blob: cd2d268e4cc698a6118351e88b355458386dfef6 [file] [log] [blame]
/*
* Copyright (C) 2011 Apple Inc. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY APPLE INC. ``AS IS'' AND ANY
* EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
* OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#include "config.h"
#include "core/rendering/RenderGrid.h"
#include "core/rendering/LayoutRepainter.h"
#include "core/rendering/RenderLayer.h"
#include "core/rendering/RenderView.h"
#include "core/rendering/style/GridCoordinate.h"
namespace WebCore {
static const int infinity = -1;
class GridTrack {
public:
GridTrack()
: m_usedBreadth(0)
, m_maxBreadth(0)
{
}
void growUsedBreadth(LayoutUnit growth)
{
ASSERT(growth >= 0);
m_usedBreadth += growth;
}
LayoutUnit usedBreadth() const { return m_usedBreadth; }
void growMaxBreadth(LayoutUnit growth)
{
if (m_maxBreadth == infinity)
m_maxBreadth = m_usedBreadth + growth;
else
m_maxBreadth += growth;
}
LayoutUnit maxBreadthIfNotInfinite() const
{
return (m_maxBreadth == infinity) ? m_usedBreadth : m_maxBreadth;
}
LayoutUnit m_usedBreadth;
LayoutUnit m_maxBreadth;
};
struct GridTrackForNormalization {
GridTrackForNormalization(const GridTrack& track, double flex)
: m_track(&track)
, m_flex(flex)
, m_normalizedFlexValue(track.m_usedBreadth / flex)
{
}
// Required by std::sort.
GridTrackForNormalization operator=(const GridTrackForNormalization& o)
{
m_track = o.m_track;
m_flex = o.m_flex;
m_normalizedFlexValue = o.m_normalizedFlexValue;
return *this;
}
const GridTrack* m_track;
double m_flex;
LayoutUnit m_normalizedFlexValue;
};
class RenderGrid::GridIterator {
WTF_MAKE_NONCOPYABLE(GridIterator);
public:
// |direction| is the direction that is fixed to |fixedTrackIndex| so e.g
// GridIterator(m_grid, ForColumns, 1) will walk over the rows of the 2nd column.
GridIterator(const GridRepresentation& grid, TrackSizingDirection direction, size_t fixedTrackIndex)
: m_grid(grid)
, m_direction(direction)
, m_rowIndex((direction == ForColumns) ? 0 : fixedTrackIndex)
, m_columnIndex((direction == ForColumns) ? fixedTrackIndex : 0)
, m_childIndex(0)
{
ASSERT(m_rowIndex < m_grid.size());
ASSERT(m_columnIndex < m_grid[0].size());
}
RenderBox* nextGridItem()
{
ASSERT(!m_grid.isEmpty());
size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
const GridCell& children = m_grid[m_rowIndex][m_columnIndex];
if (m_childIndex < children.size())
return children[m_childIndex++];
m_childIndex = 0;
}
return 0;
}
PassOwnPtr<GridCoordinate> nextEmptyGridArea()
{
ASSERT(!m_grid.isEmpty());
size_t& varyingTrackIndex = (m_direction == ForColumns) ? m_rowIndex : m_columnIndex;
const size_t endOfVaryingTrackIndex = (m_direction == ForColumns) ? m_grid.size() : m_grid[0].size();
for (; varyingTrackIndex < endOfVaryingTrackIndex; ++varyingTrackIndex) {
const GridCell& children = m_grid[m_rowIndex][m_columnIndex];
if (children.isEmpty()) {
OwnPtr<GridCoordinate> result = adoptPtr(new GridCoordinate(GridSpan(m_rowIndex, m_rowIndex), GridSpan(m_columnIndex, m_columnIndex)));
// Advance the iterator to avoid an infinite loop where we would return the same grid area over and over.
++varyingTrackIndex;
return result.release();
}
}
return nullptr;
}
private:
const GridRepresentation& m_grid;
TrackSizingDirection m_direction;
size_t m_rowIndex;
size_t m_columnIndex;
size_t m_childIndex;
};
RenderGrid::RenderGrid(Element* element)
: RenderBlock(element)
, m_gridIsDirty(true)
, m_orderIterator(this)
{
// All of our children must be block level.
setChildrenInline(false);
}
RenderGrid::~RenderGrid()
{
}
void RenderGrid::addChild(RenderObject* newChild, RenderObject* beforeChild)
{
RenderBlock::addChild(newChild, beforeChild);
if (gridIsDirty())
return;
if (!newChild->isBox()) {
dirtyGrid();
return;
}
RenderBox* newChildBox = toRenderBox(newChild);
OwnPtr<GridSpan> rowPositions = resolveGridPositionsFromStyle(newChildBox, ForRows);
OwnPtr<GridSpan> columnPositions = resolveGridPositionsFromStyle(newChildBox, ForColumns);
if (!rowPositions || !columnPositions) {
// The new child requires the auto-placement algorithm to run so we need to recompute the grid fully.
dirtyGrid();
} else {
if (gridRowCount() <= rowPositions->finalPositionIndex || gridColumnCount() <= columnPositions->finalPositionIndex) {
// FIXME: We could just insert the new child provided we had a primitive to arbitrarily grow the grid.
dirtyGrid();
} else {
insertItemIntoGrid(newChildBox, GridCoordinate(*rowPositions, *columnPositions));
}
}
}
void RenderGrid::removeChild(RenderObject* child)
{
RenderBlock::removeChild(child);
if (gridIsDirty())
return;
ASSERT(child->isBox());
// FIXME: We could avoid dirtying the grid in some cases (e.g. if it's an explicitly positioned element).
dirtyGrid();
}
void RenderGrid::styleDidChange(StyleDifference diff, const RenderStyle* oldStyle)
{
RenderBlock::styleDidChange(diff, oldStyle);
if (!oldStyle)
return;
// FIXME: The following checks could be narrowed down if we kept track of which type of grid items we have:
// - explicit grid size changes impact negative explicitely positioned and auto-placed grid items.
// - named grid lines only impact grid items with named grid lines.
// - auto-flow changes only impacts auto-placed children.
if (explicitGridDidResize(oldStyle)
|| namedGridLinesDefinitionDidChange(oldStyle)
|| oldStyle->gridAutoFlow() != style()->gridAutoFlow())
dirtyGrid();
}
bool RenderGrid::explicitGridDidResize(const RenderStyle* oldStyle) const
{
return oldStyle->gridDefinitionColumns().size() != style()->gridDefinitionColumns().size()
|| oldStyle->gridDefinitionRows().size() != style()->gridDefinitionRows().size();
}
bool RenderGrid::namedGridLinesDefinitionDidChange(const RenderStyle* oldStyle) const
{
return oldStyle->namedGridRowLines() != style()->namedGridRowLines()
|| oldStyle->namedGridColumnLines() != style()->namedGridColumnLines();
}
void RenderGrid::layoutBlock(bool relayoutChildren, LayoutUnit)
{
ASSERT(needsLayout());
if (!relayoutChildren && simplifiedLayout())
return;
// FIXME: Much of this method is boiler plate that matches RenderBox::layoutBlock and Render*FlexibleBox::layoutBlock.
// It would be nice to refactor some of the duplicate code.
LayoutRepainter repainter(*this, checkForRepaintDuringLayout());
LayoutStateMaintainer statePusher(view(), this, locationOffset(), hasTransform() || hasReflection() || style()->isFlippedBlocksWritingMode());
// Regions changing widths can force us to relayout our children.
RenderFlowThread* flowThread = flowThreadContainingBlock();
if (logicalWidthChangedInRegions(flowThread))
relayoutChildren = true;
if (updateRegionsAndShapesLogicalSize(flowThread))
relayoutChildren = true;
LayoutSize previousSize = size();
setLogicalHeight(0);
updateLogicalWidth();
layoutGridItems();
LayoutUnit oldClientAfterEdge = clientLogicalBottom();
updateLogicalHeight();
if (size() != previousSize)
relayoutChildren = true;
layoutPositionedObjects(relayoutChildren || isRoot());
computeRegionRangeForBlock(flowThread);
computeOverflow(oldClientAfterEdge);
statePusher.pop();
updateLayerTransform();
// Update our scroll information if we're overflow:auto/scroll/hidden now that we know if
// we overflow or not.
if (hasOverflowClip())
layer()->updateScrollInfoAfterLayout();
repainter.repaintAfterLayout();
clearNeedsLayout();
}
void RenderGrid::computeIntrinsicLogicalWidths(LayoutUnit& minLogicalWidth, LayoutUnit& maxLogicalWidth) const
{
const_cast<RenderGrid*>(this)->placeItemsOnGrid();
// FIXME: This is an inefficient way to fill our sizes as it will try every grid areas, when we would
// only want to account for fixed grid tracks and grid items. Also this will be incorrect if we have spanning
// grid items.
for (size_t i = 0; i < gridColumnCount(); ++i) {
const GridTrackSize& trackSize = gridTrackSize(ForColumns, i);
LayoutUnit minTrackBreadth = computePreferredTrackWidth(trackSize.minTrackBreadth(), i);
LayoutUnit maxTrackBreadth = computePreferredTrackWidth(trackSize.maxTrackBreadth(), i);
maxTrackBreadth = std::max(maxTrackBreadth, minTrackBreadth);
minLogicalWidth += minTrackBreadth;
maxLogicalWidth += maxTrackBreadth;
// FIXME: This should add in the scrollbarWidth (e.g. see RenderFlexibleBox).
}
}
void RenderGrid::computePreferredLogicalWidths()
{
ASSERT(preferredLogicalWidthsDirty());
m_minPreferredLogicalWidth = 0;
m_maxPreferredLogicalWidth = 0;
// FIXME: We don't take our own logical width into account. Once we do, we need to make sure
// we apply (and test the interaction with) min-width / max-width.
computeIntrinsicLogicalWidths(m_minPreferredLogicalWidth, m_maxPreferredLogicalWidth);
LayoutUnit borderAndPaddingInInlineDirection = borderAndPaddingLogicalWidth();
m_minPreferredLogicalWidth += borderAndPaddingInInlineDirection;
m_maxPreferredLogicalWidth += borderAndPaddingInInlineDirection;
clearPreferredLogicalWidthsDirty();
}
LayoutUnit RenderGrid::computePreferredTrackWidth(const GridLength& gridLength, size_t trackIndex) const
{
if (gridLength.isFlex())
return 0;
const Length& length = gridLength.length();
if (length.isFixed()) {
// Grid areas don't have borders, margins or paddings so we don't need to account for them.
return length.intValue();
}
if (length.isMinContent()) {
LayoutUnit minContentSize = 0;
GridIterator iterator(m_grid, ForColumns, trackIndex);
while (RenderBox* gridItem = iterator.nextGridItem()) {
// FIXME: We should include the child's fixed margins like RenderFlexibleBox.
minContentSize = std::max(minContentSize, gridItem->minPreferredLogicalWidth());
}
return minContentSize;
}
if (length.isMaxContent()) {
LayoutUnit maxContentSize = 0;
GridIterator iterator(m_grid, ForColumns, trackIndex);
while (RenderBox* gridItem = iterator.nextGridItem()) {
// FIXME: We should include the child's fixed margins like RenderFlexibleBox.
maxContentSize = std::max(maxContentSize, gridItem->maxPreferredLogicalWidth());
}
return maxContentSize;
}
// FIXME: css3-sizing mentions that we should resolve "definite sizes"
// (including <percentage> and calc()) but we don't do it elsewhere.
return 0;
}
void RenderGrid::computedUsedBreadthOfGridTracks(TrackSizingDirection direction, Vector<GridTrack>& columnTracks, Vector<GridTrack>& rowTracks)
{
LayoutUnit availableLogicalSpace = (direction == ForColumns) ? availableLogicalWidth() : availableLogicalHeight(IncludeMarginBorderPadding);
Vector<GridTrack>& tracks = (direction == ForColumns) ? columnTracks : rowTracks;
Vector<size_t> contentSizedTracks;
for (size_t i = 0; i < tracks.size(); ++i) {
GridTrack& track = tracks[i];
const GridTrackSize& trackSize = gridTrackSize(direction, i);
const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
const GridLength& maxTrackBreadth = trackSize.maxTrackBreadth();
track.m_usedBreadth = computeUsedBreadthOfMinLength(direction, minTrackBreadth);
track.m_maxBreadth = computeUsedBreadthOfMaxLength(direction, maxTrackBreadth, track.m_usedBreadth);
track.m_maxBreadth = std::max(track.m_maxBreadth, track.m_usedBreadth);
if (trackSize.isContentSized())
contentSizedTracks.append(i);
}
if (!contentSizedTracks.isEmpty())
resolveContentBasedTrackSizingFunctions(direction, columnTracks, rowTracks, contentSizedTracks, availableLogicalSpace);
for (size_t i = 0; i < tracks.size(); ++i) {
ASSERT(tracks[i].m_maxBreadth != infinity);
availableLogicalSpace -= tracks[i].m_usedBreadth;
}
if (availableLogicalSpace <= 0)
return;
const size_t tracksSize = tracks.size();
Vector<GridTrack*> tracksForDistribution(tracksSize);
for (size_t i = 0; i < tracksSize; ++i)
tracksForDistribution[i] = tracks.data() + i;
distributeSpaceToTracks(tracksForDistribution, 0, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth, availableLogicalSpace);
// 4. Grow all Grid tracks having a fraction as the MaxTrackSizingFunction.
// FIXME: Handle the case where RemainingSpace is not defined.
double normalizedFractionBreadth = computeNormalizedFractionBreadth(tracks, direction, availableLogicalSpace);
for (size_t i = 0; i < tracksSize; ++i) {
const GridTrackSize& trackSize = gridTrackSize(direction, i);
if (!trackSize.maxTrackBreadth().isFlex())
continue;
tracks[i].m_usedBreadth = std::max<LayoutUnit>(tracks[i].m_usedBreadth, normalizedFractionBreadth * trackSize.maxTrackBreadth().flex());
}
}
LayoutUnit RenderGrid::computeUsedBreadthOfMinLength(TrackSizingDirection direction, const GridLength& gridLength) const
{
if (gridLength.isFlex())
return 0;
const Length& trackLength = gridLength.length();
ASSERT(!trackLength.isAuto());
if (trackLength.isFixed() || trackLength.isPercent() || trackLength.isViewportPercentage())
return computeUsedBreadthOfSpecifiedLength(direction, trackLength);
ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
return 0;
}
LayoutUnit RenderGrid::computeUsedBreadthOfMaxLength(TrackSizingDirection direction, const GridLength& gridLength, LayoutUnit usedBreadth) const
{
if (gridLength.isFlex())
return usedBreadth;
const Length& trackLength = gridLength.length();
ASSERT(!trackLength.isAuto());
if (trackLength.isFixed() || trackLength.isPercent() || trackLength.isViewportPercentage()) {
LayoutUnit computedBreadth = computeUsedBreadthOfSpecifiedLength(direction, trackLength);
ASSERT(computedBreadth != infinity);
return computedBreadth;
}
ASSERT(trackLength.isMinContent() || trackLength.isMaxContent());
return infinity;
}
LayoutUnit RenderGrid::computeUsedBreadthOfSpecifiedLength(TrackSizingDirection direction, const Length& trackLength) const
{
// FIXME: We still need to support calc() here (https://webkit.org/b/103761).
ASSERT(trackLength.isFixed() || trackLength.isPercent() || trackLength.isViewportPercentage());
// FIXME: The -1 here should be replaced by whatever the intrinsic height of the grid is.
return valueForLength(trackLength, direction == ForColumns ? logicalWidth() : computeContentLogicalHeight(style()->logicalHeight(), -1), view());
}
static bool sortByGridNormalizedFlexValue(const GridTrackForNormalization& track1, const GridTrackForNormalization& track2)
{
return track1.m_normalizedFlexValue < track2.m_normalizedFlexValue;
}
double RenderGrid::computeNormalizedFractionBreadth(Vector<GridTrack>& tracks, TrackSizingDirection direction, LayoutUnit availableLogicalSpace) const
{
// |availableLogicalSpace| already accounts for the used breadths so no need to remove it here.
Vector<GridTrackForNormalization> tracksForNormalization;
for (size_t i = 0; i < tracks.size(); ++i) {
const GridTrackSize& trackSize = gridTrackSize(direction, i);
if (!trackSize.maxTrackBreadth().isFlex())
continue;
tracksForNormalization.append(GridTrackForNormalization(tracks[i], trackSize.maxTrackBreadth().flex()));
}
// FIXME: Ideally we shouldn't come here without any <flex> grid track.
if (tracksForNormalization.isEmpty())
return LayoutUnit();
std::sort(tracksForNormalization.begin(), tracksForNormalization.end(), sortByGridNormalizedFlexValue);
// These values work together: as we walk over our grid tracks, we increase fractionValueBasedOnGridItemsRatio
// to match a grid track's usedBreadth to <flex> ratio until the total fractions sized grid tracks wouldn't
// fit into availableLogicalSpaceIgnoringFractionTracks.
double accumulatedFractions = 0;
LayoutUnit fractionValueBasedOnGridItemsRatio = 0;
LayoutUnit availableLogicalSpaceIgnoringFractionTracks = availableLogicalSpace;
for (size_t i = 0; i < tracksForNormalization.size(); ++i) {
const GridTrackForNormalization& track = tracksForNormalization[i];
if (track.m_normalizedFlexValue > fractionValueBasedOnGridItemsRatio) {
// If the normalized flex value (we ordered |tracksForNormalization| by increasing normalized flex value)
// will make us overflow our container, then stop. We have the previous step's ratio is the best fit.
if (track.m_normalizedFlexValue * accumulatedFractions > availableLogicalSpaceIgnoringFractionTracks)
break;
fractionValueBasedOnGridItemsRatio = track.m_normalizedFlexValue;
}
accumulatedFractions += track.m_flex;
// This item was processed so we re-add its used breadth to the available space to accurately count the remaining space.
availableLogicalSpaceIgnoringFractionTracks += track.m_track->m_usedBreadth;
}
return availableLogicalSpaceIgnoringFractionTracks / accumulatedFractions;
}
const GridTrackSize& RenderGrid::gridTrackSize(TrackSizingDirection direction, size_t i) const
{
const Vector<GridTrackSize>& trackStyles = (direction == ForColumns) ? style()->gridDefinitionColumns() : style()->gridDefinitionRows();
if (i >= trackStyles.size())
return (direction == ForColumns) ? style()->gridAutoColumns() : style()->gridAutoRows();
return trackStyles[i];
}
size_t RenderGrid::explicitGridColumnCount() const
{
return style()->gridDefinitionColumns().size();
}
size_t RenderGrid::explicitGridRowCount() const
{
return style()->gridDefinitionRows().size();
}
size_t RenderGrid::explicitGridSizeForSide(GridPositionSide side) const
{
return (side == ColumnStartSide || side == ColumnEndSide) ? explicitGridColumnCount() : explicitGridRowCount();
}
LayoutUnit RenderGrid::logicalContentHeightForChild(RenderBox* child, Vector<GridTrack>& columnTracks)
{
SubtreeLayoutScope layoutScope(child);
if (child->style()->logicalHeight().isPercent())
layoutScope.setNeedsLayout(child);
child->setOverrideContainingBlockContentLogicalWidth(gridAreaBreadthForChild(child, ForColumns, columnTracks));
// If |child| has a percentage logical height, we shouldn't let it override its intrinsic height, which is
// what we are interested in here. Thus we need to set the override logical height to -1 (no possible resolution).
child->setOverrideContainingBlockContentLogicalHeight(-1);
child->layoutIfNeeded();
return child->logicalHeight();
}
LayoutUnit RenderGrid::minContentForChild(RenderBox* child, TrackSizingDirection direction, Vector<GridTrack>& columnTracks)
{
bool hasOrthogonalWritingMode = child->isHorizontalWritingMode() != isHorizontalWritingMode();
// FIXME: Properly support orthogonal writing mode.
if (hasOrthogonalWritingMode)
return 0;
if (direction == ForColumns) {
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child->minPreferredLogicalWidth();
}
return logicalContentHeightForChild(child, columnTracks);
}
LayoutUnit RenderGrid::maxContentForChild(RenderBox* child, TrackSizingDirection direction, Vector<GridTrack>& columnTracks)
{
bool hasOrthogonalWritingMode = child->isHorizontalWritingMode() != isHorizontalWritingMode();
// FIXME: Properly support orthogonal writing mode.
if (hasOrthogonalWritingMode)
return LayoutUnit();
if (direction == ForColumns) {
// FIXME: It's unclear if we should return the intrinsic width or the preferred width.
// See http://lists.w3.org/Archives/Public/www-style/2013Jan/0245.html
return child->maxPreferredLogicalWidth();
}
return logicalContentHeightForChild(child, columnTracks);
}
void RenderGrid::resolveContentBasedTrackSizingFunctions(TrackSizingDirection direction, Vector<GridTrack>& columnTracks, Vector<GridTrack>& rowTracks, Vector<size_t> contentSizedTracks, LayoutUnit& availableLogicalSpace)
{
// FIXME: Split the grid tracks into groups that doesn't overlap a <flex> grid track (crbug.com/235258).
// FIXME: Per step 2 of the specification, we should order the grid items by increasing span.
for (size_t i = 0; i < contentSizedTracks.size(); ++i) {
GridIterator iterator(m_grid, direction, contentSizedTracks[i]);
while (RenderBox* gridItem = iterator.nextGridItem()) {
resolveContentBasedTrackSizingFunctionsForItems(direction, columnTracks, rowTracks, gridItem, &GridTrackSize::hasMinOrMaxContentMinTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth);
resolveContentBasedTrackSizingFunctionsForItems(direction, columnTracks, rowTracks, gridItem, &GridTrackSize::hasMaxContentMinTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::usedBreadth, &GridTrack::growUsedBreadth);
resolveContentBasedTrackSizingFunctionsForItems(direction, columnTracks, rowTracks, gridItem, &GridTrackSize::hasMinOrMaxContentMaxTrackBreadth, &RenderGrid::minContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth);
resolveContentBasedTrackSizingFunctionsForItems(direction, columnTracks, rowTracks, gridItem, &GridTrackSize::hasMaxContentMaxTrackBreadth, &RenderGrid::maxContentForChild, &GridTrack::maxBreadthIfNotInfinite, &GridTrack::growMaxBreadth);
}
GridTrack& track = (direction == ForColumns) ? columnTracks[i] : rowTracks[i];
if (track.m_maxBreadth == infinity)
track.m_maxBreadth = track.m_usedBreadth;
}
}
void RenderGrid::resolveContentBasedTrackSizingFunctionsForItems(TrackSizingDirection direction, Vector<GridTrack>& columnTracks, Vector<GridTrack>& rowTracks, RenderBox* gridItem, FilterFunction filterFunction, SizingFunction sizingFunction, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction)
{
const GridCoordinate coordinate = cachedGridCoordinate(gridItem);
const size_t initialTrackIndex = (direction == ForColumns) ? coordinate.columns.initialPositionIndex : coordinate.rows.initialPositionIndex;
const size_t finalTrackIndex = (direction == ForColumns) ? coordinate.columns.finalPositionIndex : coordinate.rows.finalPositionIndex;
Vector<GridTrack*> tracks;
for (size_t trackIndex = initialTrackIndex; trackIndex <= finalTrackIndex; ++trackIndex) {
const GridTrackSize& trackSize = gridTrackSize(direction, trackIndex);
if (!(trackSize.*filterFunction)())
continue;
GridTrack& track = (direction == ForColumns) ? columnTracks[trackIndex] : rowTracks[trackIndex];
tracks.append(&track);
}
if (tracks.isEmpty())
return;
LayoutUnit additionalBreadthSpace = (this->*sizingFunction)(gridItem, direction, columnTracks);
for (size_t trackIndexForSpace = initialTrackIndex; trackIndexForSpace <= finalTrackIndex; ++trackIndexForSpace) {
GridTrack& track = (direction == ForColumns) ? columnTracks[trackIndexForSpace] : rowTracks[trackIndexForSpace];
additionalBreadthSpace -= (track.*trackGetter)();
}
// FIXME: We should pass different values for |tracksForGrowthAboveMaxBreadth|.
distributeSpaceToTracks(tracks, &tracks, trackGetter, trackGrowthFunction, additionalBreadthSpace);
}
static bool sortByGridTrackGrowthPotential(const GridTrack* track1, const GridTrack* track2)
{
return (track1->m_maxBreadth - track1->m_usedBreadth) < (track2->m_maxBreadth - track2->m_usedBreadth);
}
void RenderGrid::distributeSpaceToTracks(Vector<GridTrack*>& tracks, Vector<GridTrack*>* tracksForGrowthAboveMaxBreadth, AccumulatorGetter trackGetter, AccumulatorGrowFunction trackGrowthFunction, LayoutUnit& availableLogicalSpace)
{
std::sort(tracks.begin(), tracks.end(), sortByGridTrackGrowthPotential);
size_t tracksSize = tracks.size();
Vector<LayoutUnit> updatedTrackBreadths(tracksSize);
for (size_t i = 0; i < tracksSize; ++i) {
GridTrack& track = *tracks[i];
LayoutUnit availableLogicalSpaceShare = availableLogicalSpace / (tracksSize - i);
LayoutUnit trackBreadth = (tracks[i]->*trackGetter)();
LayoutUnit growthShare = std::max(LayoutUnit(), std::min(availableLogicalSpaceShare, track.m_maxBreadth - trackBreadth));
// We should never shrink any grid track or else we can't guarantee we abide by our min-sizing function.
updatedTrackBreadths[i] = trackBreadth + growthShare;
availableLogicalSpace -= growthShare;
}
if (availableLogicalSpace > 0 && tracksForGrowthAboveMaxBreadth) {
tracksSize = tracksForGrowthAboveMaxBreadth->size();
for (size_t i = 0; i < tracksSize; ++i) {
LayoutUnit growthShare = availableLogicalSpace / (tracksSize - i);
updatedTrackBreadths[i] += growthShare;
availableLogicalSpace -= growthShare;
}
}
for (size_t i = 0; i < tracksSize; ++i) {
LayoutUnit growth = updatedTrackBreadths[i] - (tracks[i]->*trackGetter)();
if (growth >= 0)
(tracks[i]->*trackGrowthFunction)(growth);
}
}
#ifndef NDEBUG
bool RenderGrid::tracksAreWiderThanMinTrackBreadth(TrackSizingDirection direction, const Vector<GridTrack>& tracks)
{
for (size_t i = 0; i < tracks.size(); ++i) {
const GridTrackSize& trackSize = gridTrackSize(direction, i);
const GridLength& minTrackBreadth = trackSize.minTrackBreadth();
if (computeUsedBreadthOfMinLength(direction, minTrackBreadth) > tracks[i].m_usedBreadth)
return false;
}
return true;
}
#endif
void RenderGrid::growGrid(TrackSizingDirection direction)
{
if (direction == ForColumns) {
const size_t oldColumnSize = m_grid[0].size();
for (size_t row = 0; row < m_grid.size(); ++row)
m_grid[row].grow(oldColumnSize + 1);
} else {
const size_t oldRowSize = m_grid.size();
m_grid.grow(oldRowSize + 1);
m_grid[oldRowSize].grow(m_grid[0].size());
}
}
void RenderGrid::insertItemIntoGrid(RenderBox* child, const GridCoordinate& coordinate)
{
for (size_t row = coordinate.rows.initialPositionIndex; row <= coordinate.rows.finalPositionIndex; ++row) {
for (size_t column = coordinate.columns.initialPositionIndex; column <= coordinate.columns.finalPositionIndex; ++column)
m_grid[row][column].append(child);
}
m_gridItemCoordinate.set(child, coordinate);
}
void RenderGrid::insertItemIntoGrid(RenderBox* child, size_t rowTrack, size_t columnTrack)
{
const GridSpan& rowSpan = resolveGridPositionsFromAutoPlacementPosition(child, ForRows, rowTrack);
const GridSpan& columnSpan = resolveGridPositionsFromAutoPlacementPosition(child, ForColumns, columnTrack);
insertItemIntoGrid(child, GridCoordinate(rowSpan, columnSpan));
}
void RenderGrid::placeItemsOnGrid()
{
if (!gridIsDirty())
return;
ASSERT(m_gridItemCoordinate.isEmpty());
populateExplicitGridAndOrderIterator();
// We clear the dirty bit here as the grid sizes have been updated, this means
// that we can safely call gridRowCount() / gridColumnCount().
m_gridIsDirty = false;
Vector<RenderBox*> autoMajorAxisAutoGridItems;
Vector<RenderBox*> specifiedMajorAxisAutoGridItems;
GridAutoFlow autoFlow = style()->gridAutoFlow();
for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next()) {
// FIXME: We never re-resolve positions if the grid is grown during auto-placement which may lead auto / <integer>
// positions to not match the author's intent. The specification is unclear on what should be done in this case.
OwnPtr<GridSpan> rowPositions = resolveGridPositionsFromStyle(child, ForRows);
OwnPtr<GridSpan> columnPositions = resolveGridPositionsFromStyle(child, ForColumns);
if (!rowPositions || !columnPositions) {
GridSpan* majorAxisPositions = (autoPlacementMajorAxisDirection() == ForColumns) ? columnPositions.get() : rowPositions.get();
if (!majorAxisPositions)
autoMajorAxisAutoGridItems.append(child);
else
specifiedMajorAxisAutoGridItems.append(child);
continue;
}
insertItemIntoGrid(child, GridCoordinate(*rowPositions, *columnPositions));
}
ASSERT(gridRowCount() >= style()->gridDefinitionRows().size());
ASSERT(gridColumnCount() >= style()->gridDefinitionColumns().size());
if (autoFlow == AutoFlowNone) {
// If we did collect some grid items, they won't be placed thus never laid out.
ASSERT(!autoMajorAxisAutoGridItems.size());
ASSERT(!specifiedMajorAxisAutoGridItems.size());
return;
}
placeSpecifiedMajorAxisItemsOnGrid(specifiedMajorAxisAutoGridItems);
placeAutoMajorAxisItemsOnGrid(autoMajorAxisAutoGridItems);
m_grid.shrinkToFit();
}
void RenderGrid::populateExplicitGridAndOrderIterator()
{
OrderIteratorPopulator populator(m_orderIterator);
size_t maximumRowIndex = std::max<size_t>(1, explicitGridRowCount());
size_t maximumColumnIndex = std::max<size_t>(1, explicitGridColumnCount());
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
populator.collectChild(child);
// This function bypasses the cache (cachedGridCoordinate()) as it is used to build it.
OwnPtr<GridSpan> rowPositions = resolveGridPositionsFromStyle(child, ForRows);
OwnPtr<GridSpan> columnPositions = resolveGridPositionsFromStyle(child, ForColumns);
// |positions| is 0 if we need to run the auto-placement algorithm. Our estimation ignores
// this case as the auto-placement algorithm will grow the grid as needed.
if (rowPositions)
maximumRowIndex = std::max(maximumRowIndex, rowPositions->finalPositionIndex + 1);
if (columnPositions)
maximumColumnIndex = std::max(maximumColumnIndex, columnPositions->finalPositionIndex + 1);
}
m_grid.grow(maximumRowIndex);
for (size_t i = 0; i < m_grid.size(); ++i)
m_grid[i].grow(maximumColumnIndex);
}
void RenderGrid::placeSpecifiedMajorAxisItemsOnGrid(Vector<RenderBox*> autoGridItems)
{
for (size_t i = 0; i < autoGridItems.size(); ++i) {
OwnPtr<GridSpan> majorAxisPositions = resolveGridPositionsFromStyle(autoGridItems[i], autoPlacementMajorAxisDirection());
GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisPositions->initialPositionIndex);
if (OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea()) {
insertItemIntoGrid(autoGridItems[i], emptyGridArea->rows.initialPositionIndex, emptyGridArea->columns.initialPositionIndex);
continue;
}
growGrid(autoPlacementMinorAxisDirection());
OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea();
ASSERT(emptyGridArea);
insertItemIntoGrid(autoGridItems[i], emptyGridArea->rows.initialPositionIndex, emptyGridArea->columns.initialPositionIndex);
}
}
void RenderGrid::placeAutoMajorAxisItemsOnGrid(Vector<RenderBox*> autoGridItems)
{
for (size_t i = 0; i < autoGridItems.size(); ++i)
placeAutoMajorAxisItemOnGrid(autoGridItems[i]);
}
void RenderGrid::placeAutoMajorAxisItemOnGrid(RenderBox* gridItem)
{
OwnPtr<GridSpan> minorAxisPositions = resolveGridPositionsFromStyle(gridItem, autoPlacementMinorAxisDirection());
ASSERT(!resolveGridPositionsFromStyle(gridItem, autoPlacementMajorAxisDirection()));
size_t minorAxisIndex = 0;
if (minorAxisPositions) {
minorAxisIndex = minorAxisPositions->initialPositionIndex;
GridIterator iterator(m_grid, autoPlacementMinorAxisDirection(), minorAxisIndex);
if (OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea()) {
insertItemIntoGrid(gridItem, emptyGridArea->rows.initialPositionIndex, emptyGridArea->columns.initialPositionIndex);
return;
}
} else {
const size_t endOfMajorAxis = (autoPlacementMajorAxisDirection() == ForColumns) ? gridColumnCount() : gridRowCount();
for (size_t majorAxisIndex = 0; majorAxisIndex < endOfMajorAxis; ++majorAxisIndex) {
GridIterator iterator(m_grid, autoPlacementMajorAxisDirection(), majorAxisIndex);
if (OwnPtr<GridCoordinate> emptyGridArea = iterator.nextEmptyGridArea()) {
insertItemIntoGrid(gridItem, emptyGridArea->rows.initialPositionIndex, emptyGridArea->columns.initialPositionIndex);
return;
}
}
}
// We didn't find an empty grid area so we need to create an extra major axis line and insert our gridItem in it.
const size_t columnIndex = (autoPlacementMajorAxisDirection() == ForColumns) ? m_grid[0].size() : minorAxisIndex;
const size_t rowIndex = (autoPlacementMajorAxisDirection() == ForColumns) ? minorAxisIndex : m_grid.size();
growGrid(autoPlacementMajorAxisDirection());
insertItemIntoGrid(gridItem, rowIndex, columnIndex);
}
RenderGrid::TrackSizingDirection RenderGrid::autoPlacementMajorAxisDirection() const
{
GridAutoFlow flow = style()->gridAutoFlow();
ASSERT(flow != AutoFlowNone);
return (flow == AutoFlowColumn) ? ForColumns : ForRows;
}
RenderGrid::TrackSizingDirection RenderGrid::autoPlacementMinorAxisDirection() const
{
GridAutoFlow flow = style()->gridAutoFlow();
ASSERT(flow != AutoFlowNone);
return (flow == AutoFlowColumn) ? ForRows : ForColumns;
}
void RenderGrid::dirtyGrid()
{
m_grid.resize(0);
m_gridItemCoordinate.clear();
m_gridIsDirty = true;
}
void RenderGrid::layoutGridItems()
{
placeItemsOnGrid();
Vector<GridTrack> columnTracks(gridColumnCount());
Vector<GridTrack> rowTracks(gridRowCount());
computedUsedBreadthOfGridTracks(ForColumns, columnTracks, rowTracks);
ASSERT(tracksAreWiderThanMinTrackBreadth(ForColumns, columnTracks));
computedUsedBreadthOfGridTracks(ForRows, columnTracks, rowTracks);
ASSERT(tracksAreWiderThanMinTrackBreadth(ForRows, rowTracks));
for (RenderBox* child = firstChildBox(); child; child = child->nextSiblingBox()) {
LayoutPoint childPosition = findChildLogicalPosition(child, columnTracks, rowTracks);
// Because the grid area cannot be styled, we don't need to adjust
// the grid breadth to account for 'box-sizing'.
LayoutUnit oldOverrideContainingBlockContentLogicalWidth = child->hasOverrideContainingBlockLogicalWidth() ? child->overrideContainingBlockContentLogicalWidth() : LayoutUnit();
LayoutUnit oldOverrideContainingBlockContentLogicalHeight = child->hasOverrideContainingBlockLogicalHeight() ? child->overrideContainingBlockContentLogicalHeight() : LayoutUnit();
// FIXME: For children in a content sized track, we clear the overrideContainingBlockContentLogicalHeight
// in minContentForChild / maxContentForChild which means that we will always relayout the child.
LayoutUnit overrideContainingBlockContentLogicalWidth = gridAreaBreadthForChild(child, ForColumns, columnTracks);
LayoutUnit overrideContainingBlockContentLogicalHeight = gridAreaBreadthForChild(child, ForRows, rowTracks);
SubtreeLayoutScope layoutScope(child);
if (oldOverrideContainingBlockContentLogicalWidth != overrideContainingBlockContentLogicalWidth || oldOverrideContainingBlockContentLogicalHeight != overrideContainingBlockContentLogicalHeight)
layoutScope.setNeedsLayout(child);
child->setOverrideContainingBlockContentLogicalWidth(overrideContainingBlockContentLogicalWidth);
child->setOverrideContainingBlockContentLogicalHeight(overrideContainingBlockContentLogicalHeight);
LayoutRect oldChildRect = child->frameRect();
// FIXME: Grid items should stretch to fill their cells. Once we
// implement grid-{column,row}-align, we can also shrink to fit. For
// now, just size as if we were a regular child.
child->layoutIfNeeded();
// FIXME: Handle border & padding on the grid element.
child->setLogicalLocation(childPosition);
// If the child moved, we have to repaint it as well as any floating/positioned
// descendants. An exception is if we need a layout. In this case, we know we're going to
// repaint ourselves (and the child) anyway.
if (!selfNeedsLayout() && child->checkForRepaintDuringLayout())
child->repaintDuringLayoutIfMoved(oldChildRect);
}
for (size_t i = 0; i < rowTracks.size(); ++i)
setLogicalHeight(logicalHeight() + rowTracks[i].m_usedBreadth);
// FIXME: We should handle min / max logical height.
setLogicalHeight(logicalHeight() + borderAndPaddingLogicalHeight());
}
GridCoordinate RenderGrid::cachedGridCoordinate(const RenderBox* gridItem) const
{
ASSERT(m_gridItemCoordinate.contains(gridItem));
return m_gridItemCoordinate.get(gridItem);
}
GridSpan RenderGrid::resolveGridPositionsFromAutoPlacementPosition(const RenderBox*, TrackSizingDirection, size_t initialPosition) const
{
// FIXME: We don't support spanning with auto positions yet. Once we do, this is wrong. Also we should make
// sure the grid can accomodate the new item as we only grow 1 position in a given direction.
return GridSpan(initialPosition, initialPosition);
}
PassOwnPtr<GridSpan> RenderGrid::resolveGridPositionsFromStyle(const RenderBox* gridItem, TrackSizingDirection direction) const
{
const GridPosition& initialPosition = (direction == ForColumns) ? gridItem->style()->gridColumnStart() : gridItem->style()->gridRowStart();
const GridPositionSide initialPositionSide = (direction == ForColumns) ? ColumnStartSide : RowStartSide;
const GridPosition& finalPosition = (direction == ForColumns) ? gridItem->style()->gridColumnEnd() : gridItem->style()->gridRowEnd();
const GridPositionSide finalPositionSide = (direction == ForColumns) ? ColumnEndSide : RowEndSide;
// We should NEVER see both spans as they should have been handled during style resolve.
ASSERT(!initialPosition.isSpan() || !finalPosition.isSpan());
if (initialPosition.shouldBeResolvedAgainstOppositePosition() && finalPosition.shouldBeResolvedAgainstOppositePosition()) {
if (style()->gridAutoFlow() == AutoFlowNone)
return adoptPtr(new GridSpan(0, 0));
// We can't get our grid positions without running the auto placement algorithm.
return nullptr;
}
if (initialPosition.shouldBeResolvedAgainstOppositePosition()) {
// Infer the position from the final position ('auto / 1' or 'span 2 / 3' case).
const size_t finalResolvedPosition = resolveGridPositionFromStyle(finalPosition, finalPositionSide);
return resolveGridPositionAgainstOppositePosition(finalResolvedPosition, initialPosition, initialPositionSide);
}
if (finalPosition.shouldBeResolvedAgainstOppositePosition()) {
// Infer our position from the initial position ('1 / auto' or '3 / span 2' case).
const size_t initialResolvedPosition = resolveGridPositionFromStyle(initialPosition, initialPositionSide);
return resolveGridPositionAgainstOppositePosition(initialResolvedPosition, finalPosition, finalPositionSide);
}
size_t resolvedInitialPosition = resolveGridPositionFromStyle(initialPosition, initialPositionSide);
size_t resolvedFinalPosition = resolveGridPositionFromStyle(finalPosition, finalPositionSide);
// If 'grid-after' specifies a line at or before that specified by 'grid-before', it computes to 'span 1'.
if (resolvedFinalPosition < resolvedInitialPosition)
resolvedFinalPosition = resolvedInitialPosition;
return adoptPtr(new GridSpan(resolvedInitialPosition, resolvedFinalPosition));
}
inline static size_t adjustGridPositionForAfterEndSide(size_t resolvedPosition)
{
return resolvedPosition ? resolvedPosition - 1 : 0;
}
static size_t adjustGridPositionForSide(size_t resolvedPosition, GridPositionSide side)
{
// An item finishing on the N-th line belongs to the N-1-th cell.
if (side == ColumnEndSide || side == RowEndSide)
return adjustGridPositionForAfterEndSide(resolvedPosition);
return resolvedPosition;
}
size_t RenderGrid::resolveNamedGridLinePositionFromStyle(const GridPosition& position, GridPositionSide side) const
{
ASSERT(!position.namedGridLine().isNull());
const NamedGridLinesMap& gridLinesNames = (side == ColumnStartSide || side == ColumnEndSide) ? style()->namedGridColumnLines() : style()->namedGridRowLines();
NamedGridLinesMap::const_iterator it = gridLinesNames.find(position.namedGridLine());
if (it == gridLinesNames.end()) {
if (position.isPositive())
return 0;
const size_t lastLine = explicitGridSizeForSide(side);
return adjustGridPositionForSide(lastLine, side);
}
size_t namedGridLineIndex;
if (position.isPositive())
namedGridLineIndex = std::min<size_t>(position.integerPosition(), it->value.size()) - 1;
else
namedGridLineIndex = std::max<int>(it->value.size() - abs(position.integerPosition()), 0);
return adjustGridPositionForSide(it->value[namedGridLineIndex], side);
}
size_t RenderGrid::resolveGridPositionFromStyle(const GridPosition& position, GridPositionSide side) const
{
switch (position.type()) {
case ExplicitPosition: {
ASSERT(position.integerPosition());
if (!position.namedGridLine().isNull())
return resolveNamedGridLinePositionFromStyle(position, side);
// Handle <integer> explicit position.
if (position.isPositive())
return adjustGridPositionForSide(position.integerPosition() - 1, side);
size_t resolvedPosition = abs(position.integerPosition()) - 1;
const size_t endOfTrack = explicitGridSizeForSide(side);
// Per http://lists.w3.org/Archives/Public/www-style/2013Mar/0589.html, we clamp negative value to the first line.
if (endOfTrack < resolvedPosition)
return 0;
return adjustGridPositionForSide(endOfTrack - resolvedPosition, side);
}
case NamedGridAreaPosition:
{
NamedGridAreaMap::const_iterator it = style()->namedGridArea().find(position.namedGridLine());
// Unknown grid area should have been computed to 'auto' by now.
ASSERT(it != style()->namedGridArea().end());
const GridCoordinate& gridAreaCoordinate = it->value;
switch (side) {
case ColumnStartSide:
return gridAreaCoordinate.columns.initialPositionIndex;
case ColumnEndSide:
return gridAreaCoordinate.columns.finalPositionIndex;
case RowStartSide:
return gridAreaCoordinate.rows.initialPositionIndex;
case RowEndSide:
return gridAreaCoordinate.rows.finalPositionIndex;
}
ASSERT_NOT_REACHED();
return 0;
}
case AutoPosition:
case SpanPosition:
// 'auto' and span depend on the opposite position for resolution (e.g. grid-row: auto / 1 or grid-column: span 3 / "myHeader").
ASSERT_NOT_REACHED();
return 0;
}
ASSERT_NOT_REACHED();
return 0;
}
PassOwnPtr<GridSpan> RenderGrid::resolveGridPositionAgainstOppositePosition(size_t resolvedOppositePosition, const GridPosition& position, GridPositionSide side) const
{
if (position.isAuto())
return GridSpan::create(resolvedOppositePosition, resolvedOppositePosition);
ASSERT(position.isSpan());
ASSERT(position.spanPosition() > 0);
if (!position.namedGridLine().isNull()) {
// span 2 'c' -> we need to find the appropriate grid line before / after our opposite position.
return resolveNamedGridLinePositionAgainstOppositePosition(resolvedOppositePosition, position, side);
}
// 'span 1' is contained inside a single grid track regardless of the direction.
// That's why the CSS span value is one more than the offset we apply.
size_t positionOffset = position.spanPosition() - 1;
if (side == ColumnStartSide || side == RowStartSide) {
size_t initialResolvedPosition = std::max<int>(0, resolvedOppositePosition - positionOffset);
return GridSpan::create(initialResolvedPosition, resolvedOppositePosition);
}
return GridSpan::create(resolvedOppositePosition, resolvedOppositePosition + positionOffset);
}
PassOwnPtr<GridSpan> RenderGrid::resolveNamedGridLinePositionAgainstOppositePosition(size_t resolvedOppositePosition, const GridPosition& position, GridPositionSide side) const
{
ASSERT(position.isSpan());
ASSERT(!position.namedGridLine().isNull());
// Negative positions are not allowed per the specification and should have been handled during parsing.
ASSERT(position.spanPosition() > 0);
const NamedGridLinesMap& gridLinesNames = (side == ColumnStartSide || side == ColumnEndSide) ? style()->namedGridColumnLines() : style()->namedGridRowLines();
NamedGridLinesMap::const_iterator it = gridLinesNames.find(position.namedGridLine());
// If there is no named grid line of that name, we resolve the position to 'auto' (which is equivalent to 'span 1' in this case).
// See http://lists.w3.org/Archives/Public/www-style/2013Jun/0394.html.
if (it == gridLinesNames.end())
return GridSpan::create(resolvedOppositePosition, resolvedOppositePosition);
if (side == RowStartSide || side == ColumnStartSide)
return resolveBeforeStartNamedGridLinePositionAgainstOppositePosition(resolvedOppositePosition, position, it->value);
return resolveAfterEndNamedGridLinePositionAgainstOppositePosition(resolvedOppositePosition, position, it->value);
}
PassOwnPtr<GridSpan> RenderGrid::resolveBeforeStartNamedGridLinePositionAgainstOppositePosition(size_t resolvedOppositePosition, const GridPosition& position, const Vector<size_t>& gridLines) const
{
// The grid line inequality needs to be strict (which doesn't match the after / end case) because |resolvedOppositePosition|
// is already converted to an index in our grid representation (ie one was removed from the grid line to account for the side).
// FIXME: This could be a binary search as |gridLines| is ordered.
int firstLineBeforeOppositePositionIndex = gridLines.size() - 1;
for (; firstLineBeforeOppositePositionIndex >= 0 && gridLines[firstLineBeforeOppositePositionIndex] > resolvedOppositePosition; --firstLineBeforeOppositePositionIndex) { }
size_t gridLineIndex = std::max<int>(0, firstLineBeforeOppositePositionIndex - position.spanPosition() + 1);
size_t resolvedGridLinePosition = gridLines[gridLineIndex];
if (resolvedGridLinePosition > resolvedOppositePosition)
resolvedGridLinePosition = resolvedOppositePosition;
return GridSpan::create(resolvedGridLinePosition, resolvedOppositePosition);
}
PassOwnPtr<GridSpan> RenderGrid::resolveAfterEndNamedGridLinePositionAgainstOppositePosition(size_t resolvedOppositePosition, const GridPosition& position, const Vector<size_t>& gridLines) const
{
// FIXME: This could be a binary search as |gridLines| is ordered.
size_t firstLineAfterOppositePositionIndex = 0;
for (; firstLineAfterOppositePositionIndex < gridLines.size() && gridLines[firstLineAfterOppositePositionIndex] <= resolvedOppositePosition; ++firstLineAfterOppositePositionIndex) { }
size_t gridLineIndex = std::min(gridLines.size() - 1, firstLineAfterOppositePositionIndex + position.spanPosition() - 1);
size_t resolvedGridLinePosition = adjustGridPositionForAfterEndSide(gridLines[gridLineIndex]);
if (resolvedGridLinePosition < resolvedOppositePosition)
resolvedGridLinePosition = resolvedOppositePosition;
return GridSpan::create(resolvedOppositePosition, resolvedGridLinePosition);
}
LayoutUnit RenderGrid::gridAreaBreadthForChild(const RenderBox* child, TrackSizingDirection direction, const Vector<GridTrack>& tracks) const
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
const GridSpan& span = (direction == ForColumns) ? coordinate.columns : coordinate.rows;
LayoutUnit gridAreaBreadth = 0;
for (size_t trackIndex = span.initialPositionIndex; trackIndex <= span.finalPositionIndex; ++trackIndex)
gridAreaBreadth += tracks[trackIndex].m_usedBreadth;
return gridAreaBreadth;
}
LayoutPoint RenderGrid::findChildLogicalPosition(RenderBox* child, const Vector<GridTrack>& columnTracks, const Vector<GridTrack>& rowTracks)
{
const GridCoordinate& coordinate = cachedGridCoordinate(child);
// The grid items should be inside the grid container's border box, that's why they need to be shifted.
LayoutPoint offset(borderAndPaddingStart(), borderAndPaddingBefore());
// FIXME: |columnTrack| and |rowTrack| should be smaller than our column / row count.
for (size_t i = 0; i < coordinate.columns.initialPositionIndex && i < columnTracks.size(); ++i)
offset.setX(offset.x() + columnTracks[i].m_usedBreadth);
for (size_t i = 0; i < coordinate.rows.initialPositionIndex && i < rowTracks.size(); ++i)
offset.setY(offset.y() + rowTracks[i].m_usedBreadth);
// FIXME: Handle margins on the grid item.
return offset;
}
void RenderGrid::paintChildren(PaintInfo& paintInfo, const LayoutPoint& paintOffset)
{
for (RenderBox* child = m_orderIterator.first(); child; child = m_orderIterator.next())
paintChild(child, paintInfo, paintOffset);
}
const char* RenderGrid::renderName() const
{
if (isFloating())
return "RenderGrid (floating)";
if (isOutOfFlowPositioned())
return "RenderGrid (positioned)";
if (isAnonymous())
return "RenderGrid (generated)";
if (isRelPositioned())
return "RenderGrid (relative positioned)";
return "RenderGrid";
}
} // namespace WebCore