrack* track = growBeyondGrowthLimitsTracks->at(i); |
| LayoutUnit growthShare = availableLogicalSpace / (tracksGrowingAboveMaxBreadthSize - i); |
| track->growPlannedIncrease(growthShare); |
| availableLogicalSpace -= growthShare; |
| } |
| } |
| |
| for (auto* track: tracks) { |
| track->updateFromPlannedIncrease(trackGrowthFunction); |
| ASSERT(track->plannedIncrease() == 0); |
| } |
| } |
| |
| #if ENABLE(ASSERT) |
| bool RenderGrid::tracksAreWiderThanMinTrackBreadth(GridTrackSizingDirection direction, const Vector<GridTrack>& tracks) |
| { |
| for (size_t i = 0; i < tracks.size(); ++i) { |
| GridTrackSize trackSize = gridTrackSize(direction, i); |
| const GridLength& minTrackBreadth = trackSize.minTrackBreadth(); |
| if (computeUsedBreadthOfMinLength(direction, minTrackBreadth) > tracks[i].baseSize()) |
| return false; |
| } |
| return true; |
| } |
| #endif |
| |
| void RenderGrid::ensureGridSize(size_t maximumRowIndex, size_t maximumColumnIndex) |
| { |
| const size_t oldRowSize = gridRowCount(); |
| if (maximumRowIndex >= oldRowSize) { |
| m_grid.grow(maximumRowIndex + 1); |
| for (size_t row = oldRowSize; row < gridRowCount(); ++row) |
| m_grid[row].grow(gridColumnCount()); |
| } |
| |
| if (maximumColumnIndex >= gridColumnCount()) { |
| for (size_t row = 0; row < gridRowCount(); ++row) |
| m_grid[row].grow(maximumColumnIndex + 1); |
| } |
| } |
| |
| void RenderGrid::insertItemIntoGrid(RenderBox& child, const GridCoordinate& coordinate) |
| { |
| ensureGridSize(coordinate.rows.resolvedFinalPosition.toInt(), coordinate.columns.resolvedFinalPosition.toInt()); |
| |
| for (GridSpan::iterator row = coordinate.rows.begin(); row != coordinate.rows.end(); ++row) { |
| for (GridSpan::iterator column = coordinate.columns.begin(); column != coordinate.columns.end(); ++column) |
| m_grid[row.toInt()][column.toInt()].append(&child); |
| } |
| |
| RELEASE_ASSERT(!m_gridItemCoordinate.contains(&child)); |
| m_gridItemCoordinate.set(&child, coordinate); |
| } |
| |
| void RenderGrid::placeItemsOnGrid() |
| { |
| if (!gridIsDirty()) |
| return; |
| |
| ASSERT(m_gridItemCoordinate.isEmpty()); |
| |
| populateExplicitGridAndOrderIterator(); |
| |
| // We clear the dirty bit here as the grid sizes have been updated, this means |
| // that we can safely call gridRowCount() / gridColumnCount(). |
| m_gridIsDirty = false; |
| |
| Vector<RenderBox*> autoMajorAxisAutoGridItems; |
| Vector<RenderBox*> specifiedMajorAxisAutoGridItems; |
| for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next()) { |
| if (child->isOutOfFlowPositioned()) |
| continue; |
| |
| OwnPtr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForRows); |
| OwnPtr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForColumns); |
| if (!rowPositions || !columnPositions) { |
| GridSpan* majorAxisPositions = (autoPlacementMajorAxisDirection() == ForColumns) ? columnPositions.get() : rowPositions.get(); |
| if (!majorAxisPositions) |
| autoMajorAxisAutoGridItems.append(child); |
| else |
| specifiedMajorAxisAutoGridItems.append(child); |
| continue; |
| } |
| insertItemIntoGrid(*child, GridCoordinate(*rowPositions, *columnPositions)); |
| } |
| |
| ASSERT(gridRowCount() >= GridResolvedPosition::explicitGridRowCount(*style())); |
| ASSERT(gridColumnCount() >= GridResolvedPosition::explicitGridColumnCount(*style())); |
| |
| placeSpecifiedMajorAxisItemsOnGrid(specifiedMajorAxisAutoGridItems); |
| placeAutoMajorAxisItemsOnGrid(autoMajorAxisAutoGridItems); |
| |
| m_grid.shrinkToFit(); |
| } |
| |
| void RenderGrid::populateExplicitGridAndOrderIterator() |
| { |
| OrderIteratorPopulator populator(m_orderIterator); |
| |
| size_t maximumRowIndex = std::max<size_t>(1, GridResolvedPosition::explicitGridRowCount(*style())); |
| size_t maximumColumnIndex = std::max<size_t>(1, GridResolvedPosition::explicitGridColumnCount(*style())); |
| |
| ASSERT(m_gridItemsIndexesMap.isEmpty()); |
| size_t childIndex = 0; |
| for (RenderBox* child = firstChildBox(); child; child = child->nextInFlowSiblingBox()) { |
| populator.collectChild(child); |
| m_gridItemsIndexesMap.set(child, childIndex++); |
| |
| // This function bypasses the cache (cachedGridCoordinate()) as it is used to build it. |
| OwnPtr<GridSpan> rowPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForRows); |
| OwnPtr<GridSpan> columnPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *child, ForColumns); |
| |
| // |positions| is 0 if we need to run the auto-placement algorithm. |
| if (rowPositions) { |
| maximumRowIndex = std::max<size_t>(maximumRowIndex, rowPositions->resolvedFinalPosition.next().toInt()); |
| } else { |
| // Grow the grid for items with a definite row span, getting the largest such span. |
| GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *child, ForRows, GridResolvedPosition(0)); |
| maximumRowIndex = std::max<size_t>(maximumRowIndex, positions.resolvedFinalPosition.next().toInt()); |
| } |
| |
| if (columnPositions) { |
| maximumColumnIndex = std::max<size_t>(maximumColumnIndex, columnPositions->resolvedFinalPosition.next().toInt()); |
| } else { |
| // Grow the grid for items with a definite column span, getting the largest such span. |
| GridSpan positions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *child, ForColumns, GridResolvedPosition(0)); |
| maximumColumnIndex = std::max<size_t>(maximumColumnIndex, positions.resolvedFinalPosition.next().toInt()); |
| } |
| } |
| |
| m_grid.grow(maximumRowIndex); |
| for (auto& column : m_grid) |
| column.grow(maximumColumnIndex); |
| } |
| |
| PassOwnPtr<GridCoordinate> RenderGrid::createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(const RenderBox& gridItem, GridTrackSizingDirection specifiedDirection, const GridSpan& specifiedPositions) const |
| { |
| GridTrackSizingDirection crossDirection = specifiedDirection == ForColumns ? ForRows : ForColumns; |
| const size_t endOfCrossDirection = crossDirection == ForColumns ? gridColumnCount() : gridRowCount(); |
| GridSpan crossDirectionPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), gridItem, crossDirection, GridResolvedPosition(endOfCrossDirection)); |
| return adoptPtr(new GridCoordinate(specifiedDirection == ForColumns ? crossDirectionPositions : specifiedPositions, specifiedDirection == ForColumns ? specifiedPositions : crossDirectionPositions)); |
| } |
| |
| void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems) |
| { |
| bool isForColumns = autoPlacementMajorAxisDirection() == ForColumns; |
| bool isGridAutoFlowDense = style()->isGridAutoFlowAlgorithmDense(); |
| |
| // Mapping between the major axis tracks (rows or columns) and the last auto-placed item's position inserted on |
| // that track. This is needed to implement "sparse" packing for items locked to a given track. |
| // See http://dev.w3.org/csswg/css-grid/#auto-placement-algo |
| HashMap<unsigned, unsigned, DefaultHash<unsigned>::Hash, WTF::UnsignedWithZeroKeyHashTraits<unsigned>> minorAxisCursors; |
| |
| for (const auto& autoGridItem : autoGridItems) { |
| OwnPtr<GridSpan> majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), *autoGridItem, autoPlacementMajorAxisDirection()); |
| GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), *autoGridItem, autoPlacementMinorAxisDirection(), GridResolvedPosition(0)); |
| unsigned majorAxisInitialPosition = majorAxisPositions->resolvedInitialPosition.toInt(); |
| |
| GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisPositions->resolvedInitialPosition.toInt(), isGridAutoFlowDense ? 0 : minorAxisCursors.get(majorAxisInitialPosition)); |
| OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions->integerSpan(), minorAxisPositions.integerSpan()); |
| if (!emptyGridArea) |
| emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(*autoGridItem, autoPlacementMajorAxisDirection(), *majorAxisPositions); |
| insertItemIntoGrid(*autoGridItem, *emptyGridArea); |
| |
| if (!isGridAutoFlowDense) |
| minorAxisCursors.set(majorAxisInitialPosition, isForColumns ? emptyGridArea->rows.resolvedInitialPosition.toInt() : emptyGridArea->columns.resolvedInitialPosition.toInt()); |
| } |
| } |
| |
| void RenderGrid::placeAutoMajorAxisItemsOnGrid(const Vector<RenderBox*>& autoGridItems) |
| { |
| std::pair<size_t, size_t> autoPlacementCursor = std::make_pair(0, 0); |
| bool isGridAutoFlowDense = style()->isGridAutoFlowAlgorithmDense(); |
| |
| for (const auto& autoGridItem : autoGridItems) { |
| placeAutoMajorAxisItemOnGrid(*autoGridItem, autoPlacementCursor); |
| |
| // If grid-auto-flow is dense, reset auto-placement cursor. |
| if (isGridAutoFlowDense) { |
| autoPlacementCursor.first = 0; |
| autoPlacementCursor.second = 0; |
| } |
| } |
| } |
| |
| void RenderGrid::placeAutoMajorAxisItemOnGrid(RenderBox& gridItem, std::pair<size_t, size_t>& autoPlacementCursor) |
| { |
| OwnPtr<GridSpan> minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), gridItem, autoPlacementMinorAxisDirection()); |
| ASSERT(!GridResolvedPosition::resolveGridPositionsFromStyle(*style(), gridItem, autoPlacementMajorAxisDirection())); |
| GridSpan majorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), gridItem, autoPlacementMajorAxisDirection(), GridResolvedPosition(0)); |
| |
| const size_t endOfMajorAxis = (autoPlacementMajorAxisDirection() == ForColumns) ? gridColumnCount() : gridRowCount(); |
| size_t majorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.second : autoPlacementCursor.first; |
| size_t minorAxisAutoPlacementCursor = autoPlacementMajorAxisDirection() == ForColumns ? autoPlacementCursor.first : autoPlacementCursor.second; |
| |
| OwnPtr<GridCoordinate> emptyGridArea; |
| if (minorAxisPositions) { |
| // Move to the next track in major axis if initial position in minor axis is before auto-placement cursor. |
| if (minorAxisPositions->resolvedInitialPosition.toInt() < minorAxisAutoPlacementCursor) |
| majorAxisAutoPlacementCursor++; |
| |
| if (majorAxisAutoPlacementCursor < endOfMajorAxis) { |
| GridIterator iterator(m_grid, autoPlacementMinorAxisDirection(), minorAxisPositions->resolvedInitialPosition.toInt(), majorAxisAutoPlacementCursor); |
| emptyGridArea = iterator.nextEmptyGridArea(minorAxisPositions->integerSpan(), majorAxisPositions.integerSpan()); |
| } |
| |
| if (!emptyGridArea) |
| emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), *minorAxisPositions); |
| } else { |
| GridSpan minorAxisPositions = GridResolvedPosition::resolveGridPositionsFromAutoPlacementPosition(*style(), gridItem, autoPlacementMinorAxisDirection(), GridResolvedPosition(0)); |
| |
| for (size_t majorAxisIndex = majorAxisAutoPlacementCursor; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) { |
| GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisIndex, minorAxisAutoPlacementCursor); |
| emptyGridArea = iterator.nextEmptyGridArea(majorAxisPositions.integerSpan(), minorAxisPositions.integerSpan()); |
| |
| if (emptyGridArea) { |
| // Check that it fits in the minor axis direction, as we shouldn't grow in that direction here (it was already managed in populateExplicitGridAndOrderIterator()). |
| GridResolvedPosition minorAxisFinalPositionIndex = autoPlacementMinorAxisDirection() == ForColumns ? emptyGridArea->columns.resolvedFinalPosition : emptyGridArea->rows.resolvedFinalPosition; |
| const size_t endOfMinorAxis = autoPlacementMinorAxisDirection() == ForColumns ? gridColumnCount() : gridRowCount(); |
| if (minorAxisFinalPositionIndex.toInt() < endOfMinorAxis) |
| break; |
| |
| // Discard empty grid area as it does not fit in the minor axis direction. |
| // We don't need to create a new empty grid area yet as we might find a valid one in the next iteration. |
| emptyGridArea = nullptr; |
| } |
| |
| // As we're moving to the next track in the major axis we should reset the auto-placement cursor in the minor axis. |
| minorAxisAutoPlacementCursor = 0; |
| } |
| |
| if (!emptyGridArea) |
| emptyGridArea = createEmptyGridAreaAtSpecifiedPositionsOutsideGrid(gridItem, autoPlacementMinorAxisDirection(), minorAxisPositions); |
| } |
| |
| insertItemIntoGrid(gridItem, *emptyGridArea); |
| // Move auto-placement cursor to the new position. |
| autoPlacementCursor.first = emptyGridArea->rows.resolvedInitialPosition.toInt(); |
| autoPlacementCursor.second = emptyGridArea->columns.resolvedInitialPosition.toInt(); |
| } |
| |
| GridTrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const |
| { |
| return style()->isGridAutoFlowDirectionColumn() ? ForColumns : ForRows; |
| } |
| |
| GridTrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const |
| { |
| return style()->isGridAutoFlowDirectionColumn() ? ForRows : ForColumns; |
| } |
| |
| void RenderGrid::dirtyGrid() |
| { |
| // Even if this could be redundant, it could be seen as a defensive strategy against |
| // style changes events happening during the layout phase or even while the painting process |
| // is still ongoing. |
| // Forcing a new layout for the Grid render would cancel any ongoing painting and ensure |
| // the grid and its children are correctly laid out according to the new style rules. |
| setNeedsLayout(); |
| |
| m_grid.resize(0); |
| m_gridItemCoordinate.clear(); |
| m_gridIsDirty = true; |
| m_gridItemsOverflowingGridArea.resize(0); |
| m_gridItemsIndexesMap.clear(); |
| } |
| |
| void RenderGrid::layoutGridItems() |
| { |
| placeItemsOnGrid(); |
| |
| LayoutUnit availableSpaceForColumns = availableLogicalWidth(); |
| LayoutUnit availableSpaceForRows = availableLogicalHeight(IncludeMarginBorderPadding); |
| GridSizingData sizingData(gridColumnCount(), gridRowCount()); |
| computeUsedBreadthOfGridTracks(ForColumns, sizingData, availableSpaceForColumns); |
| ASSERT(tracksAreWiderThanMinTrackBreadth(ForColumns, sizingData.columnTracks)); |
| computeUsedBreadthOfGridTracks(ForRows, sizingData, availableSpaceForRows); |
| ASSERT(tracksAreWiderThanMinTrackBreadth(ForRows, sizingData.rowTracks)); |
| |
| populateGridPositions(sizingData, availableSpaceForColumns, availableSpaceForRows); |
| m_gridItemsOverflowingGridArea.resize(0); |
| |
| LayoutUnit columnOffset = contentPositionAndDistributionColumnOffset(availableSpaceForColumns, style()->justifyContent(), style()->justifyContentDistribution(), style()->justifyContentOverflowAlignment(), m_columnPositions.size() - 1); |
| LayoutUnit rowOffset = contentPositionAndDistributionRowOffset(availableSpaceForRows, style()->alignContent(), style()->alignContentDistribution(), style()->alignContentOverflowAlignment(), m_rowPositions.size() - 1); |
| LayoutSize contentPositionOffset(columnOffset, rowOffset); |
| |
| for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) { |
| if (child->isOutOfFlowPositioned()) { |
| child->containingBlock()->insertPositionedObject(child); |
| continue; |
| } |
| |
| // Because the grid area cannot be styled, we don't need to adjust |
| // the grid breadth to account for 'box-sizing'. |
| LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit(); |
| LayoutUnit oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit(); |
| |
| LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(*child, ForColumns, sizingData.columnTracks); |
| LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChild(*child, ForRows, sizingData.rowTracks); |
| |
| SubtreeLayoutScope layoutScope(*child); |
| if (oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth || (oldOverrideContainingBlockContentLogicalHeight != overrideContainingBlockContentLogicalHeight && child->hasRelativeLogicalHeight())) |
| layoutScope.setNeedsLayout(child); |
| |
| child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth); |
| child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight); |
| |
| // Stretching logic might force a child layout, so we need to run it before the layoutIfNeeded |
| // call to avoid unnecessary relayouts. This might imply that child margins, needed to correctly |
| // determine the available space before stretching, are not set yet. |
| applyStretchAlignmentToChildIfNeeded(*child, overrideContainingBlockContentLogicalHeight); |
| |
| child->layoutIfNeeded(); |
| |
| #if ENABLE(ASSERT) |
| const GridCoordinate& coordinate = cachedGridCoordinate(*child); |
| ASSERT(coordinate.columns.resolvedInitialPosition.toInt() < sizingData.columnTracks.size()); |
| ASSERT(coordinate.rows.resolvedInitialPosition.toInt() < sizingData.rowTracks.size()); |
| #endif |
| child->setLogicalLocation(findChildLogicalPosition(*child, contentPositionOffset)); |
| |
| // Keep track of children overflowing their grid area as we might need to paint them even if the grid-area is |
| // not visible |
| if (child->logicalHeight() > overrideContainingBlockContentLogicalHeight |
| || child->logicalWidth() > overrideContainingBlockContentLogicalWidth) |
| m_gridItemsOverflowingGridArea.append(child); |
| } |
| |
| for (const auto& row : sizingData.rowTracks) |
| setLogicalHeight(logicalHeight() + row.baseSize()); |
| |
| // Min / max logical height is handled by the call to updateLogicalHeight in layoutBlock. |
| |
| setLogicalHeight(logicalHeight() + borderAndPaddingLogicalHeight()); |
| } |
| |
| void RenderGrid::layoutPositionedObjects(bool relayoutChildren, PositionedLayoutBehavior info) |
| { |
| TrackedRendererListHashSet* positionedDescendants = positionedObjects(); |
| if (!positionedDescendants) |
| return; |
| |
| bool containerHasHorizontalWritingMode = isHorizontalWritingMode(); |
| for (auto* child : *positionedDescendants) { |
| bool hasOrthogonalWritingMode = child->isHorizontalWritingMode() != containerHasHorizontalWritingMode; |
| if (hasOrthogonalWritingMode) { |
| // FIXME: Properly support orthogonal writing mode. |
| continue; |
| } |
| |
| // FIXME: Detect properly if start/end is auto for inexistent named grid lines. |
| bool columnStartIsAuto = child->style()->gridColumnStart().isAuto(); |
| LayoutUnit columnOffset = LayoutUnit(0); |
| LayoutUnit columnBreadth = LayoutUnit(0); |
| offsetAndBreadthForPositionedChild(*child, ForColumns, columnStartIsAuto, child->style()->gridColumnEnd().isAuto(), columnOffset, columnBreadth); |
| bool rowStartIsAuto = child->style()->gridRowStart().isAuto(); |
| LayoutUnit rowOffset = LayoutUnit(0); |
| LayoutUnit rowBreadth = LayoutUnit(0); |
| offsetAndBreadthForPositionedChild(*child, ForRows, rowStartIsAuto, child->style()->gridRowEnd().isAuto(), rowOffset, rowBreadth); |
| |
| child->setOverrideContainingBlockContentLogicalWidth(columnBreadth); |
| child->setOverrideContainingBlockContentLogicalHeight(rowBreadth); |
| child->setExtraInlineOffset(columnOffset); |
| child->setExtraBlockOffset(rowOffset); |
| |
| if (child->parent() == this) { |
| // If column/row start is not auto the padding has been already computed in offsetAndBreadthForPositionedChild(). |
| Layer* childLayer = child->layer(); |
| if (columnStartIsAuto) |
| childLayer->setStaticInlinePosition(borderAndPaddingStart()); |
| else |
| childLayer->setStaticInlinePosition(borderStart() + columnOffset); |
| if (rowStartIsAuto) |
| childLayer->setStaticBlockPosition(borderAndPaddingBefore()); |
| else |
| childLayer->setStaticBlockPosition(borderBefore() + rowOffset); |
| } |
| } |
| |
| RenderBlock::layoutPositionedObjects(relayoutChildren, info); |
| } |
| |
| void RenderGrid::offsetAndBreadthForPositionedChild(const RenderBox& child, GridTrackSizingDirection direction, bool startIsAuto, bool endIsAuto, LayoutUnit& offset, LayoutUnit& breadth) |
| { |
| ASSERT(child.isHorizontalWritingMode() == isHorizontalWritingMode()); |
| |
| OwnPtr<GridSpan> positions = GridResolvedPosition::resolveGridPositionsFromStyle(*style(), child, direction); |
| if (!positions) { |
| offset = LayoutUnit(0); |
| breadth = (direction == ForColumns) ? clientLogicalWidth() : clientLogicalHeight(); |
| return; |
| } |
| |
| GridResolvedPosition firstPosition = GridResolvedPosition(0); |
| GridResolvedPosition initialPosition = startIsAuto ? firstPosition : positions->resolvedInitialPosition; |
| GridResolvedPosition lastPosition = GridResolvedPosition((direction == ForColumns ? gridColumnCount() : gridRowCount()) - 1); |
| GridResolvedPosition finalPosition = endIsAuto ? lastPosition : positions->resolvedFinalPosition; |
| |
| // Positioned children do not grow the grid, so we need to clamp the positions to avoid ending up outside of it. |
| initialPosition = std::min<GridResolvedPosition>(initialPosition, lastPosition); |
| finalPosition = std::min<GridResolvedPosition>(finalPosition, lastPosition); |
| |
| LayoutUnit start = startIsAuto ? LayoutUnit(0) : (direction == ForColumns) ? m_columnPositions[initialPosition.toInt()] : m_rowPositions[initialPosition.toInt()]; |
| LayoutUnit end = endIsAuto ? (direction == ForColumns) ? logicalWidth() : logicalHeight() : (direction == ForColumns) ? m_columnPositions[finalPosition.next().toInt()] : m_rowPositions[finalPosition.next().toInt()]; |
| |
| breadth = end - start; |
| |
| if (startIsAuto) |
| breadth -= (direction == ForColumns) ? borderStart() : borderBefore(); |
| else |
| start -= ((direction == ForColumns) ? borderStart() : borderBefore()); |
| |
| if (endIsAuto) { |
| breadth -= (direction == ForColumns) ? borderEnd() : borderAfter(); |
| breadth -= scrollbarLogicalWidth(); |
| } |
| |
| offset = start; |
| } |
| |
| GridCoordinate RenderGrid::cachedGridCoordinate(const RenderBox& gridItem) const |
| { |
| ASSERT(m_gridItemCoordinate.contains(&gridItem)); |
| return m_gridItemCoordinate.get(&gridItem); |
| } |
| |
| LayoutUnit RenderGrid::gridAreaBreadthForChild(const RenderBox& child, GridTrackSizingDirection direction, const Vector<GridTrack>& tracks) const |
| { |
| const GridCoordinate& coordinate = cachedGridCoordinate(child); |
| const GridSpan& span = (direction == ForColumns) ? coordinate.columns : coordinate.rows; |
| LayoutUnit gridAreaBreadth = 0; |
| for (GridSpan::iterator trackPosition = span.begin(); trackPosition != span.end(); ++trackPosition) |
| gridAreaBreadth += tracks[trackPosition.toInt()].baseSize(); |
| return gridAreaBreadth; |
| } |
| |
| void RenderGrid::populateGridPositions(const GridSizingData& sizingData, LayoutUnit availableSpaceForColumns, LayoutUnit availableSpaceForRows) |
| { |
| unsigned numberOfColumnTracks = sizingData.columnTracks.size(); |
| unsigned numberOfRowTracks = sizingData.rowTracks.size(); |
| |
| m_columnPositions.resize(numberOfColumnTracks + 1); |
| m_columnPositions[0] = borderAndPaddingStart(); |
| for (unsigned i = 0; i < numberOfColumnTracks; ++i) |
| m_columnPositions[i + 1] = m_columnPositions[i] + sizingData.columnTracks[i].baseSize(); |
| |
| m_rowPositions.resize(numberOfRowTracks + 1); |
| m_rowPositions[0] = borderAndPaddingBefore(); |
| for (unsigned i = 0; i < numberOfRowTracks; ++i) |
| m_rowPositions[i + 1] = m_rowPositions[i] + sizingData.rowTracks[i].baseSize(); |
| } |
| |
| static LayoutUnit computeOverflowAlignmentOffset(OverflowAlignment overflow, LayoutUnit startOfTrack, LayoutUnit endOfTrack, LayoutUnit childBreadth) |
| { |
| LayoutUnit trackBreadth = endOfTrack - startOfTrack; |
| LayoutUnit offset = trackBreadth - childBreadth; |
| |
| // If overflow is 'safe', we have to make sure we don't overflow the 'start' |
| // edge (potentially cause some data loss as the overflow is unreachable). |
| if (overflow == OverflowAlignmentSafe) |
| offset = std::max<LayoutUnit>(0, offset); |
| |
| // If we overflow our alignment container and overflow is 'true' (default), we |
| // ignore the overflow and just return the value regardless (which may cause data |
| // loss as we overflow the 'start' edge). |
| return offset; |
| } |
| |
| LayoutUnit RenderGrid::startOfColumnForChild(const RenderBox& child) const |
| { |
| const GridCoordinate& coordinate = cachedGridCoordinate(child); |
| LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()]; |
| // The grid items should be inside the grid container's border box, that's why they need to be shifted. |
| return startOfColumn + marginStartForChild(child); |
| } |
| |
| LayoutUnit RenderGrid::endOfColumnForChild(const RenderBox& child) const |
| { |
| const GridCoordinate& coordinate = cachedGridCoordinate(child); |
| LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()]; |
| // The grid items should be inside the grid container's border box, that's why they need to be shifted. |
| LayoutUnit columnPosition = startOfColumn + marginStartForChild(child); |
| |
| LayoutUnit endOfColumn = m_columnPositions[coordinate.columns.resolvedFinalPosition.next().toInt()]; |
| // FIXME: This might not work as expected with orthogonal writing-modes. |
| LayoutUnit offsetFromColumnPosition = computeOverflowAlignmentOffset(child.style()->justifySelfOverflowAlignment(), startOfColumn, endOfColumn, child.logicalWidth() + child.marginLogicalWidth()); |
| |
| return columnPosition + offsetFromColumnPosition; |
| } |
| |
| LayoutUnit RenderGrid::columnPositionLeft(const RenderBox& child) const |
| { |
| if (style()->isLeftToRightDirection()) |
| return startOfColumnForChild(child); |
| |
| return endOfColumnForChild(child); |
| } |
| |
| LayoutUnit RenderGrid::columnPositionRight(const RenderBox& child) const |
| { |
| if (!style()->isLeftToRightDirection()) |
| return startOfColumnForChild(child); |
| |
| return endOfColumnForChild(child); |
| } |
| |
| LayoutUnit RenderGrid::centeredColumnPositionForChild(const RenderBox& child) const |
| { |
| const GridCoordinate& coordinate = cachedGridCoordinate(child); |
| LayoutUnit startOfColumn = m_columnPositions[coordinate.columns.resolvedInitialPosition.toInt()]; |
| LayoutUnit endOfColumn = m_columnPositions[coordinate.columns.resolvedFinalPosition.next().toInt()]; |
| LayoutUnit columnPosition = startOfColumn + marginStartForChild(child); |
| // FIXME: This might not work as expected with orthogonal writing-modes. |
| LayoutUnit offsetFromColumnPosition = computeOverflowAlignmentOffset(child.style()->justifySelfOverflowAlignment(), startOfColumn, endOfColumn, child.logicalWidth() + child.marginLogicalWidth()); |
| |
| return columnPosition + offsetFromColumnPosition / 2; |
| } |
| |
| LayoutUnit RenderGrid::columnPositionForChild(const RenderBox& child) const |
| { |
| bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode(); |
| |
| switch (LayoutStyle::resolveJustification(styleRef(), child.styleRef(), ItemPositionStretch)) { |
| case ItemPositionSelfStart: |
| // For orthogonal writing-modes, this computes to 'start' |
| // FIXME: grid track sizing and positioning do not support orthogonal modes yet. |
| if (hasOrthogonalWritingMode) |
| return startOfColumnForChild(child); |
| |
| // self-start is based on the child's direction. That's why we need to check against the grid container's direction. |
| if (child.style()->direction() != style()->direction()) |
| return endOfColumnForChild(child); |
| |
| return startOfColumnForChild(child); |
| case ItemPositionSelfEnd: |
| // For orthogonal writing-modes, this computes to 'start' |
| // FIXME: grid track sizing and positioning do not support orthogonal modes yet. |
| if (hasOrthogonalWritingMode) |
| return endOfColumnForChild(child); |
| |
| // self-end is based on the child's direction. That's why we need to check against the grid container's direction. |
| if (child.style()->direction() != style()->direction()) |
| return startOfColumnForChild(child); |
| |
| return endOfColumnForChild(child); |
| case ItemPositionFlexStart: |
| // Only used in flex layout, for other layout, it's equivalent to 'start'. |
| return startOfColumnForChild(child); |
| case ItemPositionFlexEnd: |
| // Only used in flex layout, for other layout, it's equivalent to 'end'. |
| return endOfColumnForChild(child); |
| case ItemPositionLeft: |
| return columnPositionLeft(child); |
| case ItemPositionRight: |
| return columnPositionRight(child); |
| case ItemPositionCenter: |
| return centeredColumnPositionForChild(child); |
| case ItemPositionStart: |
| return startOfColumnForChild(child); |
| case ItemPositionEnd: |
| return endOfColumnForChild(child); |
| case ItemPositionAuto: |
| break; |
| case ItemPositionStretch: |
| return startOfColumnForChild(child); |
| case ItemPositionBaseline: |
| case ItemPositionLastBaseline: |
| // FIXME: Implement the previous values. For now, we always 'start' align the child. |
| return startOfColumnForChild(child); |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| |
| LayoutUnit RenderGrid::endOfRowForChild(const RenderBox& child) const |
| { |
| const GridCoordinate& coordinate = cachedGridCoordinate(child); |
| |
| LayoutUnit startOfRow = m_rowPositions[coordinate.rows.resolvedInitialPosition.toInt()]; |
| // The grid items should be inside the grid container's border box, that's why they need to be shifted. |
| LayoutUnit rowPosition = startOfRow + marginBeforeForChild(child); |
| |
| LayoutUnit endOfRow = m_rowPositions[coordinate.rows.resolvedFinalPosition.next().toInt()]; |
| LayoutUnit offsetFromRowPosition = computeOverflowAlignmentOffset(child.style()->alignSelfOverflowAlignment(), startOfRow, endOfRow, child.logicalHeight() + child.marginLogicalHeight()); |
| |
| return rowPosition + offsetFromRowPosition; |
| } |
| |
| LayoutUnit RenderGrid::startOfRowForChild(const RenderBox& child) const |
| { |
| const GridCoordinate& coordinate = cachedGridCoordinate(child); |
| |
| LayoutUnit startOfRow = m_rowPositions[coordinate.rows.resolvedInitialPosition.toInt()]; |
| // The grid items should be inside the grid container's border box, that's why they need to be shifted. |
| LayoutUnit rowPosition = startOfRow + marginBeforeForChild(child); |
| |
| return rowPosition; |
| } |
| |
| LayoutUnit RenderGrid::centeredRowPositionForChild(const RenderBox& child) const |
| { |
| const GridCoordinate& coordinate = cachedGridCoordinate(child); |
| |
| // The grid items should be inside the grid container's border box, that's why they need to be shifted. |
| LayoutUnit startOfRow = m_rowPositions[coordinate.rows.resolvedInitialPosition.toInt()]; |
| LayoutUnit endOfRow = m_rowPositions[coordinate.rows.resolvedFinalPosition.next().toInt()]; |
| LayoutUnit rowPosition = startOfRow + marginBeforeForChild(child); |
| LayoutUnit offsetFromRowPosition = computeOverflowAlignmentOffset(child.style()->alignSelfOverflowAlignment(), startOfRow, endOfRow, child.logicalHeight() + child.marginLogicalHeight()); |
| |
| return rowPosition + offsetFromRowPosition / 2; |
| } |
| |
| static inline LayoutUnit constrainedChildIntrinsicContentLogicalHeight(const RenderBox& child) |
| { |
| LayoutUnit childIntrinsicContentLogicalHeight = child.intrinsicContentLogicalHeight(); |
| return child.constrainLogicalHeightByMinMax(childIntrinsicContentLogicalHeight + child.borderAndPaddingLogicalHeight(), childIntrinsicContentLogicalHeight); |
| } |
| |
| bool RenderGrid::allowedToStretchLogicalHeightForChild(const RenderBox& child) const |
| { |
| return child.style()->logicalHeight().isAuto() && !child.style()->marginBeforeUsing(style()).isAuto() && !child.style()->marginAfterUsing(style()).isAuto(); |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| bool RenderGrid::needToStretchChildLogicalHeight(const RenderBox& child) const |
| { |
| if (LayoutStyle::resolveAlignment(styleRef(), child.styleRef(), ItemPositionStretch) != ItemPositionStretch) |
| return false; |
| |
| return isHorizontalWritingMode() && child.style()->height().isAuto(); |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| LayoutUnit RenderGrid::childIntrinsicHeight(const RenderBox& child) const |
| { |
| if (child.isHorizontalWritingMode() && needToStretchChildLogicalHeight(child)) |
| return constrainedChildIntrinsicContentLogicalHeight(child); |
| return child.size().height(); |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| LayoutUnit RenderGrid::childIntrinsicWidth(const RenderBox& child) const |
| { |
| if (!child.isHorizontalWritingMode() && needToStretchChildLogicalHeight(child)) |
| return constrainedChildIntrinsicContentLogicalHeight(child); |
| return child.size().width(); |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| LayoutUnit RenderGrid::intrinsicLogicalHeightForChild(const RenderBox& child) const |
| { |
| return isHorizontalWritingMode() ? childIntrinsicHeight(child) : childIntrinsicWidth(child); |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| LayoutUnit RenderGrid::marginLogicalHeightForChild(const RenderBox& child) const |
| { |
| return isHorizontalWritingMode() ? child.marginHeight() : child.marginWidth(); |
| } |
| |
| LayoutUnit RenderGrid::computeMarginLogicalHeightForChild(const RenderBox& child) const |
| { |
| LayoutUnit marginBefore; |
| LayoutUnit marginAfter; |
| child.computeMarginsForDirection(BlockDirection, this, child.containingBlockLogicalWidthForContent(), child.logicalHeight(), marginBefore, marginAfter, |
| child.style()->marginBeforeUsing(style()), |
| child.style()->marginAfterUsing(style())); |
| |
| return marginBefore + marginAfter; |
| } |
| |
| LayoutUnit RenderGrid::availableAlignmentSpaceForChildBeforeStretching(LayoutUnit gridAreaBreadthForChild, const RenderBox& child) const |
| { |
| LayoutUnit childMarginLogicalHeight = marginLogicalHeightForChild(child); |
| |
| // Because we want to avoid multiple layouts, stretching logic might be performed before |
| // children are laid out, so we can't use the child cached values. Hence, we need to |
| // compute margins in order to determine the available height before stretching. |
| if (childMarginLogicalHeight == 0) |
| childMarginLogicalHeight = computeMarginLogicalHeightForChild(child); |
| |
| LayoutUnit childLogicalHeight = childMarginLogicalHeight + intrinsicLogicalHeightForChild(child); |
| return gridAreaBreadthForChild - childLogicalHeight; |
| } |
| |
| // FIXME: This logic is shared by RenderFlexibleBox, so it should be moved to RenderBox. |
| void RenderGrid::applyStretchAlignmentToChildIfNeeded(RenderBox& child, LayoutUnit gridAreaBreadthForChild) |
| { |
| if (LayoutStyle::resolveAlignment(styleRef(), child.styleRef(), ItemPositionStretch) != ItemPositionStretch) |
| return; |
| |
| bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode(); |
| if (allowedToStretchLogicalHeightForChild(child)) { |
| // FIXME: If the child has orthogonal flow, then it already has an override height set, so use it. |
| // FIXME: grid track sizing and positioning do not support orthogonal modes yet. |
| if (!hasOrthogonalWritingMode) { |
| LayoutUnit heightBeforeStretching = needToStretchChildLogicalHeight(child) ? constrainedChildIntrinsicContentLogicalHeight(child) : child.logicalHeight(); |
| LayoutUnit stretchedLogicalHeight = heightBeforeStretching + availableAlignmentSpaceForChildBeforeStretching(gridAreaBreadthForChild, child); |
| LayoutUnit desiredLogicalHeight = child.constrainLogicalHeightByMinMax(stretchedLogicalHeight, heightBeforeStretching - child.borderAndPaddingLogicalHeight()); |
| LayoutUnit desiredLogicalContentHeight = desiredLogicalHeight - child.borderAndPaddingLogicalHeight(); |
| |
| // FIXME: Can avoid laying out here in some cases. See https://webkit.org/b/87905. |
| if (desiredLogicalHeight != child.logicalHeight() || !child.hasOverrideHeight() || desiredLogicalContentHeight != child.overrideLogicalContentHeight()) { |
| child.setOverrideLogicalContentHeight(desiredLogicalContentHeight); |
| child.setLogicalHeight(0); |
| child.forceChildLayout(); |
| } |
| } |
| } |
| } |
| |
| LayoutUnit RenderGrid::rowPositionForChild(const RenderBox& child) const |
| { |
| bool hasOrthogonalWritingMode = child.isHorizontalWritingMode() != isHorizontalWritingMode(); |
| switch (LayoutStyle::resolveAlignment(styleRef(), child.styleRef(), ItemPositionStretch)) { |
| case ItemPositionSelfStart: |
| // If orthogonal writing-modes, this computes to 'start'. |
| // FIXME: grid track sizing and positioning do not support orthogonal modes yet. |
| if (hasOrthogonalWritingMode) |
| return startOfRowForChild(child); |
| |
| // self-start is based on the child's block axis direction. That's why we need to check against the grid container's block flow. |
| if (child.style()->writingMode() != style()->writingMode()) |
| return endOfRowForChild(child); |
| |
| return startOfRowForChild(child); |
| case ItemPositionSelfEnd: |
| // If orthogonal writing-modes, this computes to 'end'. |
| // FIXME: grid track sizing and positioning do not support orthogonal modes yet. |
| if (hasOrthogonalWritingMode) |
| return endOfRowForChild(child); |
| |
| // self-end is based on the child's block axis direction. That's why we need to check against the grid container's block flow. |
| if (child.style()->writingMode() != style()->writingMode()) |
| return startOfRowForChild(child); |
| |
| return endOfRowForChild(child); |
| case ItemPositionLeft: |
| // The alignment axis (column axis) and the inline axis are parallell in |
| // orthogonal writing mode. |
| // FIXME: grid track sizing and positioning do not support orthogonal modes yet. |
| if (hasOrthogonalWritingMode) |
| return startOfRowForChild(child); |
| |
| // Otherwise this this is equivalent to 'start'. |
| return startOfRowForChild(child); |
| case ItemPositionRight: |
| // The alignment axis (column axis) and the inline axis are parallell in |
| // orthogonal writing mode. |
| // FIXME: grid track sizing and positioning do not support orthogonal modes yet. |
| if (hasOrthogonalWritingMode) |
| return endOfRowForChild(child); |
| |
| // Otherwise this this is equivalent to 'start'. |
| return startOfRowForChild(child); |
| case ItemPositionCenter: |
| return centeredRowPositionForChild(child); |
| // Only used in flex layout, for other layout, it's equivalent to 'start'. |
| case ItemPositionFlexStart: |
| case ItemPositionStart: |
| return startOfRowForChild(child); |
| // Only used in flex layout, for other layout, it's equivalent to 'end'. |
| case ItemPositionFlexEnd: |
| case ItemPositionEnd: |
| return endOfRowForChild(child); |
| case ItemPositionStretch: |
| return startOfRowForChild(child); |
| case ItemPositionBaseline: |
| case ItemPositionLastBaseline: |
| // FIXME: Implement the ItemPositionBaseline value. For now, we always 'start' align the child. |
| return startOfRowForChild(child); |
| case ItemPositionAuto: |
| break; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| |
| ContentPosition static resolveContentDistributionFallback(ContentDistributionType distribution) |
| { |
| switch (distribution) { |
| case ContentDistributionSpaceBetween: |
| return ContentPositionStart; |
| case ContentDistributionSpaceAround: |
| return ContentPositionCenter; |
| case ContentDistributionSpaceEvenly: |
| return ContentPositionCenter; |
| case ContentDistributionStretch: |
| return ContentPositionStart; |
| case ContentDistributionDefault: |
| return ContentPositionAuto; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return ContentPositionAuto; |
| } |
| |
| static inline LayoutUnit offsetToStartEdge(bool isLeftToRight, LayoutUnit availableSpace) |
| { |
| return isLeftToRight ? LayoutUnit(0) : availableSpace; |
| } |
| |
| static inline LayoutUnit offsetToEndEdge(bool isLeftToRight, LayoutUnit availableSpace) |
| { |
| return !isLeftToRight ? LayoutUnit(0) : availableSpace; |
| } |
| |
| LayoutUnit RenderGrid::contentPositionAndDistributionColumnOffset(LayoutUnit availableFreeSpace, ContentPosition position, ContentDistributionType distribution, OverflowAlignment overflow, unsigned numberOfGridTracks) const |
| { |
| if (overflow == OverflowAlignmentSafe && availableFreeSpace <= 0) |
| return 0; |
| |
| // FIXME: for the time being, spec states that it will always fallback for Grids, but |
| // discussion is ongoing. |
| if (distribution != ContentDistributionDefault && position == ContentPositionAuto) |
| position = resolveContentDistributionFallback(distribution); |
| |
| switch (position) { |
| case ContentPositionLeft: |
| return 0; |
| case ContentPositionRight: |
| return availableFreeSpace; |
| case ContentPositionCenter: |
| return availableFreeSpace / 2; |
| case ContentPositionFlexEnd: |
| // Only used in flex layout, for other layout, it's equivalent to 'end'. |
| case ContentPositionEnd: |
| return offsetToEndEdge(style()->isLeftToRightDirection(), availableFreeSpace); |
| case ContentPositionFlexStart: |
| // Only used in flex layout, for other layout, it's equivalent to 'start'. |
| case ContentPositionStart: |
| return offsetToStartEdge(style()->isLeftToRightDirection(), availableFreeSpace); |
| case ContentPositionBaseline: |
| case ContentPositionLastBaseline: |
| // FIXME: Implement the previous values. For now, we always 'start' align. |
| // crbug.com/234191 |
| return offsetToStartEdge(style()->isLeftToRightDirection(), availableFreeSpace); |
| case ContentPositionAuto: |
| break; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| |
| LayoutUnit RenderGrid::contentPositionAndDistributionRowOffset(LayoutUnit availableFreeSpace, ContentPosition position, ContentDistributionType distribution, OverflowAlignment overflow, unsigned numberOfGridTracks) const |
| { |
| if (overflow == OverflowAlignmentSafe && availableFreeSpace <= 0) |
| return 0; |
| |
| // FIXME: for the time being, spec states that it will always fallback for Grids, but |
| // discussion is ongoing. |
| if (distribution != ContentDistributionDefault && position == ContentPositionAuto) |
| position = resolveContentDistributionFallback(distribution); |
| |
| switch (position) { |
| case ContentPositionLeft: |
| // The align-content's axis is always orthogonal to the inline-axis. |
| return 0; |
| case ContentPositionRight: |
| // The align-content's axis is always orthogonal to the inline-axis. |
| return 0; |
| case ContentPositionCenter: |
| return availableFreeSpace / 2; |
| case ContentPositionFlexEnd: |
| // Only used in flex layout, for other layout, it's equivalent to 'End'. |
| case ContentPositionEnd: |
| return availableFreeSpace; |
| case ContentPositionFlexStart: |
| // Only used in flex layout, for other layout, it's equivalent to 'Start'. |
| case ContentPositionStart: |
| return 0; |
| case ContentPositionBaseline: |
| case ContentPositionLastBaseline: |
| // FIXME: Implement the previous values. For now, we always start align. |
| // crbug.com/234191 |
| return 0; |
| case ContentPositionAuto: |
| break; |
| } |
| |
| ASSERT_NOT_REACHED(); |
| return 0; |
| } |
| |
| LayoutPoint RenderGrid::findChildLogicalPosition(const RenderBox& child, LayoutSize contentAlignmentOffset) const |
| { |
| LayoutUnit columnPosition = columnPositionForChild(child); |
| // We stored m_columnPositions's data ignoring the direction, hence we might need now |
| // to translate positions from RTL to LTR, as it's more convenient for painting. |
| if (!style()->isLeftToRightDirection()) |
| columnPosition = (m_columnPositions[m_columnPositions.size() - 1] + borderAndPaddingLogicalLeft()) - columnPosition - child.logicalWidth(); |
| |
| // The Content Alignment offset accounts for the RTL to LTR flip. |
| LayoutPoint childLocation(columnPosition, rowPositionForChild(child)); |
| childLocation.move(contentAlignmentOffset); |
| |
| return childLocation; |
| } |
| |
| void RenderGrid::paintChildren(const PaintInfo& paintInfo, const LayoutPoint& paintOffset) |
| { |
| GridPainter(*this).paintChildren(paintInfo, paintOffset); |
| } |
| |
| const char* RenderGrid::renderName() const |
| { |
| if (isFloating()) |
| return "RenderGrid (floating)"; |
| if (isOutOfFlowPositioned()) |
| return "RenderGrid (positioned)"; |
| if (isAnonymous()) |
| return "RenderGrid (generated)"; |
| if (isRelPositioned()) |
| return "RenderGrid (relative positioned)"; |
| return "RenderGrid"; |
| } |
| |
| } // namespace blink |