blob: 4fe38abba3876f468324a3c80432bfe30e075939 [file] [log] [blame]
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <openssl/bn.h>
#include <openssl/dsa.h>
#include <openssl/ecdsa.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/pem.h>
#include <openssl/rsa.h>
#include <openssl/x509.h>
#include "base/android/build_info.h"
#include "base/android/jni_android.h"
#include "base/android/jni_array.h"
#include "base/android/scoped_java_ref.h"
#include "base/basictypes.h"
#include "base/bind.h"
#include "base/callback.h"
#include "base/compiler_specific.h"
#include "base/file_util.h"
#include "base/files/file_path.h"
#include "base/files/scoped_file.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "crypto/openssl_util.h"
#include "crypto/scoped_openssl_types.h"
#include "jni/AndroidKeyStoreTestUtil_jni.h"
#include "net/android/keystore.h"
#include "net/android/keystore_openssl.h"
#include "net/base/test_data_directory.h"
#include "testing/gtest/include/gtest/gtest.h"
// Technical note:
//
// This source file not only checks that signing with
// RawSignDigestWithPrivateKey() works correctly, it also verifies that
// the generated signature matches 100% of what OpenSSL generates when
// calling RSA_sign(NID_md5_sha1,...), DSA_sign(0, ...) or
// ECDSA_sign(0, ...).
//
// That's crucial to ensure that this function can later be used to
// implement client certificate support. More specifically, that it is
// possible to create a custom EVP_PKEY that uses
// RawSignDigestWithPrivateKey() internally to perform RSA/DSA/ECDSA
// signing, as invoked by the OpenSSL code at
// openssl/ssl/s3_clnt.c:ssl3_send_client_verify().
//
// For more details, read the comments in AndroidKeyStore.java.
//
// Finally, it also checks that using the EVP_PKEY generated with
// GetOpenSSLPrivateKeyWrapper() works correctly.
namespace net {
namespace android {
namespace {
typedef crypto::ScopedOpenSSL<PKCS8_PRIV_KEY_INFO,
PKCS8_PRIV_KEY_INFO_free>::Type
ScopedPKCS8_PRIV_KEY_INFO;
typedef base::android::ScopedJavaLocalRef<jobject> ScopedJava;
JNIEnv* InitEnv() {
JNIEnv* env = base::android::AttachCurrentThread();
static bool inited = false;
if (!inited) {
RegisterNativesImpl(env);
inited = true;
}
return env;
}
// Returns true if running on an Android version older than 4.2
bool IsOnAndroidOlderThan_4_2(void) {
const int kAndroid42ApiLevel = 17;
int level = base::android::BuildInfo::GetInstance()->sdk_int();
return level < kAndroid42ApiLevel;
}
// Implements the callback expected by ERR_print_errors_cb().
// used by GetOpenSSLErrorString below.
int openssl_print_error_callback(const char* msg, size_t msglen, void* u) {
std::string* result = reinterpret_cast<std::string*>(u);
result->append(msg, msglen);
return 1;
}
// Retrieves the OpenSSL error as a string
std::string GetOpenSSLErrorString(void) {
std::string result;
ERR_print_errors_cb(openssl_print_error_callback, &result);
return result;
}
// Resize a string to |size| bytes of data, then return its data buffer
// address cast as an 'unsigned char*', as expected by OpenSSL functions.
// |str| the target string.
// |size| the number of bytes to write into the string.
// Return the string's new buffer in memory, as an 'unsigned char*'
// pointer.
unsigned char* OpenSSLWriteInto(std::string* str, size_t size) {
return reinterpret_cast<unsigned char*>(WriteInto(str, size + 1));
}
// Load a given private key file into an EVP_PKEY.
// |filename| is the key file path.
// Returns a new EVP_PKEY on success, NULL on failure.
EVP_PKEY* ImportPrivateKeyFile(const char* filename) {
// Load file in memory.
base::FilePath certs_dir = GetTestCertsDirectory();
base::FilePath file_path = certs_dir.AppendASCII(filename);
base::ScopedFILE handle(base::OpenFile(file_path, "rb"));
if (!handle.get()) {
LOG(ERROR) << "Could not open private key file: " << filename;
return NULL;
}
// Assume it is PEM_encoded. Load it as an EVP_PKEY.
EVP_PKEY* pkey = PEM_read_PrivateKey(handle.get(), NULL, NULL, NULL);
if (!pkey) {
LOG(ERROR) << "Could not load public key file: " << filename
<< ", " << GetOpenSSLErrorString();
return NULL;
}
return pkey;
}
// Convert a private key into its PKCS#8 encoded representation.
// |pkey| is the EVP_PKEY handle for the private key.
// |pkcs8| will receive the PKCS#8 bytes.
// Returns true on success, false otherwise.
bool GetPrivateKeyPkcs8Bytes(const crypto::ScopedEVP_PKEY& pkey,
std::string* pkcs8) {
// Convert to PKCS#8 object.
ScopedPKCS8_PRIV_KEY_INFO p8_info(EVP_PKEY2PKCS8(pkey.get()));
if (!p8_info.get()) {
LOG(ERROR) << "Can't get PKCS#8 private key from EVP_PKEY: "
<< GetOpenSSLErrorString();
return false;
}
// Then convert it
int len = i2d_PKCS8_PRIV_KEY_INFO(p8_info.get(), NULL);
unsigned char* p = OpenSSLWriteInto(pkcs8, static_cast<size_t>(len));
i2d_PKCS8_PRIV_KEY_INFO(p8_info.get(), &p);
return true;
}
bool ImportPrivateKeyFileAsPkcs8(const char* filename,
std::string* pkcs8) {
crypto::ScopedEVP_PKEY pkey(ImportPrivateKeyFile(filename));
if (!pkey.get())
return false;
return GetPrivateKeyPkcs8Bytes(pkey, pkcs8);
}
// Same as ImportPrivateKey, but for public ones.
EVP_PKEY* ImportPublicKeyFile(const char* filename) {
// Load file as PEM data.
base::FilePath certs_dir = GetTestCertsDirectory();
base::FilePath file_path = certs_dir.AppendASCII(filename);
base::ScopedFILE handle(base::OpenFile(file_path, "rb"));
if (!handle.get()) {
LOG(ERROR) << "Could not open public key file: " << filename;
return NULL;
}
EVP_PKEY* pkey = PEM_read_PUBKEY(handle.get(), NULL, NULL, NULL);
if (!pkey) {
LOG(ERROR) << "Could not load public key file: " << filename
<< ", " << GetOpenSSLErrorString();
return NULL;
}
return pkey;
}
// Retrieve a JNI local ref from encoded PKCS#8 data.
ScopedJava GetPKCS8PrivateKeyJava(PrivateKeyType key_type,
const std::string& pkcs8_key) {
JNIEnv* env = InitEnv();
base::android::ScopedJavaLocalRef<jbyteArray> bytes(
base::android::ToJavaByteArray(
env,
reinterpret_cast<const uint8*>(pkcs8_key.data()),
pkcs8_key.size()));
ScopedJava key(
Java_AndroidKeyStoreTestUtil_createPrivateKeyFromPKCS8(
env, key_type, bytes.obj()));
return key;
}
const char kTestRsaKeyFile[] = "android-test-key-rsa.pem";
// The RSA test hash must be 36 bytes exactly.
const char kTestRsaHash[] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ";
// Retrieve a JNI local ref for our test RSA key.
ScopedJava GetRSATestKeyJava() {
std::string key;
if (!ImportPrivateKeyFileAsPkcs8(kTestRsaKeyFile, &key))
return ScopedJava();
return GetPKCS8PrivateKeyJava(PRIVATE_KEY_TYPE_RSA, key);
}
const char kTestEcdsaKeyFile[] = "android-test-key-ecdsa.pem";
const char kTestEcdsaPublicKeyFile[] = "android-test-key-ecdsa-public.pem";
// The test hash for ECDSA keys must be 20 bytes exactly.
const char kTestEcdsaHash[] = "0123456789ABCDEFGHIJ";
// Retrieve a JNI local ref for our test ECDSA key.
ScopedJava GetECDSATestKeyJava() {
std::string key;
if (!ImportPrivateKeyFileAsPkcs8(kTestEcdsaKeyFile, &key))
return ScopedJava();
return GetPKCS8PrivateKeyJava(PRIVATE_KEY_TYPE_ECDSA, key);
}
// Call this function to verify that one message signed with our
// test ECDSA private key is correct. Since ECDSA signing introduces
// random elements in the signature, it is not possible to compare
// signature bits directly. However, one can use the public key
// to do the check.
bool VerifyTestECDSASignature(const base::StringPiece& message,
const base::StringPiece& signature) {
crypto::ScopedEVP_PKEY pkey(ImportPublicKeyFile(kTestEcdsaPublicKeyFile));
if (!pkey.get())
return false;
crypto::ScopedEC_KEY pub_key(EVP_PKEY_get1_EC_KEY(pkey.get()));
if (!pub_key.get()) {
LOG(ERROR) << "Could not get ECDSA public key: "
<< GetOpenSSLErrorString();
return false;
}
const unsigned char* digest =
reinterpret_cast<const unsigned char*>(message.data());
int digest_len = static_cast<int>(message.size());
const unsigned char* sigbuf =
reinterpret_cast<const unsigned char*>(signature.data());
int siglen = static_cast<int>(signature.size());
int ret = ECDSA_verify(
0, digest, digest_len, sigbuf, siglen, pub_key.get());
if (ret != 1) {
LOG(ERROR) << "ECDSA_verify() failed: " << GetOpenSSLErrorString();
return false;
}
return true;
}
// Sign a message with OpenSSL, return the result as a string.
// |message| is the message to be signed.
// |openssl_key| is an OpenSSL EVP_PKEY to use.
// |result| receives the result.
// Returns true on success, false otherwise.
bool SignWithOpenSSL(const base::StringPiece& message,
EVP_PKEY* openssl_key,
std::string* result) {
const unsigned char* digest =
reinterpret_cast<const unsigned char*>(message.data());
unsigned int digest_len = static_cast<unsigned int>(message.size());
std::string signature;
size_t signature_size;
size_t max_signature_size;
int key_type = EVP_PKEY_id(openssl_key);
switch (key_type) {
case EVP_PKEY_RSA:
{
crypto::ScopedRSA rsa(EVP_PKEY_get1_RSA(openssl_key));
if (!rsa.get()) {
LOG(ERROR) << "Could not get RSA from EVP_PKEY: "
<< GetOpenSSLErrorString();
return false;
}
// With RSA, the signature will always be RSA_size() bytes.
max_signature_size = static_cast<size_t>(RSA_size(rsa.get()));
unsigned char* p = OpenSSLWriteInto(&signature,
max_signature_size);
unsigned int p_len = 0;
int ret = RSA_sign(
NID_md5_sha1, digest, digest_len, p, &p_len, rsa.get());
if (ret != 1) {
LOG(ERROR) << "RSA_sign() failed: " << GetOpenSSLErrorString();
return false;
}
signature_size = static_cast<size_t>(p_len);
break;
}
case EVP_PKEY_EC:
{
crypto::ScopedEC_KEY ecdsa(EVP_PKEY_get1_EC_KEY(openssl_key));
if (!ecdsa.get()) {
LOG(ERROR) << "Could not get EC_KEY from EVP_PKEY: "
<< GetOpenSSLErrorString();
return false;
}
// Note, the actual signature can be smaller than ECDSA_size()
max_signature_size = ECDSA_size(ecdsa.get());
unsigned char* p = OpenSSLWriteInto(&signature,
max_signature_size);
unsigned int p_len = 0;
// Note: first parameter is ignored by function.
int ret = ECDSA_sign(
0, digest, digest_len, p, &p_len, ecdsa.get());
if (ret != 1) {
LOG(ERROR) << "ECDSA_sign() fialed: " << GetOpenSSLErrorString();
return false;
}
signature_size = static_cast<size_t>(p_len);
break;
}
default:
LOG(WARNING) << "Invalid OpenSSL key type: " << key_type;
return false;
}
if (signature_size == 0) {
LOG(ERROR) << "Signature is empty!";
return false;
}
if (signature_size > max_signature_size) {
LOG(ERROR) << "Signature size mismatch, actual " << signature_size
<< ", expected <= " << max_signature_size;
return false;
}
signature.resize(signature_size);
result->swap(signature);
return true;
}
// Check that a generated signature for a given message matches
// OpenSSL output byte-by-byte.
// |message| is the input message.
// |signature| is the generated signature for the message.
// |openssl_key| is a raw EVP_PKEY for the same private key than the
// one which was used to generate the signature.
// Returns true on success, false otherwise.
bool CompareSignatureWithOpenSSL(const base::StringPiece& message,
const base::StringPiece& signature,
EVP_PKEY* openssl_key) {
std::string openssl_signature;
SignWithOpenSSL(message, openssl_key, &openssl_signature);
if (signature.size() != openssl_signature.size()) {
LOG(ERROR) << "Signature size mismatch, actual "
<< signature.size() << ", expected "
<< openssl_signature.size();
return false;
}
for (size_t n = 0; n < signature.size(); ++n) {
if (openssl_signature[n] != signature[n]) {
LOG(ERROR) << "Signature byte mismatch at index " << n
<< "actual " << signature[n] << ", expected "
<< openssl_signature[n];
LOG(ERROR) << "Actual signature : "
<< base::HexEncode(signature.data(), signature.size());
LOG(ERROR) << "Expected signature: "
<< base::HexEncode(openssl_signature.data(),
openssl_signature.size());
return false;
}
}
return true;
}
// Sign a message with our platform API.
//
// |android_key| is a JNI reference to the platform PrivateKey object.
// |openssl_key| is a pointer to an OpenSSL key object for the exact
// same key content.
// |message| is a message.
// |result| will receive the result.
void DoKeySigning(jobject android_key,
EVP_PKEY* openssl_key,
const base::StringPiece& message,
std::string* result) {
// First, get the platform signature.
std::vector<uint8> android_signature;
ASSERT_TRUE(
RawSignDigestWithPrivateKey(android_key,
message,
&android_signature));
result->assign(
reinterpret_cast<const char*>(&android_signature[0]),
android_signature.size());
}
// Sign a message with our OpenSSL EVP_PKEY wrapper around platform
// APIS.
//
// |android_key| is a JNI reference to the platform PrivateKey object.
// |openssl_key| is a pointer to an OpenSSL key object for the exact
// same key content.
// |message| is a message.
// |result| will receive the result.
void DoKeySigningWithWrapper(EVP_PKEY* wrapper_key,
EVP_PKEY* openssl_key,
const base::StringPiece& message,
std::string* result) {
// First, get the platform signature.
std::string wrapper_signature;
SignWithOpenSSL(message, wrapper_key, &wrapper_signature);
ASSERT_NE(0U, wrapper_signature.size());
result->assign(
reinterpret_cast<const char*>(&wrapper_signature[0]),
wrapper_signature.size());
}
} // namespace
TEST(AndroidKeyStore,GetRSAKeyModulus) {
crypto::OpenSSLErrStackTracer err_trace(FROM_HERE);
InitEnv();
// Load the test RSA key.
crypto::ScopedEVP_PKEY pkey(ImportPrivateKeyFile(kTestRsaKeyFile));
ASSERT_TRUE(pkey.get());
// Convert it to encoded PKCS#8 bytes.
std::string pkcs8_data;
ASSERT_TRUE(GetPrivateKeyPkcs8Bytes(pkey, &pkcs8_data));
// Create platform PrivateKey object from it.
ScopedJava key_java = GetPKCS8PrivateKeyJava(PRIVATE_KEY_TYPE_RSA,
pkcs8_data);
ASSERT_FALSE(key_java.is_null());
// Retrieve the corresponding modulus through JNI
std::vector<uint8> modulus_java;
ASSERT_TRUE(GetRSAKeyModulus(key_java.obj(), &modulus_java));
// Create an OpenSSL BIGNUM from it.
crypto::ScopedBIGNUM bn(
BN_bin2bn(reinterpret_cast<const unsigned char*>(&modulus_java[0]),
static_cast<int>(modulus_java.size()),
NULL));
ASSERT_TRUE(bn.get());
// Compare it to the one in the RSA key, they must be identical.
crypto::ScopedRSA rsa(EVP_PKEY_get1_RSA(pkey.get()));
ASSERT_TRUE(rsa.get()) << GetOpenSSLErrorString();
ASSERT_EQ(0, BN_cmp(bn.get(), rsa.get()->n));
}
TEST(AndroidKeyStore,GetPrivateKeyTypeRSA) {
crypto::OpenSSLErrStackTracer err_trace(FROM_HERE);
ScopedJava rsa_key = GetRSATestKeyJava();
ASSERT_FALSE(rsa_key.is_null());
EXPECT_EQ(PRIVATE_KEY_TYPE_RSA,
GetPrivateKeyType(rsa_key.obj()));
}
TEST(AndroidKeyStore,SignWithPrivateKeyRSA) {
ScopedJava rsa_key = GetRSATestKeyJava();
ASSERT_FALSE(rsa_key.is_null());
if (IsOnAndroidOlderThan_4_2()) {
LOG(INFO) << "This test can't run on Android < 4.2";
return;
}
crypto::ScopedEVP_PKEY openssl_key(ImportPrivateKeyFile(kTestRsaKeyFile));
ASSERT_TRUE(openssl_key.get());
std::string message = kTestRsaHash;
ASSERT_EQ(36U, message.size());
std::string signature;
DoKeySigning(rsa_key.obj(), openssl_key.get(), message, &signature);
ASSERT_TRUE(
CompareSignatureWithOpenSSL(message, signature, openssl_key.get()));
// All good.
}
TEST(AndroidKeyStore,SignWithWrapperKeyRSA) {
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
ScopedJava rsa_key = GetRSATestKeyJava();
ASSERT_FALSE(rsa_key.is_null());
crypto::ScopedEVP_PKEY wrapper_key(
GetOpenSSLPrivateKeyWrapper(rsa_key.obj()));
ASSERT_TRUE(wrapper_key.get() != NULL);
crypto::ScopedEVP_PKEY openssl_key(ImportPrivateKeyFile(kTestRsaKeyFile));
ASSERT_TRUE(openssl_key.get());
// Check that RSA_size() works properly on the wrapper key.
EXPECT_EQ(EVP_PKEY_size(openssl_key.get()),
EVP_PKEY_size(wrapper_key.get()));
// Message size must be 36 for RSA_sign(NID_md5_sha1,...) to return
// without an error.
std::string message = kTestRsaHash;
ASSERT_EQ(36U, message.size());
std::string signature;
DoKeySigningWithWrapper(wrapper_key.get(),
openssl_key.get(),
message,
&signature);
ASSERT_TRUE(
CompareSignatureWithOpenSSL(message, signature, openssl_key.get()));
}
TEST(AndroidKeyStore,GetPrivateKeyTypeECDSA) {
crypto::OpenSSLErrStackTracer err_trace(FROM_HERE);
ScopedJava ecdsa_key = GetECDSATestKeyJava();
ASSERT_FALSE(ecdsa_key.is_null());
EXPECT_EQ(PRIVATE_KEY_TYPE_ECDSA,
GetPrivateKeyType(ecdsa_key.obj()));
}
TEST(AndroidKeyStore,SignWithPrivateKeyECDSA) {
ScopedJava ecdsa_key = GetECDSATestKeyJava();
ASSERT_FALSE(ecdsa_key.is_null());
crypto::ScopedEVP_PKEY openssl_key(ImportPrivateKeyFile(kTestEcdsaKeyFile));
ASSERT_TRUE(openssl_key.get());
std::string message = kTestEcdsaHash;
std::string signature;
DoKeySigning(ecdsa_key.obj(), openssl_key.get(), message, &signature);
ASSERT_TRUE(VerifyTestECDSASignature(message, signature));
}
TEST(AndroidKeyStore, SignWithWrapperKeyECDSA) {
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
ScopedJava ecdsa_key = GetECDSATestKeyJava();
ASSERT_FALSE(ecdsa_key.is_null());
crypto::ScopedEVP_PKEY wrapper_key(
GetOpenSSLPrivateKeyWrapper(ecdsa_key.obj()));
ASSERT_TRUE(wrapper_key.get());
crypto::ScopedEVP_PKEY openssl_key(ImportPrivateKeyFile(kTestEcdsaKeyFile));
ASSERT_TRUE(openssl_key.get());
// Check that ECDSA size works correctly on the wrapper.
EXPECT_EQ(EVP_PKEY_size(openssl_key.get()),
EVP_PKEY_size(wrapper_key.get()));
std::string message = kTestEcdsaHash;
std::string signature;
DoKeySigningWithWrapper(wrapper_key.get(),
openssl_key.get(),
message,
&signature);
ASSERT_TRUE(VerifyTestECDSASignature(message, signature));
}
} // namespace android
} // namespace net