| // Copyright 2013 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef MEDIA_CAST_CAST_DEFINES_H_ |
| #define MEDIA_CAST_CAST_DEFINES_H_ |
| |
| #include <stdint.h> |
| |
| #include <map> |
| #include <set> |
| |
| #include "base/basictypes.h" |
| #include "base/compiler_specific.h" |
| #include "base/logging.h" |
| #include "base/time/time.h" |
| #include "media/cast/net/cast_transport_config.h" |
| |
| namespace media { |
| namespace cast { |
| |
| const int64 kDontShowTimeoutMs = 33; |
| const float kDefaultCongestionControlBackOff = 0.875f; |
| const uint32 kVideoFrequency = 90000; |
| const uint32 kStartFrameId = UINT32_C(0xffffffff); |
| |
| // This is an important system-wide constant. This limits how much history the |
| // implementation must retain in order to process the acknowledgements of past |
| // frames. |
| const int kMaxUnackedFrames = 255; |
| |
| const int kStartRttMs = 20; |
| const int64 kCastMessageUpdateIntervalMs = 33; |
| const int64 kNackRepeatIntervalMs = 30; |
| |
| enum CastInitializationStatus { |
| STATUS_AUDIO_UNINITIALIZED, |
| STATUS_VIDEO_UNINITIALIZED, |
| STATUS_AUDIO_INITIALIZED, |
| STATUS_VIDEO_INITIALIZED, |
| STATUS_INVALID_CAST_ENVIRONMENT, |
| STATUS_INVALID_CRYPTO_CONFIGURATION, |
| STATUS_UNSUPPORTED_AUDIO_CODEC, |
| STATUS_UNSUPPORTED_VIDEO_CODEC, |
| STATUS_INVALID_AUDIO_CONFIGURATION, |
| STATUS_INVALID_VIDEO_CONFIGURATION, |
| STATUS_GPU_ACCELERATION_NOT_SUPPORTED, |
| STATUS_GPU_ACCELERATION_ERROR, |
| }; |
| |
| enum DefaultSettings { |
| kDefaultAudioEncoderBitrate = 0, // This means "auto," and may mean VBR. |
| kDefaultAudioSamplingRate = 48000, |
| kDefaultMaxQp = 56, |
| kDefaultMinQp = 4, |
| kDefaultMaxFrameRate = 30, |
| kDefaultNumberOfVideoBuffers = 1, |
| kDefaultRtcpIntervalMs = 500, |
| kDefaultRtpHistoryMs = 1000, |
| kDefaultRtpMaxDelayMs = 100, |
| }; |
| |
| enum PacketType { |
| kNewPacket, |
| kNewPacketCompletingFrame, |
| kDuplicatePacket, |
| kTooOldPacket, |
| }; |
| |
| // kRtcpCastAllPacketsLost is used in PacketIDSet and |
| // on the wire to mean that ALL packets for a particular |
| // frame are lost. |
| const uint16 kRtcpCastAllPacketsLost = 0xffff; |
| |
| // kRtcpCastLastPacket is used in PacketIDSet to ask for |
| // the last packet of a frame to be retransmitted. |
| const uint16 kRtcpCastLastPacket = 0xfffe; |
| |
| const size_t kMinLengthOfRtcp = 8; |
| |
| // Basic RTP header + cast header. |
| const size_t kMinLengthOfRtp = 12 + 6; |
| |
| // Each uint16 represents one packet id within a cast frame. |
| // Can also contain kRtcpCastAllPacketsLost and kRtcpCastLastPacket. |
| typedef std::set<uint16> PacketIdSet; |
| // Each uint8 represents one cast frame. |
| typedef std::map<uint8, PacketIdSet> MissingFramesAndPacketsMap; |
| |
| // TODO(pwestin): Re-factor the functions bellow into a class with static |
| // methods. |
| |
| // January 1970, in NTP seconds. |
| // Network Time Protocol (NTP), which is in seconds relative to 0h UTC on |
| // 1 January 1900. |
| static const int64 kUnixEpochInNtpSeconds = INT64_C(2208988800); |
| |
| // Magic fractional unit. Used to convert time (in microseconds) to/from |
| // fractional NTP seconds. |
| static const double kMagicFractionalUnit = 4.294967296E3; |
| |
| // The maximum number of Cast receiver events to keep in history for the |
| // purpose of sending the events through RTCP. |
| // The number chosen should be more than the number of events that can be |
| // stored in a RTCP packet. |
| static const size_t kReceiverRtcpEventHistorySize = 512; |
| |
| inline bool IsNewerFrameId(uint32 frame_id, uint32 prev_frame_id) { |
| return (frame_id != prev_frame_id) && |
| static_cast<uint32>(frame_id - prev_frame_id) < 0x80000000; |
| } |
| |
| inline bool IsNewerRtpTimestamp(uint32 timestamp, uint32 prev_timestamp) { |
| return (timestamp != prev_timestamp) && |
| static_cast<uint32>(timestamp - prev_timestamp) < 0x80000000; |
| } |
| |
| inline bool IsOlderFrameId(uint32 frame_id, uint32 prev_frame_id) { |
| return (frame_id == prev_frame_id) || IsNewerFrameId(prev_frame_id, frame_id); |
| } |
| |
| inline bool IsNewerPacketId(uint16 packet_id, uint16 prev_packet_id) { |
| return (packet_id != prev_packet_id) && |
| static_cast<uint16>(packet_id - prev_packet_id) < 0x8000; |
| } |
| |
| inline bool IsNewerSequenceNumber(uint16 sequence_number, |
| uint16 prev_sequence_number) { |
| // Same function as IsNewerPacketId just different data and name. |
| return IsNewerPacketId(sequence_number, prev_sequence_number); |
| } |
| |
| // Create a NTP diff from seconds and fractions of seconds; delay_fraction is |
| // fractions of a second where 0x80000000 is half a second. |
| inline uint32 ConvertToNtpDiff(uint32 delay_seconds, uint32 delay_fraction) { |
| return ((delay_seconds & 0x0000FFFF) << 16) + |
| ((delay_fraction & 0xFFFF0000) >> 16); |
| } |
| |
| inline base::TimeDelta ConvertFromNtpDiff(uint32 ntp_delay) { |
| uint32 delay_ms = (ntp_delay & 0x0000ffff) * 1000; |
| delay_ms >>= 16; |
| delay_ms += ((ntp_delay & 0xffff0000) >> 16) * 1000; |
| return base::TimeDelta::FromMilliseconds(delay_ms); |
| } |
| |
| inline void ConvertTimeToFractions(int64 ntp_time_us, |
| uint32* seconds, |
| uint32* fractions) { |
| DCHECK_GE(ntp_time_us, 0) << "Time must NOT be negative"; |
| const int64 seconds_component = |
| ntp_time_us / base::Time::kMicrosecondsPerSecond; |
| // NTP time will overflow in the year 2036. Also, make sure unit tests don't |
| // regress and use an origin past the year 2036. If this overflows here, the |
| // inverse calculation fails to compute the correct TimeTicks value, throwing |
| // off the entire system. |
| DCHECK_LT(seconds_component, INT64_C(4263431296)) |
| << "One year left to fix the NTP year 2036 wrap-around issue!"; |
| *seconds = static_cast<uint32>(seconds_component); |
| *fractions = static_cast<uint32>( |
| (ntp_time_us % base::Time::kMicrosecondsPerSecond) * |
| kMagicFractionalUnit); |
| } |
| |
| inline void ConvertTimeTicksToNtp(const base::TimeTicks& time, |
| uint32* ntp_seconds, |
| uint32* ntp_fractions) { |
| base::TimeDelta elapsed_since_unix_epoch = |
| time - base::TimeTicks::UnixEpoch(); |
| |
| int64 ntp_time_us = |
| elapsed_since_unix_epoch.InMicroseconds() + |
| (kUnixEpochInNtpSeconds * base::Time::kMicrosecondsPerSecond); |
| |
| ConvertTimeToFractions(ntp_time_us, ntp_seconds, ntp_fractions); |
| } |
| |
| inline base::TimeTicks ConvertNtpToTimeTicks(uint32 ntp_seconds, |
| uint32 ntp_fractions) { |
| int64 ntp_time_us = |
| static_cast<int64>(ntp_seconds) * base::Time::kMicrosecondsPerSecond + |
| static_cast<int64>(ntp_fractions) / kMagicFractionalUnit; |
| |
| base::TimeDelta elapsed_since_unix_epoch = base::TimeDelta::FromMicroseconds( |
| ntp_time_us - |
| (kUnixEpochInNtpSeconds * base::Time::kMicrosecondsPerSecond)); |
| return base::TimeTicks::UnixEpoch() + elapsed_since_unix_epoch; |
| } |
| |
| inline base::TimeDelta RtpDeltaToTimeDelta(int64 rtp_delta, int rtp_timebase) { |
| DCHECK_GT(rtp_timebase, 0); |
| return rtp_delta * base::TimeDelta::FromSeconds(1) / rtp_timebase; |
| } |
| |
| } // namespace cast |
| } // namespace media |
| |
| #endif // MEDIA_CAST_CAST_DEFINES_H_ |