blob: f147cf121739b5b5334c1a59350831feadbbef2c [file] [log] [blame]
/*
***************************************************************************
* Copyright (C) 2008-2013, International Business Machines Corporation
* and others. All Rights Reserved.
***************************************************************************
* file name: uspoof.cpp
* encoding: US-ASCII
* tab size: 8 (not used)
* indentation:4
*
* created on: 2008Feb13
* created by: Andy Heninger
*
* Unicode Spoof Detection
*/
#include "unicode/utypes.h"
#include "unicode/normalizer2.h"
#include "unicode/uspoof.h"
#include "unicode/ustring.h"
#include "unicode/utf16.h"
#include "cmemory.h"
#include "cstring.h"
#include "identifier_info.h"
#include "mutex.h"
#include "scriptset.h"
#include "uassert.h"
#include "ucln_in.h"
#include "uspoof_impl.h"
#include "umutex.h"
#if !UCONFIG_NO_NORMALIZATION
U_NAMESPACE_USE
//
// Static Objects used by the spoof impl, their thread safe initialization and their cleanup.
//
static UnicodeSet *gInclusionSet = NULL;
static UnicodeSet *gRecommendedSet = NULL;
static const Normalizer2 *gNfdNormalizer = NULL;
static UMutex gInitMutex = U_MUTEX_INITIALIZER;
static UBool U_CALLCONV
uspoof_cleanup(void) {
delete gInclusionSet;
gInclusionSet = NULL;
delete gRecommendedSet;
gRecommendedSet = NULL;
gNfdNormalizer = NULL;
return TRUE;
}
static void initializeStatics() {
Mutex m(&gInitMutex);
UErrorCode status = U_ZERO_ERROR;
if (gInclusionSet == NULL) {
gInclusionSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\
\\-.\\u00B7\\u05F3\\u05F4\\u0F0B\\u200C\\u200D\\u2019]"), status);
gRecommendedSet = new UnicodeSet(UNICODE_STRING_SIMPLE("[\
[0-z\\u00C0-\\u017E\\u01A0\\u01A1\\u01AF\\u01B0\\u01CD-\
\\u01DC\\u01DE-\\u01E3\\u01E6-\\u01F5\\u01F8-\\u021B\\u021E\
\\u021F\\u0226-\\u0233\\u02BB\\u02BC\\u02EC\\u0300-\\u0304\
\\u0306-\\u030C\\u030F-\\u0311\\u0313\\u0314\\u031B\\u0323-\
\\u0328\\u032D\\u032E\\u0330\\u0331\\u0335\\u0338\\u0339\
\\u0342-\\u0345\\u037B-\\u03CE\\u03FC-\\u045F\\u048A-\\u0525\
\\u0531-\\u0586\\u05D0-\\u05F2\\u0621-\\u063F\\u0641-\\u0655\
\\u0660-\\u0669\\u0670-\\u068D\\u068F-\\u06D5\\u06E5\\u06E6\
\\u06EE-\\u06FF\\u0750-\\u07B1\\u0901-\\u0939\\u093C-\\u094D\
\\u0950\\u0960-\\u0972\\u0979-\\u0A4D\\u0A5C-\\u0A74\\u0A81-\
\\u0B43\\u0B47-\\u0B61\\u0B66-\\u0C56\\u0C60\\u0C61\\u0C66-\
\\u0CD6\\u0CE0-\\u0CEF\\u0D02-\\u0D28\\u0D2A-\\u0D39\\u0D3D-\
\\u0D43\\u0D46-\\u0D4D\\u0D57-\\u0D61\\u0D66-\\u0D8E\\u0D91-\
\\u0DA5\\u0DA7-\\u0DDE\\u0DF2\\u0E01-\\u0ED9\\u0F00\\u0F20-\
\\u0F8B\\u0F90-\\u109D\\u10D0-\\u10F0\\u10F7-\\u10FA\\u1200-\
\\u135A\\u135F\\u1380-\\u138F\\u1401-\\u167F\\u1780-\\u17A2\
\\u17A5-\\u17A7\\u17A9-\\u17B3\\u17B6-\\u17CA\\u17D2\\u17D7-\
\\u17DC\\u17E0-\\u17E9\\u1810-\\u18A8\\u18AA-\\u18F5\\u1E00-\
\\u1E99\\u1F00-\\u1FFC\\u2D30-\\u2D65\\u2D80-\\u2DDE\\u3005-\
\\u3007\\u3041-\\u31B7\\u3400-\\u9FCB\\uA000-\\uA48C\\uA67F\
\\uA717-\\uA71F\\uA788\\uAA60-\\uAA7B\\uAC00-\\uD7A3\\uFA0E-\
\\uFA29\\U00020000-\
\\U0002B734]-[[:Cn:][:nfkcqc=n:][:XIDC=n:]]]"), status);
gNfdNormalizer = Normalizer2::getNFDInstance(status);
}
ucln_i18n_registerCleanup(UCLN_I18N_SPOOF, uspoof_cleanup);
return;
}
U_CAPI USpoofChecker * U_EXPORT2
uspoof_open(UErrorCode *status) {
if (U_FAILURE(*status)) {
return NULL;
}
initializeStatics();
SpoofImpl *si = new SpoofImpl(SpoofData::getDefault(*status), *status);
if (U_FAILURE(*status)) {
delete si;
si = NULL;
}
return reinterpret_cast<USpoofChecker *>(si);
}
U_CAPI USpoofChecker * U_EXPORT2
uspoof_openFromSerialized(const void *data, int32_t length, int32_t *pActualLength,
UErrorCode *status) {
if (U_FAILURE(*status)) {
return NULL;
}
initializeStatics();
SpoofData *sd = new SpoofData(data, length, *status);
SpoofImpl *si = new SpoofImpl(sd, *status);
if (U_FAILURE(*status)) {
delete sd;
delete si;
return NULL;
}
if (sd == NULL || si == NULL) {
*status = U_MEMORY_ALLOCATION_ERROR;
delete sd;
delete si;
return NULL;
}
if (pActualLength != NULL) {
*pActualLength = sd->fRawData->fLength;
}
return reinterpret_cast<USpoofChecker *>(si);
}
U_CAPI USpoofChecker * U_EXPORT2
uspoof_clone(const USpoofChecker *sc, UErrorCode *status) {
const SpoofImpl *src = SpoofImpl::validateThis(sc, *status);
if (src == NULL) {
return NULL;
}
SpoofImpl *result = new SpoofImpl(*src, *status); // copy constructor
if (U_FAILURE(*status)) {
delete result;
result = NULL;
}
return reinterpret_cast<USpoofChecker *>(result);
}
U_CAPI void U_EXPORT2
uspoof_close(USpoofChecker *sc) {
UErrorCode status = U_ZERO_ERROR;
SpoofImpl *This = SpoofImpl::validateThis(sc, status);
delete This;
}
U_CAPI void U_EXPORT2
uspoof_setChecks(USpoofChecker *sc, int32_t checks, UErrorCode *status) {
SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == NULL) {
return;
}
// Verify that the requested checks are all ones (bits) that
// are acceptable, known values.
if (checks & ~USPOOF_ALL_CHECKS) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
This->fChecks = checks;
}
U_CAPI int32_t U_EXPORT2
uspoof_getChecks(const USpoofChecker *sc, UErrorCode *status) {
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == NULL) {
return 0;
}
return This->fChecks;
}
U_CAPI void U_EXPORT2
uspoof_setRestrictionLevel(USpoofChecker *sc, URestrictionLevel restrictionLevel) {
UErrorCode status = U_ZERO_ERROR;
SpoofImpl *This = SpoofImpl::validateThis(sc, status);
if (This != NULL) {
This->fRestrictionLevel = restrictionLevel;
}
}
U_CAPI URestrictionLevel U_EXPORT2
uspoof_getRestrictionLevel(const USpoofChecker *sc) {
UErrorCode status = U_ZERO_ERROR;
const SpoofImpl *This = SpoofImpl::validateThis(sc, status);
if (This == NULL) {
return USPOOF_UNRESTRICTIVE;
}
return This->fRestrictionLevel;
}
U_CAPI void U_EXPORT2
uspoof_setAllowedLocales(USpoofChecker *sc, const char *localesList, UErrorCode *status) {
SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == NULL) {
return;
}
This->setAllowedLocales(localesList, *status);
}
U_CAPI const char * U_EXPORT2
uspoof_getAllowedLocales(USpoofChecker *sc, UErrorCode *status) {
SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == NULL) {
return NULL;
}
return This->getAllowedLocales(*status);
}
U_CAPI const USet * U_EXPORT2
uspoof_getAllowedChars(const USpoofChecker *sc, UErrorCode *status) {
const UnicodeSet *result = uspoof_getAllowedUnicodeSet(sc, status);
return result->toUSet();
}
U_CAPI const UnicodeSet * U_EXPORT2
uspoof_getAllowedUnicodeSet(const USpoofChecker *sc, UErrorCode *status) {
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == NULL) {
return NULL;
}
return This->fAllowedCharsSet;
}
U_CAPI void U_EXPORT2
uspoof_setAllowedChars(USpoofChecker *sc, const USet *chars, UErrorCode *status) {
const UnicodeSet *set = UnicodeSet::fromUSet(chars);
uspoof_setAllowedUnicodeSet(sc, set, status);
}
U_CAPI void U_EXPORT2
uspoof_setAllowedUnicodeSet(USpoofChecker *sc, const UnicodeSet *chars, UErrorCode *status) {
SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == NULL) {
return;
}
if (chars->isBogus()) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return;
}
UnicodeSet *clonedSet = static_cast<UnicodeSet *>(chars->clone());
if (clonedSet == NULL || clonedSet->isBogus()) {
*status = U_MEMORY_ALLOCATION_ERROR;
return;
}
clonedSet->freeze();
delete This->fAllowedCharsSet;
This->fAllowedCharsSet = clonedSet;
This->fChecks |= USPOOF_CHAR_LIMIT;
}
U_CAPI int32_t U_EXPORT2
uspoof_check(const USpoofChecker *sc,
const UChar *id, int32_t length,
int32_t *position,
UErrorCode *status) {
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == NULL) {
return 0;
}
if (length < -1) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString idStr((length == -1), id, length); // Aliasing constructor.
int32_t result = uspoof_checkUnicodeString(sc, idStr, position, status);
return result;
}
U_CAPI int32_t U_EXPORT2
uspoof_checkUTF8(const USpoofChecker *sc,
const char *id, int32_t length,
int32_t *position,
UErrorCode *status) {
if (U_FAILURE(*status)) {
return 0;
}
UnicodeString idStr = UnicodeString::fromUTF8(StringPiece(id, length>=0 ? length : uprv_strlen(id)));
int32_t result = uspoof_checkUnicodeString(sc, idStr, position, status);
return result;
}
U_CAPI int32_t U_EXPORT2
uspoof_areConfusable(const USpoofChecker *sc,
const UChar *id1, int32_t length1,
const UChar *id2, int32_t length2,
UErrorCode *status) {
SpoofImpl::validateThis(sc, *status);
if (U_FAILURE(*status)) {
return 0;
}
if (length1 < -1 || length2 < -1) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString id1Str((length1==-1), id1, length1); // Aliasing constructor
UnicodeString id2Str((length2==-1), id2, length2); // Aliasing constructor
return uspoof_areConfusableUnicodeString(sc, id1Str, id2Str, status);
}
U_CAPI int32_t U_EXPORT2
uspoof_areConfusableUTF8(const USpoofChecker *sc,
const char *id1, int32_t length1,
const char *id2, int32_t length2,
UErrorCode *status) {
SpoofImpl::validateThis(sc, *status);
if (U_FAILURE(*status)) {
return 0;
}
if (length1 < -1 || length2 < -1) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString id1Str = UnicodeString::fromUTF8(StringPiece(id1, length1>=0? length1 : uprv_strlen(id1)));
UnicodeString id2Str = UnicodeString::fromUTF8(StringPiece(id2, length2>=0? length2 : uprv_strlen(id2)));
int32_t results = uspoof_areConfusableUnicodeString(sc, id1Str, id2Str, status);
return results;
}
U_CAPI int32_t U_EXPORT2
uspoof_areConfusableUnicodeString(const USpoofChecker *sc,
const icu::UnicodeString &id1,
const icu::UnicodeString &id2,
UErrorCode *status) {
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (U_FAILURE(*status)) {
return 0;
}
//
// See section 4 of UAX 39 for the algorithm for checking whether two strings are confusable,
// and for definitions of the types (single, whole, mixed-script) of confusables.
// We only care about a few of the check flags. Ignore the others.
// If no tests relavant to this function have been specified, return an error.
// TODO: is this really the right thing to do? It's probably an error on the caller's part,
// but logically we would just return 0 (no error).
if ((This->fChecks & (USPOOF_SINGLE_SCRIPT_CONFUSABLE | USPOOF_MIXED_SCRIPT_CONFUSABLE |
USPOOF_WHOLE_SCRIPT_CONFUSABLE)) == 0) {
*status = U_INVALID_STATE_ERROR;
return 0;
}
int32_t flagsForSkeleton = This->fChecks & USPOOF_ANY_CASE;
int32_t result = 0;
IdentifierInfo *identifierInfo = This->getIdentifierInfo(*status);
if (U_FAILURE(*status)) {
return 0;
}
identifierInfo->setIdentifier(id1, *status);
int32_t id1ScriptCount = identifierInfo->getScriptCount();
identifierInfo->setIdentifier(id2, *status);
int32_t id2ScriptCount = identifierInfo->getScriptCount();
This->releaseIdentifierInfo(identifierInfo);
identifierInfo = NULL;
if (This->fChecks & USPOOF_SINGLE_SCRIPT_CONFUSABLE) {
UnicodeString id1Skeleton;
UnicodeString id2Skeleton;
if (id1ScriptCount <= 1 && id2ScriptCount <= 1) {
flagsForSkeleton |= USPOOF_SINGLE_SCRIPT_CONFUSABLE;
uspoof_getSkeletonUnicodeString(sc, flagsForSkeleton, id1, id1Skeleton, status);
uspoof_getSkeletonUnicodeString(sc, flagsForSkeleton, id2, id2Skeleton, status);
if (id1Skeleton == id2Skeleton) {
result |= USPOOF_SINGLE_SCRIPT_CONFUSABLE;
}
}
}
if (result & USPOOF_SINGLE_SCRIPT_CONFUSABLE) {
// If the two inputs are single script confusable they cannot also be
// mixed or whole script confusable, according to the UAX39 definitions.
// So we can skip those tests.
return result;
}
// Two identifiers are whole script confusable if each is of a single script
// and they are mixed script confusable.
UBool possiblyWholeScriptConfusables =
id1ScriptCount <= 1 && id2ScriptCount <= 1 && (This->fChecks & USPOOF_WHOLE_SCRIPT_CONFUSABLE);
//
// Mixed Script Check
//
if ((This->fChecks & USPOOF_MIXED_SCRIPT_CONFUSABLE) || possiblyWholeScriptConfusables ) {
// For getSkeleton(), resetting the USPOOF_SINGLE_SCRIPT_CONFUSABLE flag will get us
// the mixed script table skeleton, which is what we want.
// The Any Case / Lower Case bit in the skelton flags was set at the top of the function.
UnicodeString id1Skeleton;
UnicodeString id2Skeleton;
flagsForSkeleton &= ~USPOOF_SINGLE_SCRIPT_CONFUSABLE;
uspoof_getSkeletonUnicodeString(sc, flagsForSkeleton, id1, id1Skeleton, status);
uspoof_getSkeletonUnicodeString(sc, flagsForSkeleton, id2, id2Skeleton, status);
if (id1Skeleton == id2Skeleton) {
result |= USPOOF_MIXED_SCRIPT_CONFUSABLE;
if (possiblyWholeScriptConfusables) {
result |= USPOOF_WHOLE_SCRIPT_CONFUSABLE;
}
}
}
return result;
}
U_CAPI int32_t U_EXPORT2
uspoof_checkUnicodeString(const USpoofChecker *sc,
const icu::UnicodeString &id,
int32_t *position,
UErrorCode *status) {
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == NULL) {
return 0;
}
int32_t result = 0;
IdentifierInfo *identifierInfo = NULL;
if ((This->fChecks) & (USPOOF_RESTRICTION_LEVEL | USPOOF_MIXED_NUMBERS)) {
identifierInfo = This->getIdentifierInfo(*status);
if (U_FAILURE(*status)) {
goto cleanupAndReturn;
}
identifierInfo->setIdentifier(id, *status);
identifierInfo->setIdentifierProfile(*This->fAllowedCharsSet);
}
if ((This->fChecks) & USPOOF_RESTRICTION_LEVEL) {
URestrictionLevel idRestrictionLevel = identifierInfo->getRestrictionLevel(*status);
if (idRestrictionLevel > This->fRestrictionLevel) {
result |= USPOOF_RESTRICTION_LEVEL;
}
if (This->fChecks & USPOOF_AUX_INFO) {
result |= idRestrictionLevel;
}
}
if ((This->fChecks) & USPOOF_MIXED_NUMBERS) {
const UnicodeSet *numerics = identifierInfo->getNumerics();
if (numerics->size() > 1) {
result |= USPOOF_MIXED_NUMBERS;
}
// TODO: ICU4J returns the UnicodeSet of the numerics found in the identifier.
// We have no easy way to do the same in C.
// if (checkResult != null) {
// checkResult.numerics = numerics;
// }
}
if (This->fChecks & (USPOOF_CHAR_LIMIT)) {
int32_t i;
UChar32 c;
int32_t length = id.length();
for (i=0; i<length ;) {
c = id.char32At(i);
i += U16_LENGTH(c);
if (!This->fAllowedCharsSet->contains(c)) {
result |= USPOOF_CHAR_LIMIT;
break;
}
}
}
if (This->fChecks &
(USPOOF_WHOLE_SCRIPT_CONFUSABLE | USPOOF_MIXED_SCRIPT_CONFUSABLE | USPOOF_INVISIBLE)) {
// These are the checks that need to be done on NFD input
UnicodeString nfdText;
gNfdNormalizer->normalize(id, nfdText, *status);
int32_t nfdLength = nfdText.length();
if (This->fChecks & USPOOF_INVISIBLE) {
// scan for more than one occurence of the same non-spacing mark
// in a sequence of non-spacing marks.
int32_t i;
UChar32 c;
UChar32 firstNonspacingMark = 0;
UBool haveMultipleMarks = FALSE;
UnicodeSet marksSeenSoFar; // Set of combining marks in a single combining sequence.
for (i=0; i<nfdLength ;) {
c = nfdText.char32At(i);
i += U16_LENGTH(c);
if (u_charType(c) != U_NON_SPACING_MARK) {
firstNonspacingMark = 0;
if (haveMultipleMarks) {
marksSeenSoFar.clear();
haveMultipleMarks = FALSE;
}
continue;
}
if (firstNonspacingMark == 0) {
firstNonspacingMark = c;
continue;
}
if (!haveMultipleMarks) {
marksSeenSoFar.add(firstNonspacingMark);
haveMultipleMarks = TRUE;
}
if (marksSeenSoFar.contains(c)) {
// report the error, and stop scanning.
// No need to find more than the first failure.
result |= USPOOF_INVISIBLE;
break;
}
marksSeenSoFar.add(c);
}
}
if (This->fChecks & (USPOOF_WHOLE_SCRIPT_CONFUSABLE | USPOOF_MIXED_SCRIPT_CONFUSABLE)) {
// The basic test is the same for both whole and mixed script confusables.
// Compute the set of scripts that every input character has a confusable in.
// For this computation an input character is always considered to be
// confusable with itself in its own script.
//
// If the number of such scripts is two or more, and the input consisted of
// characters all from a single script, we have a whole script confusable.
// (The two scripts will be the original script and the one that is confusable)
//
// If the number of such scripts >= one, and the original input contained characters from
// more than one script, we have a mixed script confusable. (We can transform
// some of the characters, and end up with a visually similar string all in
// one script.)
if (identifierInfo == NULL) {
identifierInfo = This->getIdentifierInfo(*status);
if (U_FAILURE(*status)) {
goto cleanupAndReturn;
}
identifierInfo->setIdentifier(id, *status);
}
int32_t scriptCount = identifierInfo->getScriptCount();
ScriptSet scripts;
This->wholeScriptCheck(nfdText, &scripts, *status);
int32_t confusableScriptCount = scripts.countMembers();
//printf("confusableScriptCount = %d\n", confusableScriptCount);
if ((This->fChecks & USPOOF_WHOLE_SCRIPT_CONFUSABLE) &&
confusableScriptCount >= 2 &&
scriptCount == 1) {
result |= USPOOF_WHOLE_SCRIPT_CONFUSABLE;
}
if ((This->fChecks & USPOOF_MIXED_SCRIPT_CONFUSABLE) &&
confusableScriptCount >= 1 &&
scriptCount > 1) {
result |= USPOOF_MIXED_SCRIPT_CONFUSABLE;
}
}
}
cleanupAndReturn:
This->releaseIdentifierInfo(identifierInfo);
if (position != NULL) {
*position = 0;
}
return result;
}
U_CAPI int32_t U_EXPORT2
uspoof_getSkeleton(const USpoofChecker *sc,
uint32_t type,
const UChar *id, int32_t length,
UChar *dest, int32_t destCapacity,
UErrorCode *status) {
SpoofImpl::validateThis(sc, *status);
if (U_FAILURE(*status)) {
return 0;
}
if (length<-1 || destCapacity<0 || (destCapacity==0 && dest!=NULL)) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString idStr((length==-1), id, length); // Aliasing constructor
UnicodeString destStr;
uspoof_getSkeletonUnicodeString(sc, type, idStr, destStr, status);
destStr.extract(dest, destCapacity, *status);
return destStr.length();
}
U_I18N_API UnicodeString & U_EXPORT2
uspoof_getSkeletonUnicodeString(const USpoofChecker *sc,
uint32_t type,
const UnicodeString &id,
UnicodeString &dest,
UErrorCode *status) {
const SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (U_FAILURE(*status)) {
return dest;
}
int32_t tableMask = 0;
switch (type) {
case 0:
tableMask = USPOOF_ML_TABLE_FLAG;
break;
case USPOOF_SINGLE_SCRIPT_CONFUSABLE:
tableMask = USPOOF_SL_TABLE_FLAG;
break;
case USPOOF_ANY_CASE:
tableMask = USPOOF_MA_TABLE_FLAG;
break;
case USPOOF_SINGLE_SCRIPT_CONFUSABLE | USPOOF_ANY_CASE:
tableMask = USPOOF_SA_TABLE_FLAG;
break;
default:
*status = U_ILLEGAL_ARGUMENT_ERROR;
return dest;
}
UnicodeString nfdId;
gNfdNormalizer->normalize(id, nfdId, *status);
// Apply the skeleton mapping to the NFD normalized input string
// Accumulate the skeleton, possibly unnormalized, in a UnicodeString.
int32_t inputIndex = 0;
UnicodeString skelStr;
int32_t normalizedLen = nfdId.length();
for (inputIndex=0; inputIndex < normalizedLen; ) {
UChar32 c = nfdId.char32At(inputIndex);
inputIndex += U16_LENGTH(c);
This->confusableLookup(c, tableMask, skelStr);
}
gNfdNormalizer->normalize(skelStr, dest, *status);
return dest;
}
U_CAPI int32_t U_EXPORT2
uspoof_getSkeletonUTF8(const USpoofChecker *sc,
uint32_t type,
const char *id, int32_t length,
char *dest, int32_t destCapacity,
UErrorCode *status) {
SpoofImpl::validateThis(sc, *status);
if (U_FAILURE(*status)) {
return 0;
}
if (length<-1 || destCapacity<0 || (destCapacity==0 && dest!=NULL)) {
*status = U_ILLEGAL_ARGUMENT_ERROR;
return 0;
}
UnicodeString srcStr = UnicodeString::fromUTF8(StringPiece(id, length>=0 ? length : uprv_strlen(id)));
UnicodeString destStr;
uspoof_getSkeletonUnicodeString(sc, type, srcStr, destStr, status);
if (U_FAILURE(*status)) {
return 0;
}
int32_t lengthInUTF8 = 0;
u_strToUTF8(dest, destCapacity, &lengthInUTF8,
destStr.getBuffer(), destStr.length(), status);
return lengthInUTF8;
}
U_CAPI int32_t U_EXPORT2
uspoof_serialize(USpoofChecker *sc,void *buf, int32_t capacity, UErrorCode *status) {
SpoofImpl *This = SpoofImpl::validateThis(sc, *status);
if (This == NULL) {
U_ASSERT(U_FAILURE(*status));
return 0;
}
int32_t dataSize = This->fSpoofData->fRawData->fLength;
if (capacity < dataSize) {
*status = U_BUFFER_OVERFLOW_ERROR;
return dataSize;
}
uprv_memcpy(buf, This->fSpoofData->fRawData, dataSize);
return dataSize;
}
U_CAPI const USet * U_EXPORT2
uspoof_getInclusionSet(UErrorCode *) {
initializeStatics();
return gInclusionSet->toUSet();
}
U_CAPI const USet * U_EXPORT2
uspoof_getRecommendedSet(UErrorCode *) {
initializeStatics();
return gRecommendedSet->toUSet();
}
U_I18N_API const UnicodeSet * U_EXPORT2
uspoof_getInclusionUnicodeSet(UErrorCode *) {
initializeStatics();
return gInclusionSet;
}
U_I18N_API const UnicodeSet * U_EXPORT2
uspoof_getRecommendedUnicodeSet(UErrorCode *) {
initializeStatics();
return gRecommendedSet;
}
#endif // !UCONFIG_NO_NORMALIZATION