blob: 68366695179519b1abf340f9baf89d4ddc01e917 [file] [log] [blame] [edit]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "chrome/app/image_pre_reader_win.h"
#include <windows.h>
#include <algorithm>
#include <limits>
#include <vector>
#include "base/logging.h"
#include "base/memory/scoped_ptr.h"
#include "base/threading/thread_restrictions.h"
#include "base/win/pe_image.h"
#include "base/win/scoped_handle.h"
#include "base/win/windows_version.h"
namespace {
// The minimum buffer size to allocate when reading the PE file headers.
//
// The PE file headers usually fit into a single 1KB page, and a PE file must
// at least contain the initial page with the headers. That said, as long as
// we expect at least sizeof(IMAGE_DOS_HEADER) bytes, we're ok.
const size_t kMinHeaderBufferSize = 0x400;
// A handy symbolic constant.
const size_t kOneHundredPercent = 100;
void StaticAssertions() {
COMPILE_ASSERT(kMinHeaderBufferSize >= sizeof(IMAGE_DOS_HEADER),
min_header_buffer_size_at_least_as_big_as_the_dos_header);
}
// This struct provides a deallocation functor for use with scoped_ptr<T>
// allocated with ::VirtualAlloc().
struct VirtualFreeDeleter {
void operator() (void* ptr) {
::VirtualFree(ptr, 0, MEM_RELEASE);
}
};
// A wrapper for the Win32 ::SetFilePointer() function with some error checking.
bool SetFilePointer(HANDLE file_handle, size_t position) {
return position <= static_cast<size_t>(std::numeric_limits<LONG>::max()) &&
::SetFilePointer(file_handle,
static_cast<LONG>(position),
NULL,
FILE_BEGIN) != INVALID_SET_FILE_POINTER;
}
// A helper function to read the next |bytes_to_read| bytes from the file
// given by |file_handle| into |buffer|.
bool ReadNextBytes(HANDLE file_handle, void* buffer, size_t bytes_to_read) {
DCHECK(file_handle != INVALID_HANDLE_VALUE);
DCHECK(buffer != NULL);
DCHECK(bytes_to_read > 0);
DWORD bytes_read = 0;
return bytes_to_read <= std::numeric_limits<DWORD>::max() &&
::ReadFile(file_handle,
buffer,
static_cast<DWORD>(bytes_to_read),
&bytes_read,
NULL) &&
bytes_read == bytes_to_read;
}
// A helper function to extend the |current_buffer| of bytes such that it
// contains |desired_length| bytes read from the file given by |file_handle|.
//
// It is assumed that |file_handle| has been used to sequentially populate
// |current_buffer| thus far and is already positioned at the appropriate
// read location.
bool ReadMissingBytes(HANDLE file_handle,
std::vector<uint8>* current_buffer,
size_t desired_length) {
DCHECK(file_handle != INVALID_HANDLE_VALUE);
DCHECK(current_buffer != NULL);
size_t current_length = current_buffer->size();
if (current_length >= desired_length)
return true;
size_t bytes_to_read = desired_length - current_length;
current_buffer->resize(desired_length);
return ReadNextBytes(file_handle,
&(current_buffer->at(current_length)),
bytes_to_read);
}
// Return a |percentage| of the number of initialized bytes in the given
// |section|.
//
// This returns a percentage of the lesser of the size of the raw data in
// the section and the virtual size of the section.
//
// Note that sections can have their tails implicitly initialized to zero
// (i.e., their virtual size is larger than the raw size) and that raw data
// is padded to the PE page size if the entire section is initialized (i.e.,
// their raw data size will be larger than the virtual size).
//
// Any data after the initialized portion of the section will be soft-faulted
// in (very quickly) as needed, so we don't need to include it in the returned
// length.
size_t GetPercentageOfSectionLength(const IMAGE_SECTION_HEADER* section,
size_t percentage) {
DCHECK(section != NULL);
DCHECK_GT(percentage, 0u);
DCHECK_LE(percentage, kOneHundredPercent);
size_t initialized_length = std::min(section->SizeOfRawData,
section->Misc.VirtualSize);
if (initialized_length == 0)
return 0;
size_t length = (initialized_length * percentage) / kOneHundredPercent;
return std::max<size_t>(length, 1);
}
// Helper function to read through a |percentage| of the given |section|
// of the file denoted by |file_handle|. The |temp_buffer| is (re)used as
// a transient storage area as the section is read in chunks of
// |temp_buffer_size| bytes.
bool ReadThroughSection(HANDLE file_handle,
const IMAGE_SECTION_HEADER* section,
size_t percentage,
void* temp_buffer,
size_t temp_buffer_size) {
DCHECK(file_handle != INVALID_HANDLE_VALUE);
DCHECK(section != NULL);
DCHECK_LE(percentage, kOneHundredPercent);
DCHECK(temp_buffer != NULL);
DCHECK(temp_buffer_size > 0);
size_t bytes_to_read = GetPercentageOfSectionLength(section, percentage);
if (bytes_to_read == 0)
return true;
if (!SetFilePointer(file_handle, section->PointerToRawData))
return false;
// Read all chunks except the last one.
while (bytes_to_read > temp_buffer_size) {
if (!ReadNextBytes(file_handle, temp_buffer, temp_buffer_size))
return false;
bytes_to_read -= temp_buffer_size;
}
// Read the last (possibly partial) chunk and return.
DCHECK(bytes_to_read > 0);
DCHECK(bytes_to_read <= temp_buffer_size);
return ReadNextBytes(file_handle, temp_buffer, bytes_to_read);
}
// A helper function to touch all pages in the range
// [base_addr, base_addr + length).
void TouchPagesInRange(void* base_addr, size_t length) {
DCHECK(base_addr != NULL);
DCHECK(length > 0);
// Get the system info so we know the page size. Also, make sure we use a
// non-zero value for the page size; GetSystemInfo() is hookable/patchable,
// and you never know what shenanigans someone could get up to.
SYSTEM_INFO system_info = {};
GetSystemInfo(&system_info);
if (system_info.dwPageSize == 0)
system_info.dwPageSize = 4096;
// We don't want to read outside the byte range (which could trigger an
// access violation), so let's figure out the exact locations of the first
// and final bytes we want to read.
volatile uint8* touch_ptr = reinterpret_cast<uint8*>(base_addr);
volatile uint8* final_touch_ptr = touch_ptr + length - 1;
// Read the memory in the range [touch_ptr, final_touch_ptr] with a stride
// of the system page size, to ensure that it's been paged in.
uint8 dummy;
while (touch_ptr < final_touch_ptr) {
dummy = *touch_ptr;
touch_ptr += system_info.dwPageSize;
}
dummy = *final_touch_ptr;
}
} // namespace
bool ImagePreReader::PartialPreReadImageOnDisk(const wchar_t* file_path,
size_t percentage,
size_t max_chunk_size) {
// TODO(rogerm): change this to have the number of bytes pre-read per
// section be driven by a static table within the PE file (defaulting to
// full read if it's not there?) that's initialized by the optimization
// toolchain.
DCHECK(file_path != NULL);
if (percentage == 0)
return true;
if (percentage > kOneHundredPercent)
percentage = kOneHundredPercent;
// Validate/setup max_chunk_size, imposing a 1MB minimum on the chunk size.
const size_t kMinChunkSize = 1024 * 1024;
max_chunk_size = std::max(max_chunk_size, kMinChunkSize);
// Open the file.
base::win::ScopedHandle file(
CreateFile(file_path,
GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
NULL,
OPEN_EXISTING,
FILE_FLAG_SEQUENTIAL_SCAN,
NULL));
if (!file.IsValid())
return false;
// Allocate a resizable buffer for the headers. We initially reserve as much
// space as we typically see as the header size for chrome.dll and other
// PE images.
std::vector<uint8> headers;
headers.reserve(kMinHeaderBufferSize);
// Read, hopefully, all of the headers.
if (!ReadMissingBytes(file, &headers, kMinHeaderBufferSize))
return false;
// The DOS header starts at offset 0 and allows us to get the offset of the
// NT headers. Let's ensure we've read enough to capture the NT headers.
size_t nt_headers_start =
reinterpret_cast<IMAGE_DOS_HEADER*>(&headers[0])->e_lfanew;
size_t nt_headers_end = nt_headers_start + sizeof(IMAGE_NT_HEADERS);
if (!ReadMissingBytes(file, &headers, nt_headers_end))
return false;
// Now that we've got the NT headers we can get the total header size,
// including all of the section headers. Let's ensure we've read enough
// to capture all of the header data.
size_t size_of_headers = reinterpret_cast<IMAGE_NT_HEADERS*>(
&headers[nt_headers_start])->OptionalHeader.SizeOfHeaders;
if (!ReadMissingBytes(file, &headers, size_of_headers))
return false;
// Now we have all of the headers. This is enough to let us use the PEImage
// wrapper to query the structure of the image.
base::win::PEImage pe_image(reinterpret_cast<HMODULE>(&headers[0]));
CHECK(pe_image.VerifyMagic());
// Allocate a buffer to hold the pre-read bytes.
scoped_ptr<uint8, VirtualFreeDeleter> buffer(
static_cast<uint8*>(
::VirtualAlloc(NULL, max_chunk_size, MEM_COMMIT, PAGE_READWRITE)));
if (buffer.get() == NULL)
return false;
// Iterate over each section, reading in a percentage of each.
const IMAGE_SECTION_HEADER* section = NULL;
for (UINT i = 0; (section = pe_image.GetSectionHeader(i)) != NULL; ++i) {
CHECK_LE(reinterpret_cast<const uint8*>(section + 1),
&headers[0] + headers.size());
if (!ReadThroughSection(
file, section, percentage, buffer.get(), max_chunk_size))
return false;
}
// We're done.
return true;
}
bool ImagePreReader::PartialPreReadImageInMemory(const wchar_t* file_path,
size_t percentage) {
// TODO(rogerm): change this to have the number of bytes pre-read per
// section be driven by a static table within the PE file (defaulting to
// full read if it's not there?) that's initialized by the optimization
// toolchain.
DCHECK(file_path != NULL);
if (percentage == 0)
return true;
if (percentage > kOneHundredPercent)
percentage = kOneHundredPercent;
HMODULE dll_module = ::LoadLibraryExW(
file_path,
NULL,
LOAD_WITH_ALTERED_SEARCH_PATH | DONT_RESOLVE_DLL_REFERENCES);
if (!dll_module)
return false;
base::win::PEImage pe_image(dll_module);
CHECK(pe_image.VerifyMagic());
// Iterate over each section, stepping through a percentage of each to page
// it in off the disk.
const IMAGE_SECTION_HEADER* section = NULL;
for (UINT i = 0; (section = pe_image.GetSectionHeader(i)) != NULL; ++i) {
// Get the extent we want to touch.
size_t length = GetPercentageOfSectionLength(section, percentage);
if (length == 0)
continue;
uint8* start =
static_cast<uint8*>(pe_image.RVAToAddr(section->VirtualAddress));
// Verify that the extent we're going to touch falls inside the section
// we expect it to (and by implication, inside the pe_image).
CHECK_EQ(section,
pe_image.GetImageSectionFromAddr(start));
CHECK_EQ(section,
pe_image.GetImageSectionFromAddr(start + length - 1));
// Page in the section range.
TouchPagesInRange(start, length);
}
FreeLibrary(dll_module);
return true;
}
bool ImagePreReader::PreReadImage(const wchar_t* file_path,
size_t size_to_read,
size_t step_size) {
base::ThreadRestrictions::AssertIOAllowed();
if (base::win::GetVersion() > base::win::VERSION_XP) {
// Vista+ branch. On these OSes, the forced reads through the DLL actually
// slows warm starts. The solution is to sequentially read file contents
// with an optional cap on total amount to read.
base::win::ScopedHandle file(
CreateFile(file_path,
GENERIC_READ,
FILE_SHARE_READ | FILE_SHARE_WRITE | FILE_SHARE_DELETE,
NULL,
OPEN_EXISTING,
FILE_FLAG_SEQUENTIAL_SCAN,
NULL));
if (!file.IsValid())
return false;
// Default to 1MB sequential reads.
const DWORD actual_step_size = std::max(static_cast<DWORD>(step_size),
static_cast<DWORD>(1024*1024));
LPVOID buffer = ::VirtualAlloc(NULL,
actual_step_size,
MEM_COMMIT,
PAGE_READWRITE);
if (buffer == NULL)
return false;
DWORD len;
size_t total_read = 0;
while (::ReadFile(file, buffer, actual_step_size, &len, NULL) &&
len > 0 &&
(size_to_read ? total_read < size_to_read : true)) {
total_read += static_cast<size_t>(len);
}
::VirtualFree(buffer, 0, MEM_RELEASE);
} else {
// WinXP branch. Here, reading the DLL from disk doesn't do
// what we want so instead we pull the pages into memory by loading
// the DLL and touching pages at a stride. We use the system's page
// size as the stride, ignoring the passed in step_size, to make sure
// each page in the range is touched.
HMODULE dll_module = ::LoadLibraryExW(
file_path,
NULL,
LOAD_WITH_ALTERED_SEARCH_PATH | DONT_RESOLVE_DLL_REFERENCES);
if (!dll_module)
return false;
base::win::PEImage pe_image(dll_module);
CHECK(pe_image.VerifyMagic());
// We don't want to read past the end of the module (which could trigger
// an access violation), so make sure to check the image size.
PIMAGE_NT_HEADERS nt_headers = pe_image.GetNTHeaders();
size_t dll_module_length = std::min(
size_to_read ? size_to_read : ~0,
static_cast<size_t>(nt_headers->OptionalHeader.SizeOfImage));
// Page in then release the module.
TouchPagesInRange(dll_module, dll_module_length);
FreeLibrary(dll_module);
}
return true;
}
bool ImagePreReader::PartialPreReadImage(const wchar_t* file_path,
size_t percentage,
size_t max_chunk_size) {
base::ThreadRestrictions::AssertIOAllowed();
if (percentage >= kOneHundredPercent) {
// If we're reading the whole image, we don't need to parse headers and
// navigate sections, the basic PreReadImage() can be used to just step
// blindly through the entire file / address-space.
return PreReadImage(file_path, 0, max_chunk_size);
}
if (base::win::GetVersion() > base::win::VERSION_XP) {
// Vista+ branch. On these OSes, we warm up the Image by reading its
// file off the disk.
return PartialPreReadImageOnDisk(file_path, percentage, max_chunk_size);
}
// WinXP branch. For XP, reading the image from disk doesn't do what we want
// so instead we pull the pages into memory by loading the DLL and touching
// initialized pages at a stride.
return PartialPreReadImageInMemory(file_path, percentage);
}