blob: 10b2fc4da04bd4bed08499f0f17efe2089a14029 [file] [log] [blame]
/* ----------------------------------------------------------------------- *
*
* Copyright 1996-2020 The NASM Authors - All Rights Reserved
* See the file AUTHORS included with the NASM distribution for
* the specific copyright holders.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following
* conditions are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
* CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* ----------------------------------------------------------------------- */
/*
* preproc.c macro preprocessor for the Netwide Assembler
*/
/* Typical flow of text through preproc
*
* pp_getline gets tokenized lines, either
*
* from a macro expansion
*
* or
* {
* read_line gets raw text from stdmacpos, or predef, or current input file
* tokenize converts to tokens
* }
*
* expand_mmac_params is used to expand %1 etc., unless a macro is being
* defined or a false conditional is being processed
* (%0, %1, %+1, %-1, %%foo
*
* do_directive checks for directives
*
* expand_smacro is used to expand single line macros
*
* expand_mmacro is used to expand multi-line macros
*
* detoken is used to convert the line back to text
*/
#include "compiler.h"
#include "nctype.h"
#include "nasm.h"
#include "nasmlib.h"
#include "error.h"
#include "preproc.h"
#include "hashtbl.h"
#include "quote.h"
#include "stdscan.h"
#include "eval.h"
#include "tokens.h"
#include "tables.h"
#include "listing.h"
/*
* Preprocessor execution options that can be controlled by %pragma or
* other directives. This structure is initialized to zero on each
* pass; this *must* reflect the default initial state.
*/
static struct pp_opts {
bool noaliases;
bool sane_empty_expansion;
} ppopt;
typedef struct SMacro SMacro;
typedef struct MMacro MMacro;
typedef struct MMacroInvocation MMacroInvocation;
typedef struct Context Context;
typedef struct Token Token;
typedef struct Line Line;
typedef struct Include Include;
typedef struct Cond Cond;
/*
* This is the internal form which we break input lines up into.
* Typically stored in linked lists.
*
* Note that `type' serves a double meaning: TOK_SMAC_START_PARAMS is
* not necessarily used as-is, but is also used to encode the number
* and expansion type of substituted parameter. So in the definition
*
* %define a(x,=y) ( (x) & ~(y) )
*
* the token representing `x' will have its type changed to
* tok_smac_param(0) but the one representing `y' will be
* tok_smac_param(1); see the accessor functions below.
*
* TOK_INTERNAL_STRING is a string which has been unquoted, but should
* be treated as if it was a quoted string. The code is free to change
* one into the other at will. TOK_NAKED_STRING is a text token which
* should be treated as a string, but which MUST NOT be turned into a
* quoted string. TOK_INTERNAL_STRINGs can contain any character,
* including NUL, but TOK_NAKED_STRING must be a valid C string.
*/
enum pp_token_type {
TOK_NONE = 0, TOK_WHITESPACE, TOK_COMMENT,
TOK_CORRUPT, /* Token text modified in an unsafe manner, now bogus */
TOK_BLOCK, /* Storage block pointer, not a real token */
TOK_ID,
TOK_PREPROC_ID, TOK_MMACRO_PARAM, TOK_LOCAL_SYMBOL,
TOK_LOCAL_MACRO, TOK_ENVIRON, TOK_STRING,
TOK_NUMBER, TOK_FLOAT, TOK_OTHER,
TOK_INTERNAL_STRING, TOK_NAKED_STRING,
TOK_PREPROC_Q, TOK_PREPROC_QQ,
TOK_PASTE, /* %+ */
TOK_COND_COMMA, /* %, */
TOK_INDIRECT, /* %[...] */
TOK_XDEF_PARAM, /* Used during %xdefine processing */
TOK_SMAC_START_PARAMS, /* MUST BE LAST IN THE LIST!!! */
TOK_MAX = INT_MAX /* Keep compiler from reducing the range */
};
static inline enum pp_token_type tok_smac_param(int param)
{
return TOK_SMAC_START_PARAMS + param;
}
static int smac_nparam(enum pp_token_type toktype)
{
return toktype - TOK_SMAC_START_PARAMS;
}
static bool is_smac_param(enum pp_token_type toktype)
{
return toktype >= TOK_SMAC_START_PARAMS;
}
#define PP_CONCAT_MASK(x) (1U << (x))
struct tokseq_match {
int mask_head;
int mask_tail;
};
/*
* This is tuned so struct Token should be 64 bytes on 64-bit
* systems and 32 bytes on 32-bit systems. It enables them
* to be nicely cache aligned, and the text to still be kept
* inline for nearly all tokens.
*
* We prohibit tokens of length > MAX_TEXT even though
* length here is an unsigned int; this avoids problems
* if the length is passed through an interface with type "int",
* and is absurdly large anyway.
*
* For the text mode, in pointer mode the pointer is stored at the end
* of the union and the pad field is cleared. This allows short tokens
* to be unconditionally tested for by only looking at the first text
* bytes and not examining the type or len fields.
*/
#define INLINE_TEXT (7*sizeof(char *)-sizeof(enum pp_token_type)-sizeof(unsigned int)-1)
#define MAX_TEXT (INT_MAX-2)
struct Token {
Token *next;
enum pp_token_type type;
unsigned int len;
union {
char a[INLINE_TEXT+1];
struct {
char pad[INLINE_TEXT+1 - sizeof(char *)];
char *ptr;
} p;
} text;
};
/*
* Note on the storage of both SMacro and MMacros: the hash table
* indexes them case-insensitively, and we then have to go through a
* linked list of potential case aliases (and, for MMacros, parameter
* ranges); this is to preserve the matching semantics of the earlier
* code. If the number of case aliases for a specific macro is a
* performance issue, you may want to reconsider your coding style.
*/
/*
* Function call tp obtain the expansion of an smacro
*/
typedef Token *(*ExpandSMacro)(const SMacro *s, Token **params, int nparams);
/*
* Store the definition of a single-line macro.
*/
enum sparmflags {
SPARM_PLAIN = 0,
SPARM_EVAL = 1, /* Evaluate as a numeric expression (=) */
SPARM_STR = 2, /* Convert to quoted string ($) */
SPARM_NOSTRIP = 4, /* Don't strip braces (!) */
SPARM_GREEDY = 8 /* Greedy final parameter (+) */
};
struct smac_param {
Token name;
enum sparmflags flags;
};
struct SMacro {
SMacro *next; /* MUST BE FIRST - see free_smacro() */
char *name;
Token *expansion;
ExpandSMacro expand;
intorptr expandpvt;
struct smac_param *params;
int nparam;
bool greedy;
bool casesense;
bool in_progress;
bool alias; /* This is an alias macro */
};
/*
* "No listing" flags. Inside a loop (%rep..%endrep) we may have
* macro listing suppressed with .nolist, but we still need to
* update line numbers for error messages and debug information...
* unless we are nested inside an actual .nolist macro.
*/
enum nolist_flags {
NL_LIST = 1, /* Suppress list output */
NL_LINE = 2 /* Don't update line information */
};
/*
* Store the definition of a multi-line macro. This is also used to
* store the interiors of `%rep...%endrep' blocks, which are
* effectively self-re-invoking multi-line macros which simply
* don't have a name or bother to appear in the hash tables. %rep
* blocks are signified by having a NULL `name' field.
*
* In a MMacro describing a `%rep' block, the `in_progress' field
* isn't merely boolean, but gives the number of repeats left to
* run.
*
* The `next' field is used for storing MMacros in hash tables; the
* `next_active' field is for stacking them on istk entries.
*
* When a MMacro is being expanded, `params', `iline', `nparam',
* `paramlen', `rotate' and `unique' are local to the invocation.
*/
/*
* Expansion stack. Note that .mmac can point back to the macro itself,
* whereas .mstk cannot.
*/
struct mstk {
MMacro *mstk; /* Any expansion, real macro or not */
MMacro *mmac; /* Highest level actual mmacro */
};
struct MMacro {
MMacro *next;
#if 0
MMacroInvocation *prev; /* previous invocation */
#endif
char *name;
int nparam_min, nparam_max;
enum nolist_flags nolist; /* is this macro listing-inhibited? */
bool casesense;
bool plus; /* is the last parameter greedy? */
bool capture_label; /* macro definition has %00; capture label */
int32_t in_progress; /* is this macro currently being expanded? */
int32_t max_depth; /* maximum number of recursive expansions allowed */
Token *dlist; /* All defaults as one list */
Token **defaults; /* Parameter default pointers */
int ndefs; /* number of default parameters */
Line *expansion;
struct mstk mstk; /* Macro expansion stack */
struct mstk dstk; /* Macro definitions stack */
Token **params; /* actual parameters */
Token *iline; /* invocation line */
struct src_location where; /* location of definition */
unsigned int nparam, rotate;
char *iname; /* name invoked as */
int *paramlen;
uint64_t unique;
uint64_t condcnt; /* number of if blocks... */
};
/* Store the definition of a multi-line macro, as defined in a
* previous recursive macro expansion.
*/
#if 0
struct MMacroInvocation {
MMacroInvocation *prev; /* previous invocation */
Token **params; /* actual parameters */
Token *iline; /* invocation line */
unsigned int nparam, rotate;
int *paramlen;
uint64_t unique;
uint64_t condcnt;
};
#endif
/*
* The context stack is composed of a linked list of these.
*/
struct Context {
Context *next;
const char *name;
struct hash_table localmac;
uint64_t number;
unsigned int depth;
};
static inline const char *tok_text(const struct Token *t)
{
return (t->len <= INLINE_TEXT) ? t->text.a : t->text.p.ptr;
}
/*
* Returns a mutable pointer to the text buffer. The text can be changed,
* but the length MUST NOT CHANGE, in either direction; nor is it permitted
* to pad with null characters to create an artificially shorter string.
*/
static inline char *tok_text_buf(struct Token *t)
{
return (t->len <= INLINE_TEXT) ? t->text.a : t->text.p.ptr;
}
static inline unsigned int tok_check_len(size_t len)
{
if (unlikely(len > MAX_TEXT))
nasm_fatal("impossibly large token");
return len;
}
static inline bool tok_text_match(const struct Token *a, const struct Token *b)
{
return a->len == b->len && !memcmp(tok_text(a), tok_text(b), a->len);
}
static inline unused_func bool
tok_match(const struct Token *a, const struct Token *b)
{
return a->type == b->type && tok_text_match(a, b);
}
/* strlen() variant useful for set_text() and its variants */
static size_t tok_strlen(const char *str)
{
return strnlen(str, MAX_TEXT+1);
}
/*
* Set the text field to a copy of the given string; the length if
* not given should be obtained with tok_strlen().
*/
static Token *set_text(struct Token *t, const char *text, size_t len)
{
char *textp;
if (t->len > INLINE_TEXT)
nasm_free(t->text.p.ptr);
nasm_zero(t->text);
t->len = len = tok_check_len(len);
textp = (len > INLINE_TEXT)
? (t->text.p.ptr = nasm_malloc(len+1)) : t->text.a;
memcpy(textp, text, len);
textp[len] = '\0';
return t;
}
/*
* Set the text field to the existing pre-allocated string, either
* taking over or freeing the allocation in the process.
*/
static Token *set_text_free(struct Token *t, char *text, unsigned int len)
{
char *textp;
if (t->len > INLINE_TEXT)
nasm_free(t->text.p.ptr);
nasm_zero(t->text);
t->len = len = tok_check_len(len);
if (len > INLINE_TEXT) {
textp = t->text.p.ptr = text;
} else {
textp = memcpy(t->text.a, text, len);
nasm_free(text);
}
textp[len] = '\0';
return t;
}
/*
* Allocate a new buffer containing a copy of the text field
* of the token.
*/
static char *dup_text(const struct Token *t)
{
size_t size = t->len + 1;
char *p = nasm_malloc(size);
return memcpy(p, tok_text(t), size);
}
/*
* Multi-line macro definitions are stored as a linked list of
* these, which is essentially a container to allow several linked
* lists of Tokens.
*
* Note that in this module, linked lists are treated as stacks
* wherever possible. For this reason, Lines are _pushed_ on to the
* `expansion' field in MMacro structures, so that the linked list,
* if walked, would give the macro lines in reverse order; this
* means that we can walk the list when expanding a macro, and thus
* push the lines on to the `expansion' field in _istk_ in reverse
* order (so that when popped back off they are in the right
* order). It may seem cockeyed, and it relies on my design having
* an even number of steps in, but it works...
*
* Some of these structures, rather than being actual lines, are
* markers delimiting the end of the expansion of a given macro.
* This is for use in the cycle-tracking and %rep-handling code.
* Such structures have `finishes' non-NULL, and `first' NULL. All
* others have `finishes' NULL, but `first' may still be NULL if
* the line is blank.
*/
struct Line {
Line *next;
MMacro *finishes;
Token *first;
struct src_location where; /* Where defined */
};
/*
* To handle an arbitrary level of file inclusion, we maintain a
* stack (ie linked list) of these things.
*
* Note: when we issue a message for a continuation line, we want to
* issue it for the actual *start* of the continuation line. This means
* we need to remember how many lines to skip over for the next one.
*/
struct Include {
Include *next;
FILE *fp;
Cond *conds;
Line *expansion;
uint64_t nolist; /* Listing inhibit counter */
uint64_t noline; /* Line number update inhibit counter */
struct mstk mstk;
struct src_location where; /* Filename and current line number */
int32_t lineinc; /* Increment given by %line */
int32_t lineskip; /* Accounting for passed continuation lines */
};
/*
* File real name hash, so we don't have to re-search the include
* path for every pass (and potentially more than that if a file
* is used more than once.)
*/
struct hash_table FileHash;
/*
* Counters to trap on insane macro recursion or processing.
* Note: for smacros these count *down*, for mmacros they count *up*.
*/
struct deadman {
int64_t total; /* Total number of macros/tokens */
int64_t levels; /* Descent depth across all macros */
bool triggered; /* Already triggered, no need for error msg */
};
static struct deadman smacro_deadman, mmacro_deadman;
/*
* Conditional assembly: we maintain a separate stack of these for
* each level of file inclusion. (The only reason we keep the
* stacks separate is to ensure that a stray `%endif' in a file
* included from within the true branch of a `%if' won't terminate
* it and cause confusion: instead, rightly, it'll cause an error.)
*/
enum cond_state {
/*
* These states are for use just after %if or %elif: IF_TRUE
* means the condition has evaluated to truth so we are
* currently emitting, whereas IF_FALSE means we are not
* currently emitting but will start doing so if a %else comes
* up. In these states, all directives are admissible: %elif,
* %else and %endif. (And of course %if.)
*/
COND_IF_TRUE, COND_IF_FALSE,
/*
* These states come up after a %else: ELSE_TRUE means we're
* emitting, and ELSE_FALSE means we're not. In ELSE_* states,
* any %elif or %else will cause an error.
*/
COND_ELSE_TRUE, COND_ELSE_FALSE,
/*
* These states mean that we're not emitting now, and also that
* nothing until %endif will be emitted at all. COND_DONE is
* used when we've had our moment of emission
* and have now started seeing %elifs. COND_NEVER is used when
* the condition construct in question is contained within a
* non-emitting branch of a larger condition construct,
* or if there is an error.
*/
COND_DONE, COND_NEVER
};
struct Cond {
Cond *next;
enum cond_state state;
};
#define emitting(x) ( (x) == COND_IF_TRUE || (x) == COND_ELSE_TRUE )
/*
* These defines are used as the possible return values for do_directive
*/
#define NO_DIRECTIVE_FOUND 0
#define DIRECTIVE_FOUND 1
/*
* Condition codes. Note that we use c_ prefix not C_ because C_ is
* used in nasm.h for the "real" condition codes. At _this_ level,
* we treat CXZ and ECXZ as condition codes, albeit non-invertible
* ones, so we need a different enum...
*/
static const char * const conditions[] = {
"a", "ae", "b", "be", "c", "cxz", "e", "ecxz", "g", "ge", "l", "le",
"na", "nae", "nb", "nbe", "nc", "ne", "ng", "nge", "nl", "nle", "no",
"np", "ns", "nz", "o", "p", "pe", "po", "rcxz", "s", "z"
};
enum pp_conds {
c_A, c_AE, c_B, c_BE, c_C, c_CXZ, c_E, c_ECXZ, c_G, c_GE, c_L, c_LE,
c_NA, c_NAE, c_NB, c_NBE, c_NC, c_NE, c_NG, c_NGE, c_NL, c_NLE, c_NO,
c_NP, c_NS, c_NZ, c_O, c_P, c_PE, c_PO, c_RCXZ, c_S, c_Z,
c_none = -1
};
static const enum pp_conds inverse_ccs[] = {
c_NA, c_NAE, c_NB, c_NBE, c_NC, -1, c_NE, -1, c_NG, c_NGE, c_NL, c_NLE,
c_A, c_AE, c_B, c_BE, c_C, c_E, c_G, c_GE, c_L, c_LE, c_O, c_P, c_S,
c_Z, c_NO, c_NP, c_PO, c_PE, -1, c_NS, c_NZ
};
/*
* Directive names.
*/
/* If this is a an IF, ELIF, ELSE or ENDIF keyword */
static int is_condition(enum preproc_token arg)
{
return PP_IS_COND(arg) || (arg == PP_ELSE) || (arg == PP_ENDIF);
}
/* For TASM compatibility we need to be able to recognise TASM compatible
* conditional compilation directives. Using the NASM pre-processor does
* not work, so we look for them specifically from the following list and
* then jam in the equivalent NASM directive into the input stream.
*/
enum {
TM_ARG, TM_ELIF, TM_ELSE, TM_ENDIF, TM_IF, TM_IFDEF, TM_IFDIFI,
TM_IFNDEF, TM_INCLUDE, TM_LOCAL
};
static const char * const tasm_directives[] = {
"arg", "elif", "else", "endif", "if", "ifdef", "ifdifi",
"ifndef", "include", "local"
};
static int StackSize = 4;
static const char *StackPointer = "ebp";
static int ArgOffset = 8;
static int LocalOffset = 0;
static Context *cstk;
static Include *istk;
static const struct strlist *ipath_list;
static struct strlist *deplist;
static uint64_t unique; /* unique identifier numbers */
static Line *predef = NULL;
static bool do_predef;
static enum preproc_mode pp_mode;
/*
* The current set of multi-line macros we have defined.
*/
static struct hash_table mmacros;
/*
* The current set of single-line macros we have defined.
*/
static struct hash_table smacros;
/*
* The multi-line macro we are currently defining, or the %rep
* block we are currently reading, if any.
*/
static MMacro *defining;
static uint64_t nested_mac_count;
static uint64_t nested_rep_count;
/*
* The number of macro parameters to allocate space for at a time.
*/
#define PARAM_DELTA 16
/*
* The standard macro set: defined in macros.c in a set of arrays.
* This gives our position in any macro set, while we are processing it.
* The stdmacset is an array of such macro sets.
*/
static macros_t *stdmacpos;
static macros_t **stdmacnext;
static macros_t *stdmacros[8];
static macros_t *extrastdmac;
/*
* Map of which %use packages have been loaded
*/
static bool *use_loaded;
/*
* Forward declarations.
*/
static void pp_add_stdmac(macros_t *macros);
static Token *expand_mmac_params(Token * tline);
static Token *expand_smacro(Token * tline);
static Token *expand_id(Token * tline);
static Context *get_ctx(const char *name, const char **namep);
static Token *make_tok_num(Token *next, int64_t val);
static Token *make_tok_qstr(Token *next, const char *str);
static Token *make_tok_qstr_len(Token *next, const char *str, size_t len);
static Token *make_tok_char(Token *next, char op);
static Token *new_Token(Token * next, enum pp_token_type type,
const char *text, size_t txtlen);
static Token *new_Token_free(Token * next, enum pp_token_type type,
char *text, size_t txtlen);
static Token *dup_Token(Token *next, const Token *src);
static Token *new_White(Token *next);
static Token *delete_Token(Token *t);
static Token *steal_Token(Token *dst, Token *src);
static const struct use_package *
get_use_pkg(Token *t, const char *dname, const char **name);
static void mark_smac_params(Token *tline, const SMacro *tmpl,
enum pp_token_type type);
/* Safe test for token type, false on x == NULL */
static inline bool tok_type(const Token *x, enum pp_token_type t)
{
return x && x->type == t;
}
/* Whitespace token? */
static inline bool tok_white(const Token *x)
{
return tok_type(x, TOK_WHITESPACE);
}
/* Skip past any whitespace */
static inline Token *skip_white(Token *x)
{
while (tok_white(x))
x = x->next;
return x;
}
/* Delete any whitespace */
static Token *zap_white(Token *x)
{
while (tok_white(x))
x = delete_Token(x);
return x;
}
/*
* Single special character tests. The use of & rather than && is intentional; it
* tells the compiler that it is safe to access text.a[1] unconditionally; hopefully
* a smart compiler should turn it into a 16-bit memory reference.
*/
static inline bool tok_is(const Token *x, char c)
{
return x && ((x->text.a[0] == c) & !x->text.a[1]);
}
/* True if any other kind of token that "c", but not NULL */
static inline bool tok_isnt(const Token *x, char c)
{
return x && !((x->text.a[0] == c) & !x->text.a[1]);
}
/*
* Unquote a token if it is a string, and set its type to
* TOK_INTERNAL_STRING.
*/
static const char *unquote_token(Token *t)
{
if (t->type != TOK_STRING)
return tok_text(t);
t->type = TOK_INTERNAL_STRING;
if (t->len > INLINE_TEXT) {
char *p = t->text.p.ptr;
t->len = nasm_unquote(p, NULL);
if (t->len <= INLINE_TEXT) {
nasm_zero(t->text.a);
memcpy(t->text.a, p, t->len);
nasm_free(p);
return t->text.a;
} else {
return p;
}
} else {
t->len = nasm_unquote(t->text.a, NULL);
return t->text.a;
}
}
/*
* Same as unquote_token(), but error out if the resulting string
* contains unacceptable control characters.
*/
static const char *unquote_token_cstr(Token *t)
{
if (t->type != TOK_STRING)
return tok_text(t);
t->type = TOK_INTERNAL_STRING;
if (t->len > INLINE_TEXT) {
char *p = t->text.p.ptr;
t->len = nasm_unquote_cstr(p, NULL);
if (t->len <= INLINE_TEXT) {
nasm_zero(t->text.a);
memcpy(t->text.a, p, t->len);
nasm_free(p);
return t->text.a;
} else {
return p;
}
} else {
t->len = nasm_unquote_cstr(t->text.a, NULL);
return t->text.a;
}
}
/*
* Convert a TOK_INTERNAL_STRING token to a quoted
* TOK_STRING tokens.
*/
static Token *quote_any_token(Token *t);
static inline unused_func
Token *quote_token(Token *t)
{
if (likely(!tok_is(t, TOK_INTERNAL_STRING)))
return t;
return quote_any_token(t);
}
/*
* Convert *any* kind of token to a quoted
* TOK_STRING token.
*/
static Token *quote_any_token(Token *t)
{
size_t len = t->len;
char *p;
p = nasm_quote(tok_text(t), &len);
t->type = TOK_STRING;
return set_text_free(t, p, len);
}
/*
* In-place reverse a list of tokens.
*/
static Token *reverse_tokens(Token *t)
{
Token *prev = NULL;
Token *next;
while (t) {
next = t->next;
t->next = prev;
prev = t;
t = next;
}
return prev;
}
/*
* getenv() variant operating on an input token
*/
static const char *pp_getenv(const Token *t, bool warn)
{
const char *txt = tok_text(t);
const char *v;
char *buf = NULL;
bool is_string = false;
if (!t)
return NULL;
switch (t->type) {
case TOK_ENVIRON:
txt += 2; /* Skip leading %! */
is_string = nasm_isquote(*txt);
break;
case TOK_STRING:
is_string = true;
break;
case TOK_INTERNAL_STRING:
case TOK_NAKED_STRING:
case TOK_ID:
is_string = false;
break;
default:
return NULL;
}
if (is_string) {
buf = nasm_strdup(txt);
nasm_unquote_cstr(buf, NULL);
txt = buf;
}
v = getenv(txt);
if (warn && !v) {
/*!
*!environment [on] nonexistent environment variable
*! warns if a nonexistent environment variable
*! is accessed using the \c{%!} preprocessor
*! construct (see \k{getenv}.) Such environment
*! variables are treated as empty (with this
*! warning issued) starting in NASM 2.15;
*! earlier versions of NASM would treat this as
*! an error.
*/
nasm_warn(WARN_ENVIRONMENT, "nonexistent environment variable `%s'", txt);
v = "";
}
if (buf)
nasm_free(buf);
return v;
}
/*
* Handle TASM specific directives, which do not contain a % in
* front of them. We do it here because I could not find any other
* place to do it for the moment, and it is a hack (ideally it would
* be nice to be able to use the NASM pre-processor to do it).
*/
static char *check_tasm_directive(char *line)
{
int32_t i, j, k, m, len;
char *p, *q, *oldline, oldchar;
p = nasm_skip_spaces(line);
/* Binary search for the directive name */
i = -1;
j = ARRAY_SIZE(tasm_directives);
q = nasm_skip_word(p);
len = q - p;
if (len) {
oldchar = p[len];
p[len] = 0;
while (j - i > 1) {
k = (j + i) / 2;
m = nasm_stricmp(p, tasm_directives[k]);
if (m == 0) {
/* We have found a directive, so jam a % in front of it
* so that NASM will then recognise it as one if it's own.
*/
p[len] = oldchar;
len = strlen(p);
oldline = line;
line = nasm_malloc(len + 2);
line[0] = '%';
if (k == TM_IFDIFI) {
/*
* NASM does not recognise IFDIFI, so we convert
* it to %if 0. This is not used in NASM
* compatible code, but does need to parse for the
* TASM macro package.
*/
strcpy(line + 1, "if 0");
} else {
memcpy(line + 1, p, len + 1);
}
nasm_free(oldline);
return line;
} else if (m < 0) {
j = k;
} else
i = k;
}
p[len] = oldchar;
}
return line;
}
/*
* The pre-preprocessing stage... This function translates line
* number indications as they emerge from GNU cpp (`# lineno "file"
* flags') into NASM preprocessor line number indications (`%line
* lineno file').
*/
static inline char *prepreproc(char *line)
{
if (unlikely(tasm_compatible_mode))
return check_tasm_directive(line);
else
return line;
}
/*
* Free a linked list of tokens.
*/
static void free_tlist(Token * list)
{
while (list)
list = delete_Token(list);
}
/*
* Free a linked list of lines.
*/
static void free_llist(Line * list)
{
Line *l, *tmp;
list_for_each_safe(l, tmp, list) {
free_tlist(l->first);
nasm_free(l);
}
}
/*
* Free an array of linked lists of tokens
*/
static void free_tlist_array(Token **array, size_t nlists)
{
Token **listp = array;
while (nlists--)
free_tlist(*listp++);
nasm_free(array);
}
/*
* Duplicate a linked list of tokens.
*/
static Token *dup_tlist(const Token *list, Token ***tailp)
{
Token *newlist = NULL;
Token **tailpp = &newlist;
const Token *t;
list_for_each(t, list) {
Token *nt;
*tailpp = nt = dup_Token(NULL, t);
tailpp = &nt->next;
}
if (tailp) {
**tailp = newlist;
*tailp = tailpp;
}
return newlist;
}
/*
* Duplicate a linked list of tokens with a maximum count
*/
static Token *dup_tlistn(const Token *list, size_t cnt, Token ***tailp)
{
Token *newlist = NULL;
Token **tailpp = &newlist;
const Token *t;
list_for_each(t, list) {
Token *nt;
if (!cnt--)
break;
*tailpp = nt = dup_Token(NULL, t);
tailpp = &nt->next;
}
if (tailp) {
**tailp = newlist;
if (newlist)
*tailp = tailpp;
}
return newlist;
}
/*
* Duplicate a linked list of tokens in reverse order
*/
static Token *dup_tlist_reverse(const Token *list, Token *tail)
{
const Token *t;
list_for_each(t, list)
tail = dup_Token(tail, t);
return tail;
}
/*
* Free an MMacro
*/
static void free_mmacro(MMacro * m)
{
nasm_free(m->name);
free_tlist(m->dlist);
nasm_free(m->defaults);
free_llist(m->expansion);
nasm_free(m);
}
/*
* Clear or free an SMacro
*/
static void free_smacro_members(SMacro *s)
{
if (s->params) {
int i;
for (i = 0; i < s->nparam; i++) {
if (s->params[i].name.len > INLINE_TEXT)
nasm_free(s->params[i].name.text.p.ptr);
}
nasm_free(s->params);
}
nasm_free(s->name);
free_tlist(s->expansion);
}
static void clear_smacro(SMacro *s)
{
free_smacro_members(s);
/* Wipe everything except the next pointer */
memset(&s->next + 1, 0, sizeof *s - sizeof s->next);
}
/*
* Free an SMacro
*/
static void free_smacro(SMacro *s)
{
free_smacro_members(s);
nasm_free(s);
}
/*
* Free all currently defined macros, and free the hash tables if empty
*/
enum clear_what {
CLEAR_NONE = 0,
CLEAR_DEFINE = 1, /* Clear smacros */
CLEAR_DEFALIAS = 2, /* Clear smacro aliases */
CLEAR_ALLDEFINE = CLEAR_DEFINE|CLEAR_DEFALIAS,
CLEAR_MMACRO = 4,
CLEAR_ALL = CLEAR_ALLDEFINE|CLEAR_MMACRO
};
static void clear_smacro_table(struct hash_table *smt, enum clear_what what)
{
struct hash_iterator it;
const struct hash_node *np;
bool empty = true;
/*
* Walk the hash table and clear out anything we don't want
*/
hash_for_each(smt, it, np) {
SMacro *tmp;
SMacro *s = np->data;
SMacro **head = (SMacro **)&np->data;
list_for_each_safe(s, tmp, s) {
if (what & ((enum clear_what)s->alias + 1)) {
*head = s->next;
free_smacro(s);
} else {
empty = false;
}
}
}
/*
* Free the hash table and keys if and only if it is now empty.
* Note: we cannot free keys even for an empty list above, as that
* mucks up the hash algorithm.
*/
if (empty)
hash_free_all(smt, true);
}
static void free_smacro_table(struct hash_table *smt)
{
clear_smacro_table(smt, CLEAR_ALLDEFINE);
}
static void free_mmacro_table(struct hash_table *mmt)
{
struct hash_iterator it;
const struct hash_node *np;
hash_for_each(mmt, it, np) {
MMacro *tmp;
MMacro *m = np->data;
nasm_free((void *)np->key);
list_for_each_safe(m, tmp, m)
free_mmacro(m);
}
hash_free(mmt);
}
static void free_macros(void)
{
free_smacro_table(&smacros);
free_mmacro_table(&mmacros);
}
/*
* Initialize the hash tables
*/
static void init_macros(void)
{
}
/*
* Pop the context stack.
*/
static void ctx_pop(void)
{
Context *c = cstk;
cstk = cstk->next;
free_smacro_table(&c->localmac);
nasm_free((char *)c->name);
nasm_free(c);
}
/*
* Search for a key in the hash index; adding it if necessary
* (in which case we initialize the data pointer to NULL.)
*/
static void **
hash_findi_add(struct hash_table *hash, const char *str)
{
struct hash_insert hi;
void **r;
char *strx;
size_t l = strlen(str) + 1;
r = hash_findib(hash, str, l, &hi);
if (r)
return r;
strx = nasm_malloc(l); /* Use a more efficient allocator here? */
memcpy(strx, str, l);
return hash_add(&hi, strx, NULL);
}
/*
* Like hash_findi, but returns the data element rather than a pointer
* to it. Used only when not adding a new element, hence no third
* argument.
*/
static void *
hash_findix(struct hash_table *hash, const char *str)
{
void **p;
p = hash_findi(hash, str, NULL);
return p ? *p : NULL;
}
/*
* read line from standart macros set,
* if there no more left -- return NULL
*/
static char *line_from_stdmac(void)
{
unsigned char c;
const unsigned char *p = stdmacpos;
char *line, *q;
size_t len = 0;
if (!stdmacpos)
return NULL;
/*
* 32-126 is ASCII, 127 is end of line, 128-31 are directives
* (allowed to wrap around) corresponding to PP_* tokens 0-159.
*/
while ((c = *p++) != 127) {
uint8_t ndir = c - 128;
if (ndir < 256-96)
len += pp_directives_len[ndir] + 1;
else
len++;
}
line = nasm_malloc(len + 1);
q = line;
while ((c = *stdmacpos++) != 127) {
uint8_t ndir = c - 128;
if (ndir < 256-96) {
memcpy(q, pp_directives[ndir], pp_directives_len[ndir]);
q += pp_directives_len[ndir];
*q++ = ' ';
} else {
*q++ = c;
}
}
stdmacpos = p;
*q = '\0';
if (*stdmacpos == 127) {
/* This was the last of this particular macro set */
stdmacpos = NULL;
if (*stdmacnext) {
stdmacpos = *stdmacnext++;
} else if (do_predef) {
Line *pd, *l;
/*
* Nasty hack: here we push the contents of
* `predef' on to the top-level expansion stack,
* since this is the most convenient way to
* implement the pre-include and pre-define
* features.
*/
list_for_each(pd, predef) {
nasm_new(l);
l->next = istk->expansion;
l->first = dup_tlist(pd->first, NULL);
l->finishes = NULL;
istk->expansion = l;
}
do_predef = false;
}
}
return line;
}
/*
* Read a line from a file. Return NULL on end of file.
*/
static char *line_from_file(FILE *f)
{
int c;
unsigned int size, next;
const unsigned int delta = 512;
const unsigned int pad = 8;
bool cont = false;
char *buffer, *p;
istk->where.lineno += istk->lineskip + istk->lineinc;
src_set_linnum(istk->where.lineno);
istk->lineskip = 0;
size = delta;
p = buffer = nasm_malloc(size);
do {
c = fgetc(f);
switch (c) {
case EOF:
if (p == buffer) {
nasm_free(buffer);
return NULL;
}
c = 0;
break;
case '\r':
next = fgetc(f);
if (next != '\n')
ungetc(next, f);
if (cont) {
cont = false;
continue;
}
c = 0;
break;
case '\n':
if (cont) {
cont = false;
continue;
}
c = 0;
break;
case 032: /* ^Z = legacy MS-DOS end of file mark */
c = 0;
break;
case '\\':
next = fgetc(f);
ungetc(next, f);
if (next == '\r' || next == '\n') {
cont = true;
istk->lineskip += istk->lineinc;
continue;
}
break;
}
if (p >= (buffer + size - pad)) {
buffer = nasm_realloc(buffer, size + delta);
p = buffer + size - pad;
size += delta;
}
*p++ = c;
} while (c);
return buffer;
}
/*
* Common read routine regardless of source
*/
static char *read_line(void)
{
char *line;
FILE *f = istk->fp;
if (f)
line = line_from_file(f);
else
line = line_from_stdmac();
if (!line)
return NULL;
if (!istk->nolist)
lfmt->line(LIST_READ, istk->where.lineno, line);
return line;
}
/*
* Tokenize a line of text. This is a very simple process since we
* don't need to parse the value out of e.g. numeric tokens: we
* simply split one string into many.
*/
static Token *tokenize(const char *line)
{
enum pp_token_type type;
Token *list = NULL;
Token *t, **tail = &list;
while (*line) {
const char *p = line;
const char *ep = NULL; /* End of token, for trimming the end */
size_t toklen;
char firstchar = *p; /* Can be used to override the first char */
if (*p == '%') {
/*
* Preprocessor construct; find the end of the token.
* Classification is handled later, because %{...} can be
* used to create any preprocessor token.
*/
p++;
if (*p == '+' && !nasm_isdigit(p[1])) {
/* Paste token */
p++;
} else if (nasm_isdigit(*p) ||
((*p == '-' || *p == '+') && nasm_isdigit(p[1]))) {
do {
p++;
}
while (nasm_isdigit(*p));
} else if (*p == '{' || *p == '[') {
/* %{...} or %[...] */
char firstchar = *p;
char endchar = *p + 2; /* } or ] */
int lvl = 1;
line += (*p++ == '{'); /* Skip { but not [ (yet) */
while (lvl) {
if (*p == firstchar) {
lvl++;
} else if (*p == endchar) {
lvl--;
} else if (nasm_isquote(*p)) {
p = nasm_skip_string(p);
}
/*
* *p can have been advanced to a null character by
* nasm_skip_string()
*/
if (!*p) {
nasm_warn(WARN_OTHER, "unterminated %%%c construct",
firstchar);
break;
}
p++;
}
ep = lvl ? p : p-1; /* Terminal character not part of token */
} else if (*p == '?') {
/* %? or %?? */
p++;
if (*p == '?')
p++;
} else if (*p == '!') {
/* Environment variable reference */
p++;
if (nasm_isidchar(*p)) {
do {
p++;
}
while (nasm_isidchar(*p));
} else if (nasm_isquote(*p)) {
p = nasm_skip_string(p);
if (*p)
p++;
else
nasm_nonfatalf(ERR_PASS1, "unterminated %%! string");
} else {
/* %! without anything else... */
}
} else if (*p == ',') {
/* Conditional comma */
p++;
} else if (nasm_isidchar(*p) ||
((*p == '%' || *p == '$') && nasm_isidchar(p[1]))) {
/* Identifier or some sort */
do {
p++;
}
while (nasm_isidchar(*p));
} else if (*p == '%') {
/* %% operator */
p++;
}
if (!ep)
ep = p;
toklen = ep - line;
/* Classify here, to handle %{...} correctly */
if (toklen < 2) {
type = TOK_OTHER; /* % operator */
} else {
char c0 = line[1];
switch (c0) {
case '+':
type = (toklen == 2) ? TOK_PASTE : TOK_MMACRO_PARAM;
break;
case '-':
type = TOK_MMACRO_PARAM;
break;
case '?':
if (toklen == 2)
type = TOK_PREPROC_Q;
else if (toklen == 3 && line[2] == '?')
type = TOK_PREPROC_QQ;
else
type = TOK_PREPROC_ID;
break;
case '!':
type = (toklen == 2) ? TOK_OTHER : TOK_ENVIRON;
break;
case '%':
type = (toklen == 2) ? TOK_OTHER : TOK_LOCAL_SYMBOL;
break;
case '$':
type = (toklen == 2) ? TOK_OTHER : TOK_LOCAL_MACRO;
break;
case '[':
line += 2; /* Skip %[ */
firstchar = *line; /* Don't clobber */
toklen -= 2;
type = TOK_INDIRECT;
break;
case ',':
type = (toklen == 2) ? TOK_COND_COMMA : TOK_PREPROC_ID;
break;
case '\'':
case '\"':
case '`':
/* %{'string'} */
type = TOK_PREPROC_ID;
break;
case ':':
type = TOK_MMACRO_PARAM; /* %{:..} */
break;
default:
if (nasm_isdigit(c0))
type = TOK_MMACRO_PARAM;
else if (nasm_isidchar(c0) || toklen > 2)
type = TOK_PREPROC_ID;
else
type = TOK_OTHER;
break;
}
}
} else if (nasm_isidstart(*p) || (*p == '$' && nasm_isidstart(p[1]))) {
/*
* An identifier. This includes the ? operator, which is
* treated as a keyword, not as a special character
* operator
*/
type = TOK_ID;
while (nasm_isidchar(*++p))
;
} else if (nasm_isquote(*p)) {
/*
* A string token.
*/
type = TOK_STRING;
p = nasm_skip_string(p);
if (*p) {
p++;
} else {
nasm_warn(WARN_OTHER, "unterminated string");
/* Handling unterminated strings by UNV */
/* type = -1; */
}
} else if (p[0] == '$' && p[1] == '$') {
type = TOK_OTHER; /* TOKEN_BASE */
p += 2;
} else if (nasm_isnumstart(*p)) {
bool is_hex = false;
bool is_float = false;
bool has_e = false;
char c;
/*
* A numeric token.
*/
if (*p == '$') {
p++;
is_hex = true;
}
for (;;) {
c = *p++;
if (!is_hex && (c == 'e' || c == 'E')) {
has_e = true;
if (*p == '+' || *p == '-') {
/*
* e can only be followed by +/- if it is either a
* prefixed hex number or a floating-point number
*/
p++;
is_float = true;
}
} else if (c == 'H' || c == 'h' || c == 'X' || c == 'x') {
is_hex = true;
} else if (c == 'P' || c == 'p') {
is_float = true;
if (*p == '+' || *p == '-')
p++;
} else if (nasm_isnumchar(c))
; /* just advance */
else if (c == '.') {
/*
* we need to deal with consequences of the legacy
* parser, like "1.nolist" being two tokens
* (TOK_NUMBER, TOK_ID) here; at least give it
* a shot for now. In the future, we probably need
* a flex-based scanner with proper pattern matching
* to do it as well as it can be done. Nothing in
* the world is going to help the person who wants
* 0x123.p16 interpreted as two tokens, though.
*/
const char *r = p;
while (*r == '_')
r++;
if (nasm_isdigit(*r) || (is_hex && nasm_isxdigit(*r)) ||
(!is_hex && (*r == 'e' || *r == 'E')) ||
(*r == 'p' || *r == 'P')) {
p = r;
is_float = true;
} else
break; /* Terminate the token */
} else
break;
}
p--; /* Point to first character beyond number */
if (p == line+1 && *line == '$') {
type = TOK_OTHER; /* TOKEN_HERE */
} else {
if (has_e && !is_hex) {
/* 1e13 is floating-point, but 1e13h is not */
is_float = true;
}
type = is_float ? TOK_FLOAT : TOK_NUMBER;
}
} else if (nasm_isspace(*p)) {
type = TOK_WHITESPACE;
p = nasm_skip_spaces(p);
/*
* Whitespace just before end-of-line is discarded by
* pretending it's a comment; whitespace just before a
* comment gets lumped into the comment.
*/
if (!*p || *p == ';') {
type = TOK_COMMENT;
while (*p)
p++;
}
} else if (*p == ';') {
type = TOK_COMMENT;
while (*p)
p++;
} else {
/*
* Anything else is an operator of some kind. We check
* for all the double-character operators (>>, <<, //,
* %%, <=, >=, ==, !=, <>, &&, ||, ^^) and the triple-
* character operators (<<<, >>>, <=>) but anything
* else is a single-character operator.
*/
type = TOK_OTHER;
switch (*p++) {
case '>':
if (*p == '>') {
p++;
if (*p == '>')
p++;
} else if (*p == '=') {
p++;
}
break;
case '<':
if (*p == '<') {
p++;
if (*p == '<')
p++;
} else if (*p == '=') {
p++;
if (*p == '>')
p++;
} else if (*p == '>') {
p++;
}
break;
case '!':
if (*p == '=')
p++;
break;
case '/':
case '=':
case '&':
case '|':
case '^':
/* These operators can be doubled but nothing else */
if (*p == p[-1])
p++;
break;
default:
break;
}
}
if (type == TOK_WHITESPACE) {
*tail = t = new_White(NULL);
tail = &t->next;
} else if (type != TOK_COMMENT) {
if (!ep)
ep = p;
*tail = t = new_Token(NULL, type, line, ep - line);
*tok_text_buf(t) = firstchar; /* E.g. %{foo} -> {foo -> %foo */
tail = &t->next;
}
line = p;
}
return list;
}
/*
* Tokens are allocated in blocks to improve speed. Set the blocksize
* to 0 to use regular nasm_malloc(); this is useful for debugging.
*
* alloc_Token() returns a zero-initialized token structure.
*/
#define TOKEN_BLOCKSIZE 4096
#if TOKEN_BLOCKSIZE
static Token *freeTokens = NULL;
static Token *tokenblocks = NULL;
static Token *alloc_Token(void)
{
Token *t = freeTokens;
if (unlikely(!t)) {
Token *block;
size_t i;
nasm_newn(block, TOKEN_BLOCKSIZE);
/*
* The first entry in each array are a linked list of
* block allocations and is not used for data.
*/
block[0].next = tokenblocks;
block[0].type = TOK_BLOCK;
tokenblocks = block;
/*
* Add the rest to the free list
*/
for (i = 2; i < TOKEN_BLOCKSIZE - 1; i++)
block[i].next = &block[i+1];
freeTokens = &block[2];
/*
* Return the topmost usable token
*/
return &block[1];
}
freeTokens = t->next;
t->next = NULL;
return t;
}
static Token *delete_Token(Token *t)
{
Token *next = t->next;
nasm_zero(*t);
t->next = freeTokens;
freeTokens = t;
return next;
}
static void delete_Blocks(void)
{
Token *block, *blocktmp;
list_for_each_safe(block, blocktmp, tokenblocks)
nasm_free(block);
freeTokens = tokenblocks = NULL;
}
#else
static inline Token *alloc_Token(void)
{
Token *t;
nasm_new(*t);
return t;
}
static Token *delete_Token(Token *t)
{
Token *next = t->next;
nasm_free(t);
return next;
}
static inline void delete_Blocks(void)
{
/* Nothing to do */
}
#endif
/*
* this function creates a new Token and passes a pointer to it
* back to the caller. It sets the type, text, and next pointer elements.
*/
static Token *new_Token(Token * next, enum pp_token_type type,
const char *text, size_t txtlen)
{
Token *t = alloc_Token();
char *textp;
t->next = next;
t->type = type;
if (type == TOK_WHITESPACE) {
t->len = 1;
t->text.a[0] = ' ';
} else {
if (text && text[0] && !txtlen)
txtlen = tok_strlen(text);
t->len = tok_check_len(txtlen);
if (text) {
textp = (txtlen > INLINE_TEXT)
? (t->text.p.ptr = nasm_malloc(txtlen+1)) : t->text.a;
memcpy(textp, text, txtlen);
textp[txtlen] = '\0'; /* In case we needed malloc() */
} else {
/*
* Allocate a buffer but do not fill it. The caller
* can fill in text, but must not change the length.
* The filled in text must be exactly txtlen once
* the buffer is filled and before the token is added
* to any line lists.
*/
if (txtlen > INLINE_TEXT)
t->text.p.ptr = nasm_zalloc(txtlen+1);
}
}
return t;
}
/*
* Same as new_Token(), but text belongs to the new token and is
* either taken over or freed. This function MUST be called
* with valid txt and txtlen, unlike new_Token().
*/
static Token *new_Token_free(Token * next, enum pp_token_type type,
char *text, size_t txtlen)
{
Token *t = alloc_Token();
t->next = next;
t->type = type;
t->len = tok_check_len(txtlen);
if (txtlen <= INLINE_TEXT) {
memcpy(t->text.a, text, txtlen);
free(text);
} else {
t->text.p.ptr = text;
}
return t;
}
static Token *dup_Token(Token *next, const Token *src)
{
Token *t = alloc_Token();
memcpy(t, src, sizeof *src);
t->next = next;
if (t->len > INLINE_TEXT) {
t->text.p.ptr = nasm_malloc(t->len + 1);
memcpy(t->text.p.ptr, src->text.p.ptr, t->len+1);
}
return t;
}
static Token *new_White(Token *next)
{
Token *t = alloc_Token();
t->next = next;
t->type = TOK_WHITESPACE;
t->len = 1;
t->text.a[0] = ' ';
return t;
}
/*
* This *transfers* the content from one token to another, leaving the
* next pointer of the latter intact. Unlike dup_Token(), the old
* token is destroyed, except for its next pointer, and the text
* pointer allocation, if any, is simply transferred.
*/
static Token *steal_Token(Token *dst, Token *src)
{
/* Overwrite everything except the next pointers */
memcpy((char *)dst + sizeof(Token *), (char *)src + sizeof(Token *),
sizeof(Token) - sizeof(Token *));
/* Clear the donor token */
memset((char *)src + sizeof(Token *), 0, sizeof(Token) - sizeof(Token *));
return dst;
}
/*
* Convert a line of tokens back into text. This modifies the list
* by expanding environment variables.
*
* If expand_locals is not zero, identifiers of the form "%$*xxx"
* are also transformed into ..@ctxnum.xxx
*/
static char *detoken(Token * tlist, bool expand_locals)
{
Token *t;
char *line, *p;
int len = 0;
list_for_each(t, tlist) {
switch (t->type) {
case TOK_ENVIRON:
{
const char *v = pp_getenv(t, true);
set_text(t, v, tok_strlen(v));
t->type = TOK_NAKED_STRING;
break;
}
case TOK_LOCAL_MACRO:
case TOK_LOCAL_SYMBOL:
if (expand_locals) {
const char *q;
char *p;
Context *ctx = get_ctx(tok_text(t), &q);
if (ctx) {
p = nasm_asprintf("..@%"PRIu64".%s", ctx->number, q);
set_text_free(t, p, nasm_last_string_len());
t->type = TOK_ID;
}
}
break;
case TOK_INDIRECT:
/*
* This won't happen in when emitting to the assembler,
* but can happen when emitting output for some of the
* list options. The token string doesn't actually include
* the brackets in this case.
*/
len += 3; /* %[] */
break;
default:
break; /* No modifications */
}
if (debug_level(2)) {
unsigned int t_len = t->len;
unsigned int s_len = tok_strlen(tok_text(t));
if (t_len != s_len) {
nasm_panic("assertion failed: token \"%s\" type %u len %u has t->len %u\n",
tok_text(t), t->type, s_len, t_len);
t->len = s_len;
}
}
len += t->len;
}
p = line = nasm_malloc(len + 1);
list_for_each(t, tlist) {
switch (t->type) {
case TOK_INDIRECT:
*p++ = '%';
*p++ = '[';
p = mempcpy(p, tok_text(t), t->len);
*p++ = ']';
break;
default:
p = mempcpy(p, tok_text(t), t->len);
}
}
*p = '\0';
return line;
}
/*
* A scanner, suitable for use by the expression evaluator, which
* operates on a line of Tokens. Expects a pointer to a pointer to
* the first token in the line to be passed in as its private_data
* field.
*
* FIX: This really needs to be unified with stdscan.
*/
struct ppscan {
Token *tptr;
int ntokens;
};
static int ppscan(void *private_data, struct tokenval *tokval)
{
struct ppscan *pps = private_data;
Token *tline;
const char *txt;
do {
if (pps->ntokens && (tline = pps->tptr)) {
pps->ntokens--;
pps->tptr = tline->next;
} else {
pps->tptr = NULL;
pps->ntokens = 0;
return tokval->t_type = TOKEN_EOS;
}
} while (tline->type == TOK_WHITESPACE || tline->type == TOK_COMMENT);
txt = tok_text(tline);
tokval->t_charptr = (char *)txt; /* Fix this */
if (txt[0] == '$') {
if (!txt[1]) {
return tokval->t_type = TOKEN_HERE;
} else if (txt[1] == '$' && !txt[2]) {
return tokval->t_type = TOKEN_BASE;
} else if (tline->type == TOK_ID) {
tokval->t_charptr++;
return tokval->t_type = TOKEN_ID;
}
}
switch (tline->type) {
default:
if (tline->len == 1)
return tokval->t_type = txt[0];
/* fall through */
case TOK_ID:
return nasm_token_hash(txt, tokval);
case TOK_NUMBER:
{
bool rn_error;
tokval->t_integer = readnum(txt, &rn_error);
if (rn_error)
return tokval->t_type = TOKEN_ERRNUM;
else
return tokval->t_type = TOKEN_NUM;
}
case TOK_FLOAT:
return tokval->t_type = TOKEN_FLOAT;
case TOK_STRING:
tokval->t_charptr = (char *)unquote_token(tline);
tokval->t_inttwo = tline->len;
return tokval->t_type = TOKEN_STR;
}
}
/*
* 1. An expression (true if nonzero 0)
* 2. The keywords true, on, yes for true
* 3. The keywords false, off, no for false
* 4. An empty line, for true
*
* On error, return defval (usually the previous value)
*/
static bool pp_get_boolean_option(Token *tline, bool defval)
{
static const char * const noyes[] = {
"no", "yes",
"false", "true",
"off", "on"
};
struct ppscan pps;
struct tokenval tokval;
expr *evalresult;
tline = skip_white(tline);
if (!tline)
return true;
if (tline->type == TOK_ID) {
size_t i;
const char *txt = tok_text(tline);
for (i = 0; i < ARRAY_SIZE(noyes); i++)
if (!nasm_stricmp(txt, noyes[i]))
return i & 1;
}
pps.tptr = NULL;
pps.tptr = tline;
pps.ntokens = -1;
tokval.t_type = TOKEN_INVALID;
evalresult = evaluate(ppscan, &pps, &tokval, NULL, true, NULL);
if (!evalresult)
return true;
if (tokval.t_type)
nasm_warn(WARN_OTHER, "trailing garbage after expression ignored");
if (!is_really_simple(evalresult)) {
nasm_nonfatal("boolean flag expression must be a constant");
return defval;
}
return reloc_value(evalresult) != 0;
}
/*
* Compare a string to the name of an existing macro; this is a
* simple wrapper which calls either strcmp or nasm_stricmp
* depending on the value of the `casesense' parameter.
*/
static int mstrcmp(const char *p, const char *q, bool casesense)
{
return casesense ? strcmp(p, q) : nasm_stricmp(p, q);
}
/*
* Compare a string to the name of an existing macro; this is a
* simple wrapper which calls either strcmp or nasm_stricmp
* depending on the value of the `casesense' parameter.
*/
static int mmemcmp(const char *p, const char *q, size_t l, bool casesense)
{
return casesense ? memcmp(p, q, l) : nasm_memicmp(p, q, l);
}
/*
* Return the Context structure associated with a %$ token. Return
* NULL, having _already_ reported an error condition, if the
* context stack isn't deep enough for the supplied number of $
* signs.
*
* If "namep" is non-NULL, set it to the pointer to the macro name
* tail, i.e. the part beyond %$...
*/
static Context *get_ctx(const char *name, const char **namep)
{
Context *ctx;
int i;
if (namep)
*namep = name;
if (!name || name[0] != '%' || name[1] != '$')
return NULL;
if (!cstk) {
nasm_nonfatal("`%s': context stack is empty", name);
return NULL;
}
name += 2;
ctx = cstk;
i = 0;
while (ctx && *name == '$') {
name++;
i++;
ctx = ctx->next;
}
if (!ctx) {
nasm_nonfatal("`%s': context stack is only"
" %d level%s deep", name, i, (i == 1 ? "" : "s"));
return NULL;
}
if (namep)
*namep = name;
return ctx;
}
/*
* Open an include file. This routine must always return a valid
* file pointer if it returns - it's responsible for throwing an
* ERR_FATAL and bombing out completely if not. It should also try
* the include path one by one until it finds the file or reaches
* the end of the path.
*
* Note: for INC_PROBE the function returns NULL at all times;
* instead look for the
*/
enum incopen_mode {
INC_NEEDED, /* File must exist */
INC_OPTIONAL, /* Missing is OK */
INC_PROBE /* Only an existence probe */
};
/* This is conducts a full pathname search */
static FILE *inc_fopen_search(const char *file, char **slpath,
enum incopen_mode omode, enum file_flags fmode)
{
const struct strlist_entry *ip = strlist_head(ipath_list);
FILE *fp;
const char *prefix = "";
char *sp;
bool found;
while (1) {
sp = nasm_catfile(prefix, file);
if (omode == INC_PROBE) {
fp = NULL;
found = nasm_file_exists(sp);
} else {
fp = nasm_open_read(sp, fmode);
found = (fp != NULL);
}
if (found) {
*slpath = sp;
return fp;
}
nasm_free(sp);
if (!ip) {
*slpath = NULL;
return NULL;
}
prefix = ip->str;
ip = ip->next;
}
}
/*
* Open a file, or test for the presence of one (depending on omode),
* considering the include path.
*/
static FILE *inc_fopen(const char *file,
struct strlist *dhead,
const char **found_path,
enum incopen_mode omode,
enum file_flags fmode)
{
struct hash_insert hi;
void **hp;
char *path;
FILE *fp = NULL;
hp = hash_find(&FileHash, file, &hi);
if (hp) {
path = *hp;
if (path || omode != INC_NEEDED) {
strlist_add(dhead, path ? path : file);
}
} else {
/* Need to do the actual path search */
fp = inc_fopen_search(file, &path, omode, fmode);
/* Positive or negative result */
hash_add(&hi, nasm_strdup(file), path);
/*
* Add file to dependency path.
*/
if (path || omode != INC_NEEDED)
strlist_add(dhead, file);
}
if (path && !fp && omode != INC_PROBE)
fp = nasm_open_read(path, fmode);
if (omode == INC_NEEDED && !fp) {
if (!path)
errno = ENOENT;
nasm_nonfatal("unable to open include file `%s': %s",
file, strerror(errno));
}
if (found_path)
*found_path = path;
return fp;
}
/*
* Opens an include or input file. Public version, for use by modules
* that get a file:lineno pair and need to look at the file again
* (e.g. the CodeView debug backend). Returns NULL on failure.
*/
FILE *pp_input_fopen(const char *filename, enum file_flags mode)
{
return inc_fopen(filename, NULL, NULL, INC_OPTIONAL, mode);
}
/*
* Determine if we should warn on defining a single-line macro of
* name `name', with `nparam' parameters. If nparam is 0 or -1, will
* return true if _any_ single-line macro of that name is defined.
* Otherwise, will return true if a single-line macro with either
* `nparam' or no parameters is defined.
*
* If a macro with precisely the right number of parameters is
* defined, or nparam is -1, the address of the definition structure
* will be returned in `defn'; otherwise NULL will be returned. If `defn'
* is NULL, no action will be taken regarding its contents, and no
* error will occur.
*
* Note that this is also called with nparam zero to resolve
* `ifdef'.
*/
static bool
smacro_defined(Context *ctx, const char *name, int nparam, SMacro **defn,
bool nocase, bool find_alias)
{
struct hash_table *smtbl;
SMacro *m;
smtbl = ctx ? &ctx->localmac : &smacros;
restart:
m = (SMacro *) hash_findix(smtbl, name);
while (m) {
if (!mstrcmp(m->name, name, m->casesense && nocase) &&
(nparam <= 0 || m->nparam == 0 || nparam == m->nparam ||
(m->greedy && nparam >= m->nparam-1))) {
if (m->alias && !find_alias) {
if (!ppopt.noaliases) {
name = tok_text(m->expansion);
goto restart;
} else {
continue;
}
}
if (defn) {
*defn = (nparam == m->nparam || nparam == -1) ? m : NULL;
}
return true;
}
m = m->next;
}
return false;
}
/* param should be a natural number [0; INT_MAX] */
static int read_param_count(const char *str)
{
int result;
bool err;
result = readnum(str, &err);
if (result < 0 || result > INT_MAX) {
result = 0;
nasm_nonfatal("parameter count `%s' is out of bounds [%d; %d]",
str, 0, INT_MAX);
} else if (err)
nasm_nonfatal("unable to parse parameter count `%s'", str);
return result;
}
/*
* Count and mark off the parameters in a multi-line macro call.
* This is called both from within the multi-line macro expansion
* code, and also to mark off the default parameters when provided
* in a %macro definition line.
*
* Note that we need space in the params array for parameter 0 being
* a possible captured label as well as the final NULL.
*
* Returns a pointer to the pointer to a terminal comma if present;
* used to drop an empty terminal argument for legacy reasons.
*/
static Token **count_mmac_params(Token *tline, int *nparamp, Token ***paramsp)
{
int paramsize;
int nparam = 0;
Token *t;
Token **comma = NULL, **maybe_comma = NULL;
Token **params;
paramsize = PARAM_DELTA;
nasm_newn(params, paramsize);
t = skip_white(tline);
if (t) {
while (true) {
/* Need two slots for captured label and NULL */
if (unlikely(nparam+2 >= paramsize)) {
paramsize += PARAM_DELTA;
params = nasm_realloc(params, sizeof(*params) * paramsize);
}
params[++nparam] = t;
if (tok_is(t, '{')) {
int brace = 1;
comma = NULL; /* Non-empty parameter */
while (brace && (t = t->next)) {
brace += tok_is(t, '{');
brace -= tok_is(t, '}');
}
if (t) {
/*
* Now we've found the closing brace, look further
* for the comma.
*/
t = skip_white(t->next);
if (tok_isnt(t, ','))
nasm_nonfatal("braces do not enclose all of macro parameter");
} else {
nasm_nonfatal("expecting closing brace in macro parameter");
}
}
/* Advance to the next comma */
maybe_comma = &t->next;
while (tok_isnt(t, ',')) {
if (!tok_white(t))
comma = NULL; /* Non-empty parameter */
maybe_comma = &t->next;
t = t->next;
}
if (!t)
break; /* End of string, no comma */
comma = maybe_comma; /* Point to comma pointer */
t = skip_white(t->next); /* Eat the comma and whitespace */
}
}
params[nparam+1] = NULL;
*paramsp = params;
*nparamp = nparam;
return comma;
}
/*
* Determine whether one of the various `if' conditions is true or
* not.
*
* We must free the tline we get passed.
*/
static enum cond_state if_condition(Token * tline, enum preproc_token ct)
{
bool j;
Token *t, *tt, *origline;
struct ppscan pps;
struct tokenval tokval;
expr *evalresult;
enum pp_token_type needtype;
const char *dname = pp_directives[ct];
bool casesense = true;
enum preproc_token cond = PP_COND(ct);
origline = tline;
switch (cond) {
case PP_IFCTX:
j = false; /* have we matched yet? */
while (true) {
tline = skip_white(tline);
if (!tline)
break;
if (tline->type != TOK_ID) {
nasm_nonfatal("`%s' expects context identifiers",
dname);
goto fail;
}
if (cstk && cstk->name && !nasm_stricmp(tok_text(tline), cstk->name))
j = true;
tline = tline->next;
}
break;
case PP_IFDEF:
case PP_IFDEFALIAS:
{
bool alias = cond == PP_IFDEFALIAS;
SMacro *smac;
Context *ctx;
const char *mname;
j = false; /* have we matched yet? */
while (tline) {
tline = skip_white(tline);
if (!tline || (tline->type != TOK_ID &&
tline->type != TOK_LOCAL_MACRO)) {
nasm_nonfatal("`%s' expects macro identifiers",
dname);
goto fail;
}
mname = tok_text(tline);
ctx = get_ctx(mname, &mname);
if (smacro_defined(ctx, mname, -1, &smac, true, alias) && smac
&& smac->alias == alias) {
j = true;
break;
}
tline = tline->next;
}
break;
}
case PP_IFENV:
tline = expand_smacro(tline);
j = false; /* have we matched yet? */
while (tline) {
tline = skip_white(tline);
if (!tline || (tline->type != TOK_ID &&
tline->type != TOK_STRING &&
tline->type != TOK_INTERNAL_STRING &&
tline->type != TOK_ENVIRON)) {
nasm_nonfatal("`%s' expects environment variable names",
dname);
goto fail;
}
j |= !!pp_getenv(tline, false);
tline = tline->next;
}
break;
case PP_IFIDNI:
casesense = false;
/* fall through */
case PP_IFIDN:
tline = expand_smacro(tline);
t = tt = tline;
while (tok_isnt(tt, ','))
tt = tt->next;
if (!tt) {
nasm_nonfatal("`%s' expects two comma-separated arguments",
dname);
goto fail;
}
tt = tt->next;
j = true; /* assume equality unless proved not */
while (tok_isnt(t, ',') && tt) {
unsigned int l1, l2;
const char *t1, *t2;
if (tok_is(tt, ',')) {
nasm_nonfatal("`%s': more than one comma on line",
dname);
goto fail;
}
if (t->type == TOK_WHITESPACE) {
t = t->next;
continue;
}
if (tt->type == TOK_WHITESPACE) {
tt = tt->next;
continue;
}
if (tt->type != t->type) {
j = false; /* found mismatching tokens */
break;
}
t1 = unquote_token(t);
t2 = unquote_token(tt);
l1 = t->len;
l2 = tt->len;
if (l1 != l2 || mmemcmp(t1, t2, l1, casesense)) {
j = false;
break;
}
t = t->next;
tt = tt->next;
}
if (!tok_is(t, ',') || tt)
j = false; /* trailing gunk on one end or other */
break;
case PP_IFMACRO:
{
bool found = false;
MMacro searching, *mmac;
tline = skip_white(tline);
tline = expand_id(tline);
if (!tok_type(tline, TOK_ID)) {
nasm_nonfatal("`%s' expects a macro name", dname);
goto fail;
}
nasm_zero(searching);
searching.name = dup_text(tline);
searching.casesense = true;
searching.nparam_min = 0;
searching.nparam_max = INT_MAX;
tline = expand_smacro(tline->next);
tline = skip_white(tline);
if (!tline) {
} else if (!tok_type(tline, TOK_NUMBER)) {
nasm_nonfatal("`%s' expects a parameter count or nothing",
dname);
} else {
searching.nparam_min = searching.nparam_max =
read_param_count(tok_text(tline));
}
if (tline && tok_is(tline->next, '-')) {
tline = tline->next->next;
if (tok_is(tline, '*'))
searching.nparam_max = INT_MAX;
else if (!tok_type(tline, TOK_NUMBER))
nasm_nonfatal("`%s' expects a parameter count after `-'",
dname);
else {
searching.nparam_max = read_param_count(tok_text(tline));
if (searching.nparam_min > searching.nparam_max) {
nasm_nonfatal("minimum parameter count exceeds maximum");
searching.nparam_max = searching.nparam_min;
}
}
}
if (tline && tok_is(tline->next, '+')) {
tline = tline->next;
searching.plus = true;
}
mmac = (MMacro *) hash_findix(&mmacros, searching.name);
while (mmac) {
if (!strcmp(mmac->name, searching.name) &&
(mmac->nparam_min <= searching.nparam_max
|| searching.plus)
&& (searching.nparam_min <= mmac->nparam_max
|| mmac->plus)) {
found = true;
break;
}
mmac = mmac->next;
}
if (tline && tline->next)
nasm_warn(WARN_OTHER, "trailing garbage after %%ifmacro ignored");
nasm_free(searching.name);
j = found;
break;
}
case PP_IFID:
needtype = TOK_ID;
goto iftype;
case PP_IFNUM:
needtype = TOK_NUMBER;
goto iftype;
case PP_IFSTR:
needtype = TOK_STRING;
goto iftype;
iftype:
t = tline = expand_smacro(tline);
while (tok_white(t) ||
(needtype == TOK_NUMBER && (tok_is(t, '-') || tok_is(t, '+'))))
t = t->next;
j = tok_type(t, needtype);
break;
case PP_IFTOKEN:
tline = expand_smacro(tline);
t = skip_white(tline);
j = false;
if (t) {
t = skip_white(t->next); /* Skip the actual token + whitespace */
j = !t;
}
break;
case PP_IFEMPTY:
tline = expand_smacro(tline);
t = skip_white(tline);
j = !t; /* Should be empty */
break;
case PP_IF:
pps.tptr = tline = expand_smacro(tline);
pps.ntokens = -1;
tokval.t_type = TOKEN_INVALID;
evalresult = evaluate(ppscan, &pps, &tokval, NULL, true, NULL);
if (!evalresult)
return -1;
if (tokval.t_type)
nasm_warn(WARN_OTHER, "trailing garbage after expression ignored");
if (!is_simple(evalresult)) {
nasm_nonfatal("non-constant value given to `%s'",
dname);
goto fail;
}
j = reloc_value(evalresult) != 0;
break;
case PP_IFUSING:
case PP_IFUSABLE:
{
const struct use_package *pkg;
const char *name;
pkg = get_use_pkg(tline, dname, &name);
if (!name)
goto fail;
j = pkg && ((cond == PP_IFUSABLE) | use_loaded[pkg->index]);
break;
}
default:
nasm_nonfatal("unknown preprocessor directive `%s'", dname);
goto fail;
}
free_tlist(origline);
return (j ^ PP_COND_NEGATIVE(ct)) ? COND_IF_TRUE : COND_IF_FALSE;
fail:
free_tlist(origline);
return COND_NEVER;
}
/*
* Default smacro expansion routine: just returns a copy of the
* expansion list.
*/
static Token *
smacro_expand_default(const SMacro *s, Token **params, int nparams)
{
(void)params;
(void)nparams;
return dup_tlist(s->expansion, NULL);
}
/*
* Emit a macro defintion or undef to the listing file, if
* desired. This is similar to detoken(), but it handles the reverse
* expansion list, does not expand %! or local variable tokens, and
* does some special handling for macro parameters.
*/
static void
list_smacro_def(enum preproc_token op, const Context *ctx, const SMacro *m)
{
Token *t;
size_t namelen, size;
char *def, *p;
char *context_prefix = NULL;
size_t context_len;
namelen = strlen(m->name);
size = namelen + 2; /* Include room for space after name + NUL */
if (ctx) {
int context_depth = cstk->depth - ctx->depth + 1;
context_prefix =
nasm_asprintf("[%s::%"PRIu64"] %%%-*s",
ctx->name ? ctx->name : "",
ctx->number, context_depth, "");
context_len = nasm_last_string_len();
memset(context_prefix + context_len - context_depth,
'$', context_depth);
size += context_len;
}
list_for_each(t, m->expansion)
size += t->len;
if (m->nparam) {
/*
* Space for ( and either , or ) around each
* parameter, plus up to 4 flags.
*/
int i;
size += 1 + 4 * m->nparam;
for (i = 0; i < m->nparam; i++)
size += m->params[i].name.len;
}
def = nasm_malloc(size);
p = def+size;
*--p = '\0';
list_for_each(t, m->expansion) {
p -= t->len;
memcpy(p, tok_text(t), t->len);
}
*--p = ' ';
if (m->nparam) {
int i;
*--p = ')';
for (i = m->nparam-1; i >= 0; i--) {
enum sparmflags flags = m->params[i].flags;
if (flags & SPARM_GREEDY)
*--p = '+';
p -= m->params[i].name.len;
memcpy(p, tok_text(&m->params[i].name), m->params[i].name.len);
if (flags & SPARM_NOSTRIP)
*--p = '!';
if (flags & SPARM_STR)
*--p = '&';
if (flags & SPARM_EVAL)
*--p = '=';
*--p = ',';
}
*p = '('; /* First parameter starts with ( not , */
}
p -= namelen;
memcpy(p, m->name, namelen);
if (context_prefix) {
p -= context_len;
memcpy(p, context_prefix, context_len);
nasm_free(context_prefix);
}
nasm_listmsg("%s %s", pp_directives[op], p);
nasm_free(def);
}
/*
* Parse smacro arguments, return argument count. If the tmpl argument
* is set, set the nparam, greedy and params field in the template.
* *tpp is updated to point to the pointer to the first token after the
* prototype.
*
* The text values from any argument tokens are "stolen" and the
* corresponding text fields set to NULL.
*/
static int parse_smacro_template(Token ***tpp, SMacro *tmpl)
{
int nparam = 0;
enum sparmflags flags;
struct smac_param *params = NULL;
bool err, done;
bool greedy = false;
Token **tn = *tpp;
Token *t = *tn;
Token *name;
/*
* DO NOT skip whitespace here, or we won't be able to distinguish:
*
* %define foo (a,b) ; no arguments, (a,b) is the expansion
* %define bar(a,b) ; two arguments, empty expansion
*
* This ambiguity was inherited from C.
*/
if (!tok_is(t, '('))
goto finish;
if (tmpl) {
Token *tx = t;
Token **txpp = &tx;
int sparam;
/* Count parameters first */
sparam = parse_smacro_template(&txpp, NULL);
if (!sparam)
goto finish; /* No parameters, we're done */
nasm_newn(params, sparam);
}
/* Skip leading paren */
tn = &t->next;
t = *tn;
name = NULL;
flags = 0;
err = done = false;
while (!done) {
if (!t || !t->type) {
if (name || flags)
nasm_nonfatal("`)' expected to terminate macro template");
else
nasm_nonfatal("parameter identifier expected");
break;
}
switch (t->type) {
case TOK_ID:
if (name)
goto bad;
name = t;
break;
case TOK_OTHER:
if (t->len != 1)
goto bad;
switch (t->text.a[0]) {
case '=':
flags |= SPARM_EVAL;
break;
case '&':
flags |= SPARM_STR;
break;
case '!':
flags |= SPARM_NOSTRIP;
break;
case '+':
flags |= SPARM_GREEDY;
greedy = true;
break;
case ',':
if (greedy)
nasm_nonfatal("greedy parameter must be last");
/* fall through */
case ')':
if (params) {
if (name)
steal_Token(&params[nparam].name, name);
params[nparam].flags = flags;
}
nparam++;
name = NULL;
flags = 0;
done = t->text.a[0] == ')';
break;
default:
goto bad;
}
break;
case TOK_WHITESPACE:
break;
default:
bad:
if (!err) {
nasm_nonfatal("garbage `%s' in macro parameter list", tok_text(t));
err = true;
}
break;
}
tn = &t->next;
t = *tn;
}
finish:
while (t && t->type == TOK_WHITESPACE) {
tn = &t->next;
t = t->next;
}
*tpp = tn;
if (tmpl) {
tmpl->nparam = nparam;
tmpl->greedy = greedy;
tmpl->params = params;
}
return nparam;
}
/*
* Common code for defining an smacro. The tmpl argument, if not NULL,
* contains any macro parameters that aren't explicit arguments;
* those are the more uncommon macro variants.
*/
static SMacro *define_smacro(const char *mname, bool casesense,
Token *expansion, SMacro *tmpl)
{
SMacro *smac, **smhead;
struct hash_table *smtbl;
Context *ctx;
bool defining_alias = false;
unsigned int nparam = 0;
if (tmpl) {
defining_alias = tmpl->alias;
nparam = tmpl->nparam;
if (nparam && !defining_alias)
mark_smac_params(expansion, tmpl, 0);
}
while (1) {
ctx = get_ctx(mname, &mname);
if (!smacro_defined(ctx, mname, nparam, &smac, casesense, true)) {
/* Create a new macro */
smtbl = ctx ? &ctx->localmac : &smacros;
smhead = (SMacro **) hash_findi_add(smtbl, mname);
nasm_new(smac);
smac->next = *smhead;
*smhead = smac;
break;
} else if (!smac) {
nasm_warn(WARN_OTHER, "single-line macro `%s' defined both with and"
" without parameters", mname);
/*
* Some instances of the old code considered this a failure,
* some others didn't. What is the right thing to do here?
*/
goto fail;
} else if (!smac->alias || ppopt.noaliases || defining_alias) {
/*
* We're redefining, so we have to take over an
* existing SMacro structure. This means freeing
* what was already in it, but not the structure itself.
*/
clear_smacro(smac);
break;
} else if (smac->in_progress) {
nasm_nonfatal("macro alias loop");
goto fail;
} else {
/* It is an alias macro; follow the alias link */
SMacro *s;
smac->in_progress = true;
s = define_smacro(tok_text(smac->expansion), casesense,
expansion, tmpl);
smac->in_progress = false;
return s;
}
}
smac->name = nasm_strdup(mname);
smac->casesense = casesense;
smac->expansion = expansion;
smac->expand = smacro_expand_default;
if (tmpl) {
smac->nparam = tmpl->nparam;
smac->params = tmpl->params;
smac->alias = tmpl->alias;
smac->greedy = tmpl->greedy;
if (tmpl->expand)
smac->expand = tmpl->expand;
}
if (list_option('s')) {
list_smacro_def((smac->alias ? PP_DEFALIAS : PP_DEFINE)
+ !casesense, ctx, smac);
}
return smac;
fail:
free_tlist(expansion);
if (tmpl)
free_smacro_members(tmpl);
return NULL;
}
/*
* Undefine an smacro
*/
static void undef_smacro(const char *mname, bool undefalias)
{
SMacro **smhead, *s, **sp;
struct hash_table *smtbl;
Context *ctx;
ctx = get_ctx(mname, &mname);
smtbl = ctx ? &ctx->localmac : &smacros;
smhead = (SMacro **)hash_findi(smtbl, mname, NULL);
if (smhead) {
/*
* We now have a macro name... go hunt for it.
*/
sp = smhead;
while ((s = *sp) != NULL) {
if (!mstrcmp(s->name, mname, s->casesense)) {
if (s->alias && !undefalias) {
if (!ppopt.noaliases) {
if (s->in_progress) {
nasm_nonfatal("macro alias loop");
} else {
s->in_progress = true;
undef_smacro(tok_text(s->expansion), false);
s->in_progress = false;
}
}
} else {
if (list_option('d'))
list_smacro_def(s->alias ? PP_UNDEFALIAS : PP_UNDEF,
ctx, s);
*sp = s->next;
free_smacro(s);
continue;
}
}
sp = &s->next;
}
}
}
/*
* Parse a mmacro specification.
*/
static bool parse_mmacro_spec(Token *tline, MMacro *def, const char *directive)
{
tline = tline->next;
tline = skip_white(tline);
tline = expand_id(tline);
if (!tok_type(tline, TOK_ID)) {
nasm_nonfatal("`%s' expects a macro name", directive);
return false;
}
#if 0
def->prev = NULL;
#endif
def->name = dup_text(tline);
def->plus = false;
def->nolist = 0;
def->nparam_min = 0;
def->nparam_max = 0;
tline = expand_smacro(tline->next);
tline = skip_white(tline);
if (!tok_type(tline, TOK_NUMBER))
nasm_nonfatal("`%s' expects a parameter count", directive);
else
def->nparam_min = def->nparam_max = read_param_count(tok_text(tline));
if (tline && tok_is(tline->next, '-')) {
tline = tline->next->next;
if (tok_is(tline, '*')) {
def->nparam_max = INT_MAX;
} else if (!tok_type(tline, TOK_NUMBER)) {
nasm_nonfatal("`%s' expects a parameter count after `-'", directive);
} else {
def->nparam_max = read_param_count(tok_text(tline));
if (def->nparam_min > def->nparam_max) {
nasm_nonfatal("minimum parameter count exceeds maximum");
def->nparam_max = def->nparam_min;
}
}
}
if (tline && tok_is(tline->next, '+')) {
tline = tline->next;
def->plus = true;
}
if (tline && tok_type(tline->next, TOK_ID) &&
tline->next->len == 7 &&
!nasm_stricmp(tline->next->text.a, ".nolist")) {
tline = tline->next;
if (!list_option('f'))
def->nolist |= NL_LIST|NL_LINE;
}
/*
* Handle default parameters.
*/
def->ndefs = 0;
if (tline && tline->next) {
Token **comma;
def->dlist = tline->next;
tline->next = NULL;
comma = count_mmac_params(def->dlist, &def->ndefs, &def->defaults);
if (!ppopt.sane_empty_expansion && comma) {
*comma = NULL;
def->ndefs--;
nasm_warn(WARN_MACRO_PARAMS_LEGACY,
"dropping trailing empty default parameter in defintion of multi-line macro `%s'",
def->name);
}
} else {
def->dlist = NULL;
def->defaults = NULL;
}
def->expansion = NULL;
if (def->defaults && def->ndefs > def->nparam_max - def->nparam_min &&
!def->plus) {
/*
*!macro-defaults [on] macros with more default than optional parameters
*! warns when a macro has more default parameters than optional parameters.
*! See \k{mlmacdef} for why might want to disable this warning.
*/
nasm_warn(WARN_MACRO_DEFAULTS,
"too many default macro parameters in macro `%s'", def->name);
}
return true;
}
/*
* Decode a size directive
*/
static int parse_size(const char *str) {
static const char *size_names[] =
{ "byte", "dword", "oword", "qword", "tword", "word", "yword" };
static const int sizes[] =
{ 0, 1, 4, 16, 8, 10, 2, 32 };
return str ? sizes[bsii(str, size_names, ARRAY_SIZE(size_names))+1] : 0;
}
/*
* Process a preprocessor %pragma directive. Currently there are none.
* Gets passed the token list starting with the "preproc" token from
* "%pragma preproc".
*/
static void do_pragma_preproc(Token *tline)
{
const char *txt;
/* Skip to the real stuff */
tline = tline->next;
tline = skip_white(tline);
if (!tok_type(tline, TOK_ID))
return;
txt = tok_text(tline);
if (!nasm_stricmp(txt, "sane_empty_expansion")) {
tline = skip_white(tline->next);
ppopt.sane_empty_expansion =
pp_get_boolean_option(tline, ppopt.sane_empty_expansion);
} else {
/* Unknown pragma, ignore for now */
}
}
static bool is_macro_id(const Token *t)
{
return tok_type(t, TOK_ID) || tok_type(t, TOK_LOCAL_MACRO);
}
static const char *get_id(Token **tp, const char *dname)
{
const char *id;
Token *t = *tp;
t = t->next; /* Skip directive */
t = skip_white(t);
t = expand_id(t);
if (!is_macro_id(t)) {
nasm_nonfatal("`%s' expects a macro identifier", dname);
return NULL;
}
id = tok_text(t);
t = skip_white(t);
*tp = t;
return id;
}
/* Parse a %use package name and find the package. Set *err on syntax error. */
static const struct use_package *
get_use_pkg(Token *t, const char *dname, const char **name)
{
const char *id;
t = skip_white(t);
t = expand_smacro(t);
*name = NULL;
if (!t) {
nasm_nonfatal("`%s' expects a package name, got end of line", dname);
return NULL;
} else if (t->type != TOK_ID && t->type != TOK_STRING) {
nasm_nonfatal("`%s' expects a package name, got `%s'",
dname, tok_text(t));
return NULL;
}
*name = id = unquote_token(t);
t = t->next;
t = skip_white(t);
if (t)
nasm_warn(WARN_OTHER, "trailing garbage after `%s' ignored", dname);
return nasm_find_use_package(id);
}
/*
* Mark parameter tokens in an smacro definition. If the type argument
* is 0, create smac param tokens, otherwise use the type specified;
* normally this is used for TOK_XDEF_PARAM, which is used to protect
* parameter tokens during expansion during %xdefine.
*
* tmpl may not be NULL here.
*/
static void mark_smac_params(Token *tline, const SMacro *tmpl,
enum pp_token_type type)
{
const struct smac_param *params = tmpl->params;
int nparam = tmpl->nparam;
Token *t;
int i;
list_for_each(t, tline) {
if (t->type != TOK_ID && t->type != TOK_XDEF_PARAM)
continue;
for (i = 0; i < nparam; i++) {
if (tok_text_match(t, &params[i].name))
t->type = type ? type : tok_smac_param(i);
}
}
}
/**
* %clear selected macro sets either globally or in contexts
*/
static void do_clear(enum clear_what what, bool context)
{
if (context) {
if (what & CLEAR_ALLDEFINE) {
Context *ctx;
list_for_each(ctx, cstk)
clear_smacro_table(&ctx->localmac, what);
}
/* Nothing else can be context-local */
} else {
if (what & CLEAR_ALLDEFINE)
clear_smacro_table(&smacros, what);
if (what & CLEAR_MMACRO)
free_mmacro_table(&mmacros);
}
}
/**
* find and process preprocessor directive in passed line
* Find out if a line contains a preprocessor directive, and deal
* with it if so.
*
* If a directive _is_ found, it is the responsibility of this routine
* (and not the caller) to free_tlist() the line.
*
* @param tline a pointer to the current tokeninzed line linked list
* @param output if this directive generated output
* @return DIRECTIVE_FOUND or NO_DIRECTIVE_FOUND
*
*/
static int do_directive(Token *tline, Token **output)
{
enum preproc_token op;
int j;
bool err;
enum nolist_flags nolist;
bool casesense;
int k, m;
int offset;
const char *p;
char *q, *qbuf;
const char *found_path;
const char *mname;
struct ppscan pps;
Include *inc;
Context *ctx;
Cond *cond;
MMacro *mmac, **mmhead;
Token *t = NULL, *tt, *macro_start, *last, *origline;
Line *l;
struct tokenval tokval;
expr *evalresult;
int64_t count;
size_t len;
errflags severity;
const char *dname; /* Name of directive, for messages */
*output = NULL; /* No output generated */
origline = tline;
if (tok_is(tline, '#')) {
/* cpp-style line directive */
if (!tok_white(tline->next))
return NO_DIRECTIVE_FOUND;
dname = tok_text(tline);
goto pp_line;
}
tline = skip_white(tline);
if (!tline || !tok_type(tline, TOK_PREPROC_ID))
return NO_DIRECTIVE_FOUND;
dname = tok_text(tline);
if (dname[1] == '%')
return NO_DIRECTIVE_FOUND;
op = pp_token_hash(dname);
casesense = true;
if (PP_HAS_CASE(op) & PP_INSENSITIVE(op)) {
casesense = false;
op--;
}
/*
* %line directives are always processed immediately and
* unconditionally, as they are intended to reflect position
* in externally preprocessed sources.
*/
if (op == PP_LINE) {
pp_line:
/*
* Syntax is `%line nnn[+mmm] [filename]'
*/
if (pp_noline || istk->mstk.mstk)
goto done;
tline = tline->next;
tline = skip_white(tline);
if (!tok_type(tline, TOK_NUMBER)) {
nasm_nonfatal("`%s' expects line number", dname);
goto done;
}
k = readnum(tok_text(tline), &err);
m = 1;
tline = tline->next;
if (tok_is(tline, '+') || tok_is(tline, '-')) {
bool minus = tok_is(tline, '-');
tline = tline->next;
if (!tok_type(tline, TOK_NUMBER)) {
nasm_nonfatal("`%s' expects line increment", dname);
goto done;
}
m = readnum(tok_text(tline), &err);
if (minus)
m = -m;
tline = tline->next;
}
tline = skip_white(tline);
if (tline) {
if (tline->type == TOK_STRING) {
if (dname[0] == '#') {
/* cpp version: treat double quotes like NASM backquotes */
char *txt = tok_text_buf(tline);
if (txt[0] == '"') {
txt[0] = '`';
txt[tline->len - 1] = '`';
}
}
src_set_fname(unquote_token(tline));
/*
* Anything after the string is ignored by design (for cpp
* compatibility and future extensions.)
*/
} else {
char *fname = detoken(tline, false);
src_set_fname(fname);
nasm_free(fname);
}
}
src_set_linnum(k);
istk->where = src_where();
istk->lineinc = m;
goto done;
}
/*
* If we're in a non-emitting branch of a condition construct,
* or walking to the end of an already terminated %rep block,
* we should ignore all directives except for condition
* directives.
*/
if (((istk->conds && !emitting(istk->conds->state)) ||
(istk->mstk.mstk && !istk->mstk.mstk->in_progress)) &&
!is_condition(op)) {
return NO_DIRECTIVE_FOUND;
}
/*
* If we're defining a macro or reading a %rep block, we should
* ignore all directives except for %macro/%imacro (which nest),
* %endm/%endmacro, %line and (only if we're in a %rep block) %endrep.
* If we're in a %rep block, another %rep nests, so should be let through.
*/
if (defining && op != PP_MACRO && op != PP_RMACRO &&
op != PP_ENDMACRO && op != PP_ENDM &&
(defining->name || (op != PP_ENDREP && op != PP_REP))) {
return NO_DIRECTIVE_FOUND;
}
if (defining) {
if (op == PP_MACRO || op == PP_RMACRO) {
nested_mac_count++;
return NO_DIRECTIVE_FOUND;
} else if (nested_mac_count > 0) {
if (op == PP_ENDMACRO) {
nested_mac_count--;
return NO_DIRECTIVE_FOUND;
}
}
if (!defining->name) {
if (op == PP_REP) {
nested_rep_count++;
return NO_DIRECTIVE_FOUND;
} else if (nested_rep_count > 0) {
if (op == PP_ENDREP) {
nested_rep_count--;
return NO_DIRECTIVE_FOUND;
}
}
}
}
switch (op) {
default:
nasm_nonfatal("unknown preprocessor directive `%s'", dname);
return NO_DIRECTIVE_FOUND; /* didn't get it */
case PP_PRAGMA:
/*
* %pragma namespace options...
*
* The namespace "preproc" is reserved for the preprocessor;
* all other namespaces generate a [pragma] assembly directive.
*
* Invalid %pragmas are ignored and may have different
* meaning in future versions of NASM.
*/
t = tline;
tline = tline->next;
t->next = NULL;
tline = zap_white(expand_smacro(tline));
if (tok_type(tline, TOK_ID)) {
if (!nasm_stricmp(tok_text(tline), "preproc")) {
/* Preprocessor pragma */
do_pragma_preproc(tline);
free_tlist(tline);
} else {
/* Build the assembler directive */
/* Append bracket to the end of the output */
for (t = tline; t->next; t = t->next)
;
t->next = make_tok_char(NULL, ']');
/* Prepend "[pragma " */
t = new_White(tline);
t = new_Token(t, TOK_ID, "pragma", 6);
t = make_tok_char(t, '[');
tline = t;
*output = tline;
}
}
break;
case PP_STACKSIZE:
/* Directive to tell NASM what the default stack size is. The
* default is for a 16-bit stack, and this can be overriden with
* %stacksize large.
*/
tline = skip_white(tline->next);
if (!tline || tline->type != TOK_ID) {
nasm_nonfatal("`%s' missing size parameter", dname);
}
if (nasm_stricmp(tok_text(tline), "flat") == 0) {
/* All subsequent ARG directives are for a 32-bit stack */
StackSize = 4;
StackPointer = "ebp";
ArgOffset = 8;
LocalOffset = 0;
} else if (nasm_stricmp(tok_text(tline), "flat64") == 0) {
/* All subsequent ARG directives are for a 64-bit stack */
StackSize = 8;
StackPointer = "rbp";
ArgOffset = 16;
LocalOffset = 0;
} else if (nasm_stricmp(tok_text(tline), "large") == 0) {
/* All subsequent ARG directives are for a 16-bit stack,
* far function call.
*/
StackSize = 2;
StackPointer = "bp";
ArgOffset = 4;
LocalOffset = 0;
} else if (nasm_stricmp(tok_text(tline), "small") == 0) {
/* All subsequent ARG directives are for a 16-bit stack,
* far function call. We don't support near functions.
*/
StackSize = 2;
StackPointer = "bp";
ArgOffset = 6;
LocalOffset = 0;
} else {
nasm_nonfatal("`%s' invalid size type", dname);
}
break;
case PP_ARG:
/* TASM like ARG directive to define arguments to functions, in
* the following form:
*
* ARG arg1:WORD, arg2:DWORD, arg4:QWORD
*/
offset = ArgOffset;
do {
const char *arg;
char directive[256];
int size = StackSize;
/* Find the argument name */
tline = skip_white(tline->next);
if (!tline || tline->type != TOK_ID) {
nasm_nonfatal("`%s' missing argument parameter", dname);
goto done;
}
arg = tok_text(tline);
/* Find the argument size type */
tline = tline->next;
if (!tok_is(tline, ':')) {
nasm_nonfatal("syntax error processing `%s' directive", dname);
goto done;
}
tline = tline->next;
if (!tok_type(tline, TOK_ID)) {
nasm_nonfatal("`%s' missing size type parameter", dname);
goto done;
}
/* Allow macro expansion of type parameter */
tt = tokenize(tok_text(tline));
tt = expand_smacro(tt);
size = parse_size(tok_text(tt));
if (!size) {
nasm_nonfatal("invalid size type for `%s' missing directive", dname);
free_tlist(tt);
goto done;
}
free_tlist(tt);
/* Round up to even stack slots */
size = ALIGN(size, StackSize);
/* Now define the macro for the argument */
snprintf(directive, sizeof(directive), "%%define %s (%s+%d)",
arg, StackPointer, offset);
do_directive(tokenize(directive), output);
offset += size;
/* Move to the next argument in the list */
tline = skip_white(tline->next);
} while (tok_is(tline, ','));
ArgOffset = offset;
break;
case PP_LOCAL:
/* TASM like LOCAL directive to define local variables for a
* function, in the following form:
*
* LOCAL local1:WORD, local2:DWORD, local4:QWORD = LocalSize
*
* The '= LocalSize' at the end is ignored by NASM, but is
* required by TASM to define the local parameter size (and used
* by the TASM macro package).
*/
offset = LocalOffset;
do {
const char *local;
char directive[256];
int size = StackSize;
/* Find the argument name */
tline = skip_white(tline->next);
if (!tline || tline->type != TOK_ID) {
nasm_nonfatal("`%s' missing argument parameter", dname);
goto done;
}
local = tok_text(tline);
/* Find the argument size type */
tline = tline->next;
if (!tok_is(tline, ':')) {
nasm_nonfatal("syntax error processing `%s' directive", dname);
goto done;
}
tline = tline->next;
if (!tok_type(tline, TOK_ID)) {
nasm_nonfatal("`%s' missing size type parameter", dname);
goto done;
}
/* Allow macro expansion of type parameter */
tt = tokenize(tok_text(tline));
tt = expand_smacro(tt);
size = parse_size(tok_text(tt));
if (!size) {
nasm_nonfatal("invalid size type for `%s' missing directive", dname);
free_tlist(tt);
goto done;
}
free_tlist(tt);
/* Round up to even stack slots */
size = ALIGN(size, StackSize);
offset += size; /* Negative offset, increment before */
/* Now define the macro for the argument */
snprintf(directive, sizeof(directive), "%%define %s (%s-%d)",
local, StackPointer, offset);
do_directive(tokenize(directive), output);
/* Now define the assign to setup the enter_c macro correctly */
snprintf(directive, sizeof(directive),
"%%assign %%$localsize %%$localsize+%d", size);
do_directive(tokenize(directive), output);
/* Move to the next argument in the list */
tline = skip_white(tline->next);
} while (tok_is(tline, ','));
LocalOffset = offset;
break;
case PP_CLEAR:
{
bool context = false;
t = tline->next = expand_smacro(tline->next);
t = skip_white(t);
if (!t) {
/* Emulate legacy behavior */
do_clear(CLEAR_DEFINE|CLEAR_MMACRO, false);
} else {
while ((t = skip_white(t)) && t->type == TOK_ID) {
const char *txt = tok_text(t);
if (!nasm_stricmp(txt, "all")) {
do_clear(CLEAR_ALL, context);
} else if (!nasm_stricmp(txt, "define") ||
!nasm_stricmp(txt, "def") ||
!nasm_stricmp(txt, "smacro")) {
do_clear(CLEAR_DEFINE, context);
} else if (!nasm_stricmp(txt, "defalias") ||
!nasm_stricmp(txt, "alias") ||
!nasm_stricmp(txt, "salias")) {
do_clear(CLEAR_DEFALIAS, context);
} else if (!nasm_stricmp(txt, "alldef") ||
!nasm_stricmp(txt, "alldefine")) {
do_clear(CLEAR_ALLDEFINE, context);
} else if (!nasm_stricmp(txt, "macro") ||
!nasm_stricmp(txt, "mmacro")) {
do_clear(CLEAR_MMACRO, context);
} else if (!nasm_stricmp(txt, "context") ||
!nasm_stricmp(txt, "ctx")) {
context = true;
} else if (!nasm_stricmp(txt, "global")) {
context = false;
} else if (!nasm_stricmp(txt, "nothing") ||
!nasm_stricmp(txt, "none") ||
!nasm_stricmp(txt, "ignore") ||
!nasm_stricmp(txt, "-") ||
!nasm_stricmp(txt, "--")) {
/* Do nothing */
} else {
nasm_nonfatal("invalid option to %s: %s", dname, txt);
t = NULL;
}
}
}
t = skip_white(t);
if (t)
nasm_warn(WARN_OTHER, "trailing garbage after `%s' ignored", dname);
break;
}
case PP_DEPEND:
t = tline->next = expand_smacro(tline->next);
t = skip_white(t);
if (!t || (t->type != TOK_STRING &&
t->type != TOK_INTERNAL_STRING)) {
nasm_nonfatal("`%s' expects a file name", dname);
goto done;
}
if (t->next)
nasm_warn(WARN_OTHER, "trailing garbage after `%s' ignored", dname);
strlist_add(deplist, unquote_token_cstr(t));
goto done;
case PP_INCLUDE:
t = tline->next = expand_smacro(tline->next);
t = skip_white(t);
if (!t || (t->type != TOK_STRING &&
t->type != TOK_INTERNAL_STRING)) {
nasm_nonfatal("`%s' expects a file name", dname);
goto done;
}
if (t->next)
nasm_warn(WARN_OTHER, "trailing garbage after `%s' ignored", dname);
p = unquote_token_cstr(t);
nasm_new(inc);
inc->next = istk;
found_path = NULL;
inc->fp = inc_fopen(p, deplist, &found_path,
(pp_mode == PP_DEPS)
? INC_OPTIONAL : INC_NEEDED, NF_TEXT);
if (!inc->fp) {
/* -MG given but file not found */
nasm_free(inc);
} else {
inc->where = src_where();
inc->lineinc = 1;
inc->nolist = istk->nolist;
inc->noline = istk->noline;
if (!inc->noline)
src_set(0, found_path ? found_path : p);
istk = inc;
lfmt->uplevel(LIST_INCLUDE, 0);
}
break;
case PP_USE:
{
const struct use_package *pkg;
const char *name;
pkg = get_use_pkg(tline->next, dname, &name);
if (!name)
goto done;
if (!pkg) {
nasm_nonfatal("unknown `%s' package: `%s'", dname, name);
} else if (!use_loaded[pkg->index]) {
/*
* Not already included, go ahead and include it.
* Treat it as an include file for the purpose of
* producing a listing.
*/
use_loaded[pkg->index] = true;
stdmacpos = pkg->macros;
nasm_new(inc);
inc->next = istk;
inc->nolist = istk->nolist + !list_option('b');
inc->noline = istk->noline;
if (!inc->noline)
src_set(0, NULL);
istk = inc;
lfmt->uplevel(LIST_INCLUDE, 0);
}
break;
}
case PP_PUSH:
case PP_REPL:
case PP_POP:
tline = tline->next;
tline = skip_white(tline);
tline = expand_id(tline);
if (tline) {
if (!tok_type(tline, TOK_ID)) {
nasm_nonfatal("`%s' expects a context identifier", dname);
goto done;
}
if (tline->next)
nasm_warn(WARN_OTHER, "trailing garbage after `%s' ignored",
dname);
p = tok_text(tline);
} else {
p = NULL; /* Anonymous */
}
if (op == PP_PUSH) {
nasm_new(ctx);
ctx->depth = cstk ? cstk->depth + 1 : 1;
ctx->next = cstk;
ctx->name = p ? nasm_strdup(p) : NULL;
ctx->number = unique++;
cstk = ctx;
} else {
/* %pop or %repl */
if (!cstk) {
nasm_nonfatal("`%s': context stack is empty", dname);
} else if (op == PP_POP) {
if (p && (!cstk->name || nasm_stricmp(p, cstk->name)))
nasm_nonfatal("`%s' in wrong context: %s, "
"expected %s",
dname, cstk->name ? cstk->name : "anonymous", p);
else
ctx_pop();
} else {
/* op == PP_REPL */
nasm_free((char *)cstk->name);
cstk->name = p ? nasm_strdup(p) : NULL;
p = NULL;
}
}
break;
case PP_FATAL:
severity = ERR_FATAL;
goto issue_error;
case PP_ERROR:
severity = ERR_NONFATAL|ERR_PASS2;
goto issue_error;
case PP_WARNING:
/*!
*!user [on] %warning directives
*! controls output of \c{%warning} directives (see \k{pperror}).
*/
severity = ERR_WARNING|WARN_USER|ERR_PASS2;
goto issue_error;
issue_error:
{
/* Only error out if this is the final pass */
tline->next = expand_smacro(tline->next);
tline = tline->next;
tline = skip_white(tline);
t = tline ? tline->next : NULL;
t = skip_white(t);
if (tok_type(tline, TOK_STRING) && !t) {
/* The line contains only a quoted string */
p = unquote_token(tline); /* Ignore NUL character truncation */
nasm_error(severity, "%s", p);
} else {
/* Not a quoted string, or more than a quoted string */
q = detoken(tline, false);
nasm_error(severity, "%s", q);
nasm_free(q);
}
break;
}
CASE_PP_IF:
if (istk->conds && !emitting(istk->conds->state))
j = COND_NEVER;
else {
j = if_condition(tline->next, op);
tline->next = NULL; /* it got freed */
}
cond = nasm_malloc(sizeof(Cond));
cond->next = istk->conds;
cond->state = j;
istk->conds = cond;
if(istk->mstk.mstk)
istk->mstk.mstk->condcnt++;
break;
CASE_PP_ELIF:
if (!istk->conds)
nasm_fatal("`%s': no matching `%%if'", dname);
switch(istk->conds->state) {
case COND_IF_TRUE:
istk->conds->state = COND_DONE;
break;
case COND_DONE:
case COND_NEVER:
break;
case COND_ELSE_TRUE:
case COND_ELSE_FALSE:
nasm_warn(WARN_OTHER|ERR_PP_PRECOND,
"`%%elif' after `%%else' ignored");
istk->conds->state = COND_NEVER;
break;
case COND_IF_FALSE:
/*
* IMPORTANT: In the case of %if, we will already have
* called expand_mmac_params(); however, if we're
* processing an %elif we must have been in a
* non-emitting mode, which would have inhibited
* the normal invocation of expand_mmac_params().
* Therefore, we have to do it explicitly here.
*/
j = if_condition(expand_mmac_params(tline->next), op);
tline->next = NULL; /* it got freed */
istk->conds->state = j;
break;
}
break;
case PP_ELSE:
if (tline->next)
nasm_warn(WARN_OTHER|ERR_PP_PRECOND,
"trailing garbage after `%%else' ignored");
if (!istk->conds)
nasm_fatal("`%%else: no matching `%%if'");
switch(istk->conds->state) {
case COND_IF_TRUE:
case COND_DONE:
istk->conds->state = COND_ELSE_FALSE;
break;
case COND_NEVER:
break;
case COND_IF_FALSE:
istk->conds->state = COND_ELSE_TRUE;
break;
case COND_ELSE_TRUE:
case COND_ELSE_FALSE:
nasm_warn(WARN_OTHER|ERR_PP_PRECOND,
"`%%else' after `%%else' ignored.");
istk->conds->state = COND_NEVER;
break;
}
break;
case PP_ENDIF:
if (tline->next)
nasm_warn(WARN_OTHER|ERR_PP_PRECOND,
"trailing garbage after `%%endif' ignored");
if (!istk->conds)
nasm_fatal("`%%endif': no matching `%%if'");
cond = istk->conds;
istk->conds = cond->next;
nasm_free(cond);
if(istk->mstk.mstk)
istk->mstk.mstk->condcnt--;
break;
case PP_RMACRO:
case PP_MACRO:
{
MMacro *def;
nasm_assert(!defining);
nasm_new(def);
def->casesense = casesense;
/*
* dstk.mstk points to the previous definition bracket,
* whereas dstk.mmac points to the topmost mmacro, which
* in this case is the one we are just starting to create.
*/
def->dstk.mstk = defining;
def->dstk.mmac = def;
if (op == PP_RMACRO)
def->max_depth = nasm_limit[LIMIT_MACRO_LEVELS];
if (!parse_mmacro_spec(tline, def, dname)) {
nasm_free(def);
goto done;
}
defining = def;
defining->where = istk->where;
mmac = (MMacro *) hash_findix(&mmacros, defining->name);
while (mmac) {
if (!strcmp(mmac->name, defining->name) &&
(mmac->nparam_min <= defining->nparam_max
|| defining->plus)
&& (defining->nparam_min <= mmac->nparam_max
|| mmac->plus)) {
nasm_warn(WARN_OTHER, "redefining multi-line macro `%s'",
defining->name);
break;
}
mmac = mmac->next;
}
break;
}
case PP_ENDM:
case PP_ENDMACRO:
if (!(defining && defining->name)) {
nasm_nonfatal("`%s': not defining a macro", tok_text(tline));
goto done;
}
mmhead = (MMacro **) hash_findi_add(&mmacros, defining->name);
defining->next = *mmhead;
*mmhead = defining;
defining = NULL;
break;
case PP_EXITMACRO:
/*
* We must search along istk->expansion until we hit a
* macro-end marker for a macro with a name. Then we
* bypass all lines between exitmacro and endmacro.
*/
list_for_each(l, istk->expansion)
if (l->finishes && l->finishes->name)
break;
if (l) {
/*
* Remove all conditional entries relative to this
* macro invocation. (safe to do in this context)
*/
for ( ; l->finishes->condcnt > 0; l->finishes->condcnt --) {
cond = istk->conds;
istk->conds = cond->next;
nasm_free(cond);
}
istk->expansion = l;
} else {
nasm_nonfatal("`%%exitmacro' not within `%%macro' block");
}
break;
case PP_UNIMACRO:
casesense = false;
/* fall through */
case PP_UNMACRO:
{
MMacro **mmac_p;
MMacro spec;
nasm_zero(spec);
spec.casesense = casesense;
if (!parse_mmacro_spec(tline, &spec, dname)) {
goto done;
}
mmac_p = (MMacro **) hash_findi(&mmacros, spec.name, NULL);
while (mmac_p && *mmac_p) {
mmac = *mmac_p;
if (mmac->casesense == spec.casesense &&
!mstrcmp(mmac->name, spec.name, spec.casesense) &&
mmac->nparam_min == spec.nparam_min &&
mmac->nparam_max == spec.nparam_max &&
mmac->plus == spec.plus) {
*mmac_p = mmac->next;
free_mmacro(mmac);
} else {
mmac_p = &mmac->next;
}
}
free_tlist(spec.dlist);
break;
}
case PP_ROTATE:
while (tok_white(tline->next))
tline = tline->next;
if (!tline->next) {
free_tlist(origline);
nasm_nonfatal("`%%rotate' missing rotate count");
return DIRECTIVE_FOUND;
}
t = expand_smacro(tline->next);
tline->next = NULL;
pps.tptr = tline = t;
pps.ntokens = -1;
tokval.t_type = TOKEN_INVALID;
evalresult =
evaluate(ppscan, &pps, &tokval, NULL, true, NULL);
free_tlist(tline);
if (!evalresult)
return DIRECTIVE_FOUND;
if (tokval.t_type)
nasm_warn(WARN_OTHER, "trailing garbage after expression ignored");
if (!is_simple(evalresult)) {
nasm_nonfatal("non-constant value given to `%%rotate'");
return DIRECTIVE_FOUND;
}
mmac = istk->mstk.mmac;
if (!mmac) {
nasm_nonfatal("`%%rotate' invoked outside a macro call");
} else if (mmac->nparam == 0) {
nasm_nonfatal("`%%rotate' invoked within macro without parameters");
} else {
int rotate = mmac->rotate + reloc_value(evalresult);
rotate %= (int)mmac->nparam;
if (rotate < 0)
rotate += mmac->nparam;
mmac->rotate = rotate;
}
break;
case PP_REP:
{
MMacro *tmp_defining;
nolist = 0;
tline = skip_white(tline->next);
if (tok_type(tline, TOK_ID) && tline->len == 7 &&
!nasm_memicmp(tline->text.a, ".nolist", 7)) {
if (!list_option('f'))
nolist |= NL_LIST; /* ... but update line numbers */
tline = skip_white(tline->next);
}
if (tline) {
pps.tptr = expand_smacro(tline);
pps.ntokens = -1;
tokval.t_type = TOKEN_INVALID;
/* XXX: really critical?! */
evalresult =
evaluate(ppscan, &pps, &tokval, NULL, true, NULL);
if (!evalresult)
goto done;
if (tokval.t_type)
nasm_warn(WARN_OTHER, "trailing garbage after expression ignored");
if (!is_simple(evalresult)) {
nasm_nonfatal("non-constant value given to `%%rep'");
goto done;
}
count = reloc_value(evalresult);
if (count > nasm_limit[LIMIT_REP]) {
nasm_nonfatal("`%%rep' count %"PRId64" exceeds limit (currently %"PRId64")",
count, nasm_limit[LIMIT_REP]);
count = 0;
} else if (count < 0) {
/*!
*!negative-rep [on] regative %rep count
*! warns about negative counts given to the \c{%rep}
*! preprocessor directive.
*/
nasm_warn(ERR_PASS2|WARN_NEGATIVE_REP,
"negative `%%rep' count: %"PRId64, count);
count = 0;
} else {
count++;
}
} else {
nasm_nonfatal("`%%rep' expects a repeat count");
count = 0;
}
tmp_defining = defining;
nasm_new(defining);
defining->nolist = nolist;
defining->in_progress = count;
defining->mstk = istk->mstk;
defining->dstk.mstk = tmp_defining;
defining->dstk.mmac = tmp_defining ? tmp_defining->dstk.mmac : NULL;
defining->where = istk->where;
break;
}
case PP_ENDREP:
if (!defining || defining->name) {
nasm_nonfatal("`%%endrep': no matching `%%rep'");
goto done;
}
/*
* Now we have a "macro" defined - although it has no name
* and we won't be entering it in the hash tables - we must
* push a macro-end marker for it on to istk->expansion.
* After that, it will take care of propagating itself (a
* macro-end marker line for a macro which is really a %rep
* block will cause the macro to be re-expanded, complete
* with another macro-end marker to ensure the process
* continues) until the whole expansion is forcibly removed
* from istk->expansion by a %exitrep.
*/
nasm_new(l);
l->next = istk->expansion;
l->finishes = defining;
l->first = NULL;
l->where = src_where();
istk->expansion = l;
istk->mstk.mstk = defining;
/* A loop does not change istk->noline */
istk->nolist += !!(defining->nolist & NL_LIST);
if (!istk->nolist)
lfmt->uplevel(LIST_MACRO, 0);
defining = defining->dstk.mstk;
break;
case PP_EXITREP:
/*
* We must search along istk->expansion until we hit a
* macro-end marker for a macro with no name. Then we set
* its `in_progress' flag to 0.
*/
list_for_each(l, istk->expansion)
if (l->finishes && !l->finishes->name)
break;
if (l)
l->finishes->in_progress = 0;
else
nasm_nonfatal("`%%exitrep' not within `%%rep' block");
break;
case PP_DEFINE:
case PP_XDEFINE:
case PP_DEFALIAS:
{
SMacro tmpl;
Token **lastp;
int nparam;
if (!(mname = get_id(&tline, dname)))
goto done;
nasm_zero(tmpl);
lastp = &tline->next;
nparam = parse_smacro_template(&lastp, &tmpl);
tline = *lastp;
*lastp = NULL;
if (unlikely(op == PP_DEFALIAS)) {
macro_start = tline;
if (!is_macro_id(macro_start)) {
nasm_nonfatal("`%s' expects a macro identifier to alias",
dname);
goto done;
}
tt = macro_start->next;
macro_start->next = NULL;
tline = tline->next;
tline = skip_white(tline);
if (tline && tline->type) {
nasm_warn(WARN_OTHER,
"trailing garbage after aliasing identifier ignored");
}
free_tlist(tt);
tmpl.alias = true;
} else {
if (op == PP_XDEFINE) {
/* Protect macro parameter tokens */
if (nparam)
mark_smac_params(tline, &tmpl, TOK_XDEF_PARAM);
tline = expand_smacro(tline);
}
/* NB: Does this still make sense? */
macro_start = reverse_tokens(tline);
}
/*
* Good. We now have a macro name, a parameter count, and a
* token list (in reverse order) for an expansion. We ought
* to be OK just to create an SMacro, store it, and let
* free_tlist have the rest of the line (which we have
* carefully re-terminated after chopping off the expansion
* from the end).
*/
define_smacro(mname, casesense, macro_start, &tmpl);
break;
}
case PP_UNDEF:
case PP_UNDEFALIAS:
if (!(mname = get_id(&tline, dname)))
goto done;
if (tline->next)
nasm_warn(WARN_OTHER, "trailing garbage after macro name ignored");
undef_smacro(mname, op == PP_UNDEFALIAS);
break;
case PP_DEFSTR:
if (!(mname = get_id(&tline, dname)))
goto done;
last = tline;
tline = expand_smacro(tline->next);
last->next = NULL;
tline = zap_white(tline);
q = detoken(tline, false);
macro_start = make_tok_qstr(NULL, q);
nasm_free(q);
/*
* We now have a macro name, an implicit parameter count of
* zero, and a string token to use as an expansion. Create
* and store an SMacro.
*/
define_smacro(mname, casesense, macro_start, NULL);
break;
case PP_DEFTOK:
if (!(mname = get_id(&tline, dname)))
goto done;
last = tline;
tline = expand_smacro(tline->next);
last->next = NULL;
t = skip_white(tline);
/* t should now point to the string */
if (!tok_type(t, TOK_STRING)) {
nasm_nonfatal("`%s' requires string as second parameter", dname);
free_tlist(tline);
goto done;
}
/*
* Convert the string to a token stream. Note that smacros
* are stored with the token stream reversed, so we have to
* reverse the output of tokenize().
*/
macro_start = reverse_tokens(tokenize(unquote_token_cstr(t)));
/*
* We now have a macro name, an implicit parameter count of
* zero, and a numeric token to use as an expansion. Create
* and store an SMacro.
*/
define_smacro(mname, casesense, macro_start, NULL);
free_tlist(tline);
break;
case PP_PATHSEARCH:
{
const char *found_path;
if (!(mname = get_id(&tline, dname)))
goto done;
last = tline;
tline = expand_smacro(tline->next);
last->next = NULL;
t = skip_white(tline);
if (!t || (t->type != TOK_STRING &&
t->type != TOK_INTERNAL_STRING)) {
nasm_nonfatal("`%s' expects a file name", dname);
free_tlist(tline);
goto done;
}
if (t->next)
nasm_warn(WARN_OTHER, "trailing garbage after `%s' ignored", dname);
p = unquote_token_cstr(t);
inc_fopen(p, NULL, &found_path, INC_PROBE, NF_BINARY);
if (!found_path)
found_path = p;
macro_start = make_tok_qstr(NULL, found_path);
/*
* We now have a macro name, an implicit parameter count of
* zero, and a string token to use as an expansion. Create
* and store an SMacro.
*/
define_smacro(mname, casesense, macro_start, NULL);
free_tlist(tline);
break;
}
case PP_STRLEN:
if (!(mname = get_id(&tline, dname)))
goto done;
last = tline;
tline = expand_smacro(tline->next);
last->next = NULL;
t = skip_white(tline);
/* t should now point to the string */
if (!tok_type(t, TOK_STRING)) {
nasm_nonfatal("`%s' requires string as second parameter", dname);
free_tlist(tline);
free_tlist(origline);
return DIRECTIVE_FOUND;
}
unquote_token(t);
macro_start = make_tok_num(NULL, t->len);
/*
* We now have a macro name, an implicit parameter count of
* zero, and a numeric token to use as an expansion. Create
* and store an SMacro.
*/
define_smacro(mname, casesense, macro_start, NULL);
free_tlist(tline);
free_tlist(origline);
return DIRECTIVE_FOUND;
case PP_STRCAT:
if (!(mname = get_id(&tline, dname)))
goto done;
last = tline;
tline = expand_smacro(tline->next);
last->next = NULL;
len = 0;
list_for_each(t, tline) {
switch (t->type) {
case TOK_WHITESPACE:
break;
case TOK_STRING:
unquote_token(t);
len += t->len;
break;
case TOK_OTHER:
if (tok_is(t, ',')) /* permit comma separators */
break;
/* else fall through */
default:
nasm_nonfatal("non-string passed to `%s': %s", dname,
tok_text(t));
free_tlist(tline);
goto done;
}
}
q = qbuf = nasm_malloc(len+1);
list_for_each(t, tline) {
if (t->type == TOK_INTERNAL_STRING)
q = mempcpy(q, tok_text(t), t->len);
}
*q = '\0';
/*
* We now have a macro name, an implicit parameter count of
* zero, and a numeric token to use as an expansion. Create
* and store an SMacro.
*/
macro_start = make_tok_qstr_len(NULL, qbuf, len);
nasm_free(qbuf);
define_smacro(mname, casesense, macro_start, NULL);
free_tlist(tline);
break;
case PP_SUBSTR:
{
int64_t start, count;
const char *txt;
size_t len;
if (!(mname = get_id(&tline, dname)))
goto done;
last = tline;
tline = expand_smacro(tline->next);
last->next = NULL;
if (tline) /* skip expanded id */
t = tline->next;
t = skip_white(t);
/* t should now point to the string */
if (!tok_type(t, TOK_STRING)) {
nasm_nonfatal("`%s' requires string as second parameter", dname);
free_tlist(tline);
goto done;
}
pps.tptr = t->next;
pps.ntokens = -1;
tokval.t_type = TOKEN_INVALID;
evalresult = evaluate(ppscan, &pps, &tokval, NULL, true, NULL);
if (!evalresult) {
free_tlist(tline);
goto done;
} else if (!is_simple(evalresult)) {
nasm_nonfatal("non-constant value given to `%s'", dname);
free_tlist(tline);
goto done;
}
start = evalresult->value - 1;
pps.tptr = skip_white(pps.tptr);
if (!pps.tptr) {
count = 1; /* Backwards compatibility: one character */
} else {
tokval.t_type = TOKEN_INVALID;
evalresult = evaluate(ppscan, &pps, &tokval, NULL, true, NULL);
if (!evalresult) {
free_tlist(tline);
goto done;
} else if (!is_simple(evalresult)) {
nasm_nonfatal("non-constant value given to `%s'", dname);
free_tlist(tline);
goto done;
}
count = evalresult->value;
}
unquote_token(t);
len = t->len;
/* make start and count being in range */
if (start < 0)
start = 0;
if (count < 0)
count = len + count + 1 - start;
if (start + count > (int64_t)len)
count = len - start;
if (!len || count < 0 || start >=(int64_t)len)
start = -1, count = 0; /* empty string */
txt = (start < 0) ? "" : tok_text(t) + start;
len = count;
macro_start = make_tok_qstr_len(NULL, txt, len);
/*
* We now have a macro name, an implicit parameter count of
* zero, and a numeric token to use as an expansion. Create
* and store an SMacro.
*/
define_smacro(mname, casesense, macro_start, NULL);
free_tlist(tline);
break;
}
case PP_ASSIGN:
if (!(mname = get_id(&tline, dname)))
goto done;
last = tline;
tline = expand_smacro(tline->next);
last->next = NULL;
pps.tptr = tline;
pps.ntokens = -1;
tokval.t_type = TOKEN_INVALID;
evalresult = evaluate(ppscan, &pps, &tokval, NULL, true, NULL);
free_tlist(tline);
if (!evalresult)
goto done;
if (tokval.t_type)
nasm_warn(WARN_OTHER, "trailing garbage after expression ignored");
if (!is_simple(evalresult)) {
nasm_nonfatal("non-constant value given to `%s'", dname);
free_tlist(origline);
return DIRECTIVE_FOUND;
}
macro_start = make_tok_num(NULL, reloc_value(evalresult));
/*
* We now have a macro name, an implicit parameter count of
* zero, and a numeric token to use as an expansion. Create
* and store an SMacro.
*/
define_smacro(mname, casesense, macro_start, NULL);
break;
case PP_ALIASES:
tline = tline->next;
tline = expand_smacro(tline);
ppopt.noaliases = !pp_get_boolean_option(tline, !ppopt.noaliases);
break;
case PP_LINE:
nasm_panic("`%s' directive not preprocessed early", dname);
break;
case PP_NULL:
/* Goes nowhere, does nothing... */
break;
}
done:
free_tlist(origline);
return DIRECTIVE_FOUND;
}
/*
* Ensure that a macro parameter contains a condition code and
* nothing else. Return the condition code index if so, or -1
* otherwise.
*/
static int find_cc(Token * t)
{
Token *tt;
if (!t)
return -1; /* Probably a %+ without a space */
t = skip_white(t);
if (!tok_type(t, TOK_ID))
return -1;
tt = t->next;
tt = skip_white(tt);
if (tok_isnt(tt, ','))
return -1;
return bsii(tok_text(t), (const char **)conditions,
ARRAY_SIZE(conditions));
}
static inline bool pp_concat_match(const Token *t, unsigned int mask)
{
return t && (PP_CONCAT_MASK(t->type) & mask);
}
/*
* This routines walks over tokens strem and handles tokens
* pasting, if @handle_explicit passed then explicit pasting
* term is handled, otherwise -- implicit pastings only.
* The @m array can contain a series of token types which are
* executed as separate passes.
*/
static bool paste_tokens(Token **head, const struct tokseq_match *m,
size_t mnum, bool handle_explicit)
{
Token *tok, *t, *next, **prev_next, **prev_nonspace;
bool pasted = false;
char *buf, *p;
size_t len, i;
/*
* The last token before pasting. We need it
* to be able to connect new handled tokens.
* In other words if there were a tokens stream
*
* A -> B -> C -> D
*
* and we've joined tokens B and C, the resulting
* stream should be
*
* A -> BC -> D
*/
tok = *head;
prev_next = prev_nonspace = head;
if (tok_white(tok) || tok_type(tok, TOK_PASTE))
prev_nonspace = NULL;
while (tok && (next = tok->next)) {
bool did_paste = false;
switch (tok->type) {
case TOK_WHITESPACE:
/* Zap redundant whitespaces */
tok->next = next = zap_white(next);
break;
case TOK_PASTE:
/* Explicit pasting */
if (!handle_explicit)
break;
/* Left pasting token is start of line, just drop %+ */
if (!prev_nonspace) {
tok = delete_Token(tok);
break;
}
did_paste = true;
prev_next = prev_nonspace;
t = *prev_nonspace;
/* Delete leading whitespace */
next = zap_white(t->next);
/*
* Delete the %+ token itself, followed by any whitespace.
* In a sequence of %+ ... %+ ... %+ pasting sequences where
* some expansions in the middle have ended up empty,
* we can end up having multiple %+ tokens in a row;
* just drop whem in that case.
*/
while (next) {
if (next->type == TOK_PASTE || next->type == TOK_WHITESPACE)
next = delete_Token(next);
else
break;
}
/*
* Nothing after? Just leave the existing token.
*/
if (!next) {
t->next = tok = NULL; /* End of line */
break;
}
p = buf = nasm_malloc(t->len + next->len + 1);
p = mempcpy(p, tok_text(t), t->len);
p = mempcpy(p, tok_text(next), next->len);
*p = '\0';
delete_Token(t);
t = tokenize(buf);
nasm_free(buf);
if (unlikely(!t)) {
/*
* No output at all? Replace with a single whitespace.
* This should never happen.
*/
t = new_White(NULL);
}
*prev_nonspace = tok = t;
while (t->next)
t = t->next; /* Find the last token produced */
/* Delete the second token and attach to the end of the list */
t->next = delete_Token(next);
/* We want to restart from the head of the pasted token */
next = tok;
break;
default:
/* implicit pasting */
for (i = 0; i < mnum; i++) {
if (pp_concat_match(tok, m[i].mask_head))
break;
}
if (i >= mnum)
break;
len = tok->len;
while (pp_concat_match(next, m[i].mask_tail)) {
len += next->len;
next = next->next;
}
/* No match or no text to process */
if (len == tok->len)
break;
p = buf = nasm_malloc(len + 1);
while (tok != next) {
p = mempcpy(p, tok_text(tok), tok->len);
tok = delete_Token(tok);
}
*p = '\0';
*prev_next = tok = t = tokenize(buf);
nasm_free(buf);
/*
* Connect pasted into original stream,
* ie A -> new-tokens -> B
*/
while (t->next)
t = t->next;
t->next = next;
prev_next = prev_nonspace = &t->next;
did_paste = true;
break;
}
if (did_paste) {
pasted = true;
} else {
prev_next = &tok->next;
if (next && next->type != TOK_WHITESPACE && next->type != TOK_PASTE)
prev_nonspace = prev_next;
}
tok = next;
}
return pasted;
}
/*
* Computes the proper rotation of mmacro parameters
*/
static int mmac_rotate(const MMacro *mac, unsigned int n)
{
if (--n < mac->nparam)
n = (n + mac->rotate) % mac->nparam;
return n+1;
}
/*
* expands to a list of tokens from %{x:y}
*/
static void expand_mmac_params_range(MMacro *mac, Token *tline, Token ***tail)
{
Token *t;
const char *arg = tok_text(tline) + 1;
int fst, lst, incr, n;
int parsed;
parsed = sscanf(arg, "%d:%d", &fst, &lst);
nasm_assert(parsed == 2);
/*
* only macros params are accounted so
* if someone passes %0 -- we reject such
* value(s)
*/
if (lst == 0 || fst == 0)
goto err;
/* the values should be sane */
if ((fst > (int)mac->nparam || fst < (-(int)mac->nparam)) ||
(lst > (int)mac->nparam || lst < (-(int)mac->nparam)))
goto err;
fst = fst < 0 ? fst + (int)mac->nparam + 1: fst;
lst = lst < 0 ? lst + (int)mac->nparam + 1: lst;
/*
* It will be at least one parameter, as we can loop
* in either direction.
*/
incr = (fst < lst) ? 1 : -1;
while (true) {
n = mmac_rotate(mac, fst);
dup_tlistn(mac->params[n], mac->paramlen[n], tail);
if (fst == lst)
break;
t = make_tok_char(NULL, ',');
**tail = t;
*tail = &t->next;
fst += incr;
}
return;
err:
nasm_nonfatal("`%%{%s}': macro parameters out of range", arg);
return;
}
/*
* Expand MMacro-local things: parameter references (%0, %n, %+n,
* %-n) and MMacro-local identifiers (%%foo) as well as
* macro indirection (%[...]) and range (%{..:..}).
*/
static Token *expand_mmac_params(Token * tline)
{
Token **tail, *thead;
bool changed = false;
MMacro *mac = istk->mstk.mmac;
tail = &thead;
thead = NULL;
while (tline) {
bool change;
bool err_not_mac = false;
Token *t = tline;
const char *text = tok_text(t);
int type = t->type;
tline = tline->next;
t->next = NULL;
switch (type) {
case TOK_LOCAL_SYMBOL:
change = true;
if (!mac) {
err_not_mac = true;
break;
}
type = TOK_ID;
text = nasm_asprintf("..@%"PRIu64".%s", mac->unique, text+2);
break;
case TOK_MMACRO_PARAM:
{
Token *tt = NULL;
change = true;
if (!mac) {
err_not_mac = true;
break;
}
if (strchr(text, ':')) {
/* It is a range */
expand_mmac_params_range(mac, t, &tail);
text = NULL;
break;
}
switch (text[1]) {
/*
* We have to make a substitution of one of the
* forms %1, %-1, %+1, %%foo, %0, %00.
*/
case '0':
if (!text[2]) {
type = TOK_NUMBER;
text = nasm_asprintf("%d", mac->nparam);
break;
}
if (text[2] != '0' || text[3])
goto invalid;
/* a possible captured label == mac->params[0] */
/* fall through */
default:
{
unsigned long n;
char *ep;
n = strtoul(text + 1, &ep, 10);
if (unlikely(*ep))
goto invalid;
if (n <= mac->nparam) {
n = mmac_rotate(mac, n);
dup_tlistn(mac->params[n], mac->paramlen[n], &tail);
}
text = NULL;
break;
}
case '-':
case '+':
{
int cc;
unsigned long n;
char *ep;
n = strtoul(tok_text(t) + 2, &ep, 10);
if (unlikely(*ep))
goto invalid;
if (n && n <= mac->nparam) {
n = mmac_rotate(mac, n);
tt = mac->params[n];
}
cc = find_cc(tt);
if (cc == -1) {
nasm_nonfatal("macro parameter `%s' is not a condition code",
tok_text(t));
text = NULL;
break;
}
type = TOK_ID;
if (text[1] == '-') {
int ncc = inverse_ccs[cc];
if (unlikely(ncc == -1)) {
nasm_nonfatal("condition code `%s' is not invertible",
conditions[cc]);
break;
}
cc = ncc;
}
text = nasm_strdup(conditions[cc]);
break;
}
invalid:
nasm_nonfatal("invalid macro parameter: `%s'", text);
text = NULL;
break;
}
break;
}
case TOK_PREPROC_Q:
if (mac) {
type = TOK_ID;
text = nasm_strdup(mac->iname);
change = true;
} else {
change = false;
}
break;
case TOK_PREPROC_QQ:
if (mac) {
type = TOK_ID;
text = nasm_strdup(mac->name);
change = true;
} else {
change = false;
}
break;
case TOK_INDIRECT:
{
Token *tt;
tt = tokenize(tok_text(t));
tt = expand_mmac_params(tt);
tt = expand_smacro(tt);
/* Why dup_tlist() here? We should own tt... */
dup_tlist(tt, &tail);
text = NULL;
change = true;
break;
}
default:
change = false;
break;
}
if (err_not_mac) {
nasm_nonfatal("`%s': not in a macro call", text);
text = NULL;
change = true;
}
if (change) {
if (!text) {
delete_Token(t);
} else {
*tail = t;
tail = &t->next;
set_text(t, text, tok_strlen(text));
t->type = type;
}
changed = true;
} else {
*tail = t;
tail = &t->next;
}
}
*tail = NULL;
if (changed) {
const struct tokseq_match t[] = {
{
PP_CONCAT_MASK(TOK_ID) |
PP_CONCAT_MASK(TOK_FLOAT), /* head */
PP_CONCAT_MASK(TOK_ID) |
PP_CONCAT_MASK(TOK_NUMBER) |
PP_CONCAT_MASK(TOK_FLOAT) |
PP_CONCAT_MASK(TOK_OTHER) /* tail */
},
{
PP_CONCAT_MASK(TOK_NUMBER), /* head */
PP_CONCAT_MASK(TOK_NUMBER) /* tail */
}
};
paste_tokens(&thead, t, ARRAY_SIZE(t), false);
}
return thead;
}
static Token *expand_smacro_noreset(Token * tline);
/*
* Expand *one* single-line macro instance. If the first token is not
* a macro at all, it is simply copied to the output and the pointer
* advanced. tpp should be a pointer to a pointer (usually the next
* pointer of the previous token) to the first token. **tpp is updated
* to point to the first token of the expansion, and *tpp updated to
* point to the next pointer of the last token of the expansion.
*
* If the expansion is empty, *tpp will be unchanged but **tpp will
* be advanced past the macro call.
*
* Return the macro expanded, or NULL if no expansion took place.
*/
static SMacro *expand_one_smacro(Token ***tpp)
{
Token **params = NULL;
const char *mname;
Token *mstart = **tpp;
Token *tline = mstart;
SMacro *head, *m;
int i;
Token *t, *tup, *tafter;
int nparam = 0;
bool cond_comma;
if (!tline)
return false; /* Empty line, nothing to do */
mname = tok_text(mstart);
smacro_deadman.total--;
smacro_deadman.levels--;
if (unlikely(smacro_deadman.total < 0 || smacro_deadman.levels < 0)) {
if (unlikely(!smacro_deadman.triggered)) {
nasm_nonfatal("interminable macro recursion");
smacro_deadman.triggered = true;
}
goto not_a_macro;
} else if (tline->type == TOK_ID || tline->type == TOK_PREPROC_ID) {
head = (SMacro *)hash_findix(&smacros, mname);
} else if (tline->type == TOK_LOCAL_MACRO) {
Context *ctx = get_ctx(mname, &mname);
head = ctx ? (SMacro *)hash_findix(&ctx->localmac, mname) : NULL;
} else {
goto not_a_macro;
}
/*
* We've hit an identifier of some sort. First check whether the
* identifier is a single-line macro at all, then think about
* checking for parameters if necessary.
*/
list_for_each(m, head) {
if (unlikely(m->alias && ppopt.noaliases))
continue;
if (!mstrcmp(m->name, mname, m->casesense))
break;
}
if (!m) {
goto not_a_macro;
}
/* Parse parameters, if applicable */
params = NULL;
nparam = 0;
if (m->nparam == 0) {
/*
* Simple case: the macro is parameterless.
* Nothing to parse; the expansion code will
* drop the macro name token.
*/
} else {
/*
* Complicated case: at least one macro with this name
* exists and takes parameters. We must find the
* parameters in the call, count them, find the SMacro
* that corresponds to that form of the macro call, and
* substitute for the parameters when we expand. What a
* pain.
*/
Token *t;
int paren, brackets;
tline = tline->next;
tline = skip_white(tline);
if (!tok_is(tline, '(')) {
/*
* This macro wasn't called with parameters: ignore
* the call. (Behaviour borrowed from gnu cpp.)
*/
goto not_a_macro;
}
paren = 1;
nparam = 1;
brackets = 0;
t = tline; /* tline points to leading ( */
while (paren) {
t = t->next;
if (!t) {
nasm_nonfatal("macro call expects terminating `)'");
goto not_a_macro;
}
if (t->type != TOK_OTHER || t->len != 1)
continue;
switch (t->text.a[0]) {
case ',':
if (!brackets && paren == 1)
nparam++;
break;
case '{':
brackets++;
break;
case '}':
if (brackets > 0)
brackets--;
break;
case '(':
if (!brackets)
paren++;
break;
case ')':
if (!brackets)
paren--;
break;
default:
break; /* Normal token */
}
}
/*
* Look for a macro matching in both name and parameter count.
* We already know any matches cannot be anywhere before the
* current position of "m", so there is no reason to
* backtrack.
*/
while (1) {
if (!m) {
/*!
*!macro-params-single [on] single-line macro calls with wrong parameter count
*! warns about \i{single-line macros} being invoked
*! with the wrong number of parameters.
*/
nasm_warn(WARN_MACRO_PARAMS_SINGLE|ERR_HOLD,
"single-line macro `%s' exists, "
"but not taking %d parameter%s",
mname, nparam, (nparam == 1) ? "" : "s");
goto not_a_macro;
}
if (!mstrcmp(m->name, mname, m->casesense)) {
if (nparam == m->nparam)
break; /* It's good */
if (m->greedy && nparam >= m->nparam-1)
break; /* Also good */
}
m = m->next;
}
}
if (m->in_progress)
goto not_a_macro;
/* Expand the macro */
m->in_progress = true;
if (nparam) {
/* Extract parameters */
Token **phead, **pep;
int white = 0;
int brackets = 0;
int paren;
bool bracketed = false;
bool bad_bracket = false;
enum sparmflags flags;
nparam = m->nparam;
paren = 1;
nasm_newn(params, nparam);
i = 0;
flags = m->params[i].flags;
phead = pep = &params[i];
*pep = NULL;
while (paren) {
bool skip;
char ch;
tline = tline->next;
if (!tline)
nasm_nonfatal("macro call expects terminating `)'");
ch = 0;
skip = false;
switch (tline->type) {
case TOK_OTHER:
if (tline->len == 1)
ch = tline->text.a[0];
break;
case TOK_WHITESPACE:
if (!(flags & SPARM_NOSTRIP)) {
if (brackets || *phead)
white++; /* Keep interior whitespace */
skip = true;
}
break;
default:
break;
}
switch (ch) {
case ',':
if (!brackets && paren == 1 && !(flags & SPARM_GREEDY)) {
i++;
nasm_assert(i < nparam);
phead = pep = &params[i];
*pep = NULL;
bracketed = false;
skip = true;
flags = m->params[i].flags;
}
break;
case '{':
if (!bracketed) {
bracketed = !*phead && !(flags & SPARM_NOSTRIP);
skip = bracketed;
}
brackets++;
break;
case '}':
if (brackets > 0) {
if (!--brackets)
skip = bracketed;
}
break;
case '(':
if (!brackets)
paren++;
break;
case ')':
if (!brackets) {
paren--;
if (!paren) {
skip = true;
i++; /* Found last argument */
}
}
break;
default:
break; /* Normal token */
}
if (!skip) {
Token *t;
bad_bracket |= bracketed && !brackets;
if (white) {
*pep = t = new_White(NULL);
pep = &t->next;
white = 0;
}
*pep = t = dup_Token(NULL, tline);
pep = &t->next;
}
}
/*
* Possible further processing of parameters. Note that the
* ordering matters here.
*/
for (i = 0; i < nparam; i++) {
enum sparmflags flags = m->params[i].flags;
if (flags & SPARM_EVAL) {
/* Evaluate this parameter as a number */
struct ppscan pps;
struct tokenval tokval;
expr *evalresult;
Token *eval_param;
pps.tptr = eval_param = expand_smacro_noreset(params[i]);
pps.ntokens = -1;
tokval.t_type = TOKEN_INVALID;
evalresult = evaluate(ppscan, &pps, &tokval, NULL, true, NULL);
free_tlist(eval_param);
params[i] = NULL;
if (!evalresult) {
/* Nothing meaningful to do */
} else if (tokval.t_type) {
nasm_nonfatal("invalid expression in parameter %d of macro `%s'", i, m->name);
} else if (!is_simple(evalresult)) {
nasm_nonfatal("non-constant expression in parameter %d of macro `%s'", i, m->name);
} else {
params[i] = make_tok_num(NULL, reloc_value(evalresult));
}
}
if (flags & SPARM_STR) {
/* Convert expansion to a quoted string */
char *arg;
Token *qs;
qs = expand_smacro_noreset(params[i]);
arg = detoken(qs, false);
free_tlist(qs);
params[i] = make_tok_qstr(NULL, arg);
nasm_free(arg);
}
}
}
/* Note: we own the expansion this returns. */
t = m->expand(m, params, nparam);
tafter = tline->next; /* Skip past the macro call */
tline->next = NULL; /* Truncate list at the macro call end */
tline = tafter;
tup = NULL;
cond_comma = false;
while (t) {
enum pp_token_type type = t->type;
Token *tnext = t->next;
switch (type) {
case TOK_PREPROC_Q:
delete_Token(t);
t = dup_Token(tline, mstart);
break;
case TOK_PREPROC_QQ:
{
size_t mlen = strlen(m->name);
size_t len;
char *p;
t->type = mstart->type;
if (t->type == TOK_LOCAL_MACRO) {
const char *psp; /* prefix start pointer */
const char *pep; /* prefix end pointer */
size_t plen;
psp = tok_text(mstart);
get_ctx(psp, &pep);
plen = pep - psp;
len = mlen + plen;
p = nasm_malloc(len + 1);
p = mempcpy(p, psp, plen);
} else {
len = mlen;
p = nasm_malloc(len + 1);
}
p = mempcpy(p, m->name, mlen);
*p = '\0';
set_text_free(t, p, len);
t->next = tline;
break;
}
case TOK_COND_COMMA:
delete_Token(t);
t = cond_comma ? make_tok_char(tline, ',') : NULL;
break;
case TOK_ID:
case TOK_PREPROC_ID:
case TOK_LOCAL_MACRO:
{
/*
* Chain this into the target line *before* expanding,
* that way we pick up any arguments to the new macro call,
* if applicable.
*/
Token **tp = &t;
t->next = tline;
expand_one_smacro(&tp);
tline = *tp; /* First token left after any macro call */
break;
}
default:
if (is_smac_param(t->type)) {
int param = smac_nparam(t->type);
nasm_assert(!tup && param < nparam);
delete_Token(t);
t = NULL;
tup = tnext;
tnext = dup_tlist_reverse(params[param], NULL);
cond_comma = false;
} else {
t->next = tline;
}
}
if (t) {
Token *endt = tline;
tline = t;
while (!cond_comma && t && t != endt) {
cond_comma = t->type != TOK_WHITESPACE;
t = t->next;
}
}
if (tnext) {
t = tnext;
} else {
t = tup;
tup = NULL;
}
}
**tpp = tline;
for (t = tline; t && t != tafter; t = t->next)
*tpp = &t->next;
m->in_progress = false;
/* Don't do this until after expansion or we will clobber mname */
free_tlist(mstart);
goto done;
/*
* No macro expansion needed; roll back to mstart (if necessary)
* and then advance to the next input token. Note that this is
* by far the common case!
*/
not_a_macro:
*tpp = &mstart->next;
m = NULL;
done:
smacro_deadman.levels++;
if (unlikely(params))
free_tlist_array(params, nparam);
return m;
}
/*
* Expand all single-line macro calls made in the given line.
* Return the expanded version of the line. The original is deemed
* to be destroyed in the process. (In reality we'll just move
* Tokens from input to output a lot of the time, rather than
* actually bothering to destroy and replicate.)
*/
static Token *expand_smacro(Token *tline)
{
smacro_deadman.total = nasm_limit[LIMIT_MACRO_TOKENS];
smacro_deadman.levels = nasm_limit[LIMIT_MACRO_LEVELS];
smacro_deadman.triggered = false;
return expand_smacro_noreset(tline);
}
static Token *expand_smacro_noreset(Token *org_tline)
{
Token *tline;
bool expanded;
errhold errhold; /* Hold warning/errors during expansion */
if (!org_tline)
return NULL; /* Empty input */
/*
* Trick: we should avoid changing the start token pointer since it can
* be contained in "next" field of other token. Because of this
* we allocate a copy of first token and work with it; at the end of
* routine we copy it back
*/
tline = dup_Token(org_tline->next, org_tline);
/*
* Pretend that we always end up doing expansion on the first pass;
* that way %+ get processed. However, if we process %+ before the
* first pass, we end up with things like MACRO %+ TAIL trying to
* look up the macro "MACROTAIL", which we don't want.
*/
expanded = true;
while (true) {
static const struct tokseq_match tmatch[] = {
{
PP_CONCAT_MASK(TOK_ID) |
PP_CONCAT_MASK(TOK_LOCAL_MACRO) |
PP_CONCAT_MASK(TOK_ENVIRON) |
PP_CONCAT_MASK(TOK_PREPROC_ID), /* head */
PP_CONCAT_MASK(TOK_ID) |
PP_CONCAT_MASK(TOK_LOCAL_MACRO) |
PP_CONCAT_MASK(TOK_ENVIRON) |
PP_CONCAT_MASK(TOK_PREPROC_ID) |
PP_CONCAT_MASK(TOK_NUMBER) /* tail */
}
};
Token **tail = &tline;
/*
* We hold warnings/errors until we are done this this loop. It is
* possible for nuisance warnings to appear that disappear on later
* passes.
*/
errhold = nasm_error_hold_push();
while (*tail) /* main token loop */
expanded |= !!expand_one_smacro(&tail);
if (!expanded)
break; /* Done! */
/*
* Now scan the entire line and look for successive TOK_IDs
* that resulted after expansion (they can't be produced by
* tokenize()). The successive TOK_IDs should be concatenated.
* Also we look for %+ tokens and concatenate the tokens
* before and after them (without white spaces in between).
*/
if (!paste_tokens(&tline, tmatch, ARRAY_SIZE(tmatch), true))
break; /* Done again! */
nasm_error_hold_pop(errhold, false);
expanded = false;
}
nasm_error_hold_pop(errhold, true);
if (!tline) {
/*
* The expression expanded to empty line;
* we can't return NULL because of the "trick" above.
* Just set the line to a single WHITESPACE token.
*/
tline = new_White(NULL);
}
steal_Token(org_tline, tline);
org_tline->next = tline->next;
delete_Token(tline);
return org_tline;
}
/*
* Similar to expand_smacro but used exclusively with macro identifiers
* right before they are fetched in. The reason is that there can be
* identifiers consisting of several subparts. We consider that if there
* are more than one element forming the name, user wants a expansion,
* otherwise it will be left as-is. Example:
*
* %define %$abc cde
*
* the identifier %$abc will be left as-is so that the handler for %define
* will suck it and define the corresponding value. Other case:
*
* %define _%$abc cde
*
* In this case user wants name to be expanded *before* %define starts
* working, so we'll expand %$abc into something (if it has a value;
* otherwise it will be left as-is) then concatenate all successive
* PP_IDs into one.
*/
static Token *expand_id(Token * tline)
{
Token *cur, *oldnext = NULL;
if (!tline || !tline->next)
return tline;
cur = tline;
while (cur->next &&
(cur->next->type == TOK_ID || cur->next->type == TOK_PREPROC_ID ||
cur->next->type == TOK_LOCAL_MACRO || cur->next->type == TOK_NUMBER))
cur = cur->next;
/* If identifier consists of just one token, don't expand */
if (cur == tline)
return tline;
if (cur) {
oldnext = cur->next; /* Detach the tail past identifier */
cur->next = NULL; /* so that expand_smacro stops here */
}
tline = expand_smacro(tline);
if (cur) {
/* expand_smacro possibly changhed tline; re-scan for EOL */
cur = tline;
while (cur && cur->next)
cur = cur->next;
if (cur)
cur->next = oldnext;
}
return tline;
}
/*
* This is called from find_mmacro_in_list() after finding a suitable macro.
*/
static MMacro *use_mmacro(MMacro *m, int *nparamp, Token ***paramsp)
{
int nparam = *nparamp;
Token **params = *paramsp;
/*
* This one is right. Just check if cycle removal
* prohibits us using it before we actually celebrate...
*/
if (m->in_progress > m->max_depth) {
if (m->max_depth > 0) {
nasm_warn(WARN_OTHER, "reached maximum recursion depth of %i",
m->max_depth);
}
nasm_free(params);
*nparamp = 0;
*paramsp = NULL;
return NULL;
}
/*
* It's right, and we can use it. Add its default
* parameters to the end of our list if necessary.
*/
if (m->defaults && nparam < m->nparam_min + m->ndefs) {
int newnparam = m->nparam_min + m->ndefs;
params = nasm_realloc(params, sizeof(*params) * (newnparam+2));
memcpy(&params[nparam+1], &m->defaults[nparam+1-m->nparam_min],
(newnparam - nparam) * sizeof(*params));
nparam = newnparam;
}
/*
* If we've gone over the maximum parameter count (and
* we're in Plus mode), ignore parameters beyond
* nparam_max.
*/
if (m->plus && nparam > m->nparam_max)
nparam = m->nparam_max;
/*
* If nparam was adjusted above, make sure the list is still
* NULL-terminated.
*/
params[nparam+1] = NULL;
/* Done! */
*paramsp = params;
*nparamp = nparam;
return m;
}
/*
* Search a macro list and try to find a match. If matching, call
* use_mmacro() to set up the macro call. m points to the list of
* search, which is_mmacro() sets to the first *possible* match.
*/
static MMacro *
find_mmacro_in_list(MMacro *m, const char *finding,
int *nparamp, Token ***paramsp)
{
int nparam = *nparamp;
while (m) {
if (m->nparam_min <= nparam
&& (m->plus || nparam <= m->nparam_max)) {
/*
* This one matches, use it.
*/
return use_mmacro(m, nparamp, paramsp);
}
/*
* Otherwise search for the next one with a name match.
*/
list_for_each(m, m->next) {
if (!mstrcmp(m->name, finding, m->casesense))
break;
}
}
return NULL;
}
/*
* Determine whether the given line constitutes a multi-line macro
* call, and return the MMacro structure called if so. Doesn't have
* to check for an initial label - that's taken care of in
* expand_mmacro - but must check numbers of parameters. Guaranteed
* to be called with tline->type == TOK_ID, so the putative macro
* name is easy to find.
*/
static MMacro *is_mmacro(Token * tline, int *nparamp, Token ***paramsp)
{
MMacro *head, *m, *found;
Token **params, **comma;
int raw_nparam, nparam;
const char *finding = tok_text(tline);
bool empty_args = !tline->next;
*nparamp = 0;
*paramsp = NULL;
head = (MMacro *) hash_findix(&mmacros, finding);
/*
* Efficiency: first we see if any macro exists with the given
* name which isn't already excluded by macro cycle removal.
* (The cycle removal test here helps optimize the case of wrapping
* instructions, and is cheap to do here.)
*
* If not, we can return NULL immediately. _Then_ we
* count the parameters, and then we look further along the
* list if necessary to find the proper MMacro.
*/
list_for_each(m, head) {
if (!mstrcmp(m->name, finding, m->casesense) &&
(m->in_progress != 1 || m->max_depth > 0))
break; /* Found something that needs consideration */
}
if (!m)
return NULL;
/*
* OK, we have a potential macro. Count and demarcate the
* parameters.
*/
comma = count_mmac_params(tline->next, nparamp, paramsp);
raw_nparam = *nparamp;
/*
* Search for an exact match. This cannot come *before* the m
* found in the list search before, so we can start there.
*
* If found is NULL and *paramsp has been cleared, then we
* encountered an error for which we have already issued a
* diagnostic, so we should not proceed.
*/
found = find_mmacro_in_list(m, finding, nparamp, paramsp);
if (!*paramsp)
return NULL;
nparam = *nparamp;
params = *paramsp;
/*
* Special weirdness: in NASM < 2.15, an expansion of
* *only* whitespace, as can happen during macro expansion under
* certain circumstances, is counted as zero arguments for the
* purpose of %0, but one argument for the purpose of macro
* matching! In particular, this affects:
*
* foobar %1
*
* ... with %1 being empty; this would call the one-argument
* version of "foobar" with an empty argument, equivalent to
*
* foobar {%1}
*
* ... except that %0 would be set to 0 inside foobar, even if
* foobar is declared with "%macro foobar 1" or equivalent!
*
* The proper way to do that is to define "%macro foobar 0-1".
*
* To be compatible without doing something too stupid, try to
* match a zero-argument macro first, but if that fails, try
* for a one-argument macro with the above behavior.
*
* Furthermore, NASM < 2.15 will match stripping a tailing empty
* argument, but in that case %0 *does* reflect that this argument
* have been stripped; this is handled in count_mmac_params().
*
* To disable these insane legacy behaviors, use:
*
* %pragma preproc sane_empty_expansion yes
*
*!macro-params-legacy [on] improperly calling multi-line macro for legacy support
*! warns about \i{multi-line macros} being invoked
*! with the wrong number of parameters, but for bug-compatibility
*! with NASM versions older than 2.15, NASM tried to fix up the
*! parameters to match the legacy behavior and call the macro anyway.
*! This can happen in certain cases where there are empty arguments
*! without braces, sometimes as a result of macro expansion.
*!-
*! The legacy behavior is quite strange and highly context-dependent,
*! and can be disabled with:
*!-
*! \c %pragma preproc sane_empty_expansion true
*!-
*! It is highly recommended to use this option in new code.
*/
if (!ppopt.sane_empty_expansion) {
if (!found) {
if (raw_nparam == 0 && !empty_args) {
/*
* A single all-whitespace parameter as the only thing?
* Look for a one-argument macro, but don't adjust
* *nparamp.
*/
int bogus_nparam = 1;
params[2] = NULL;
found = find_mmacro_in_list(m, finding, &bogus_nparam, paramsp);
} else if (raw_nparam > 1 && comma) {
Token *comma_tail = *comma;
/*
* Drop the terminal argument and try again.
* If we fail, we need to restore the comma to
* preserve tlist.
*/
*comma = NULL;
*nparamp = raw_nparam - 1;
found = find_mmacro_in_list(m, finding, nparamp, paramsp);
if (found)
free_tlist(comma_tail);
else
*comma = comma_tail;
}
if (!*paramsp)
return NULL;
} else if (comma) {
free_tlist(*comma);
*comma = NULL;
if (raw_nparam > found->nparam_min &&
raw_nparam <= found->nparam_min + found->ndefs) {
/* Replace empty argument with default parameter */
params[raw_nparam] =
found->defaults[raw_nparam - found->nparam_min];
} else if (raw_nparam > found->nparam_max && found->plus) {
/* Just drop the comma, don't adjust argument count */
} else {
/* Drop argument. This may cause nparam < nparam_min. */
params[raw_nparam] = NULL;
*nparamp = nparam = raw_nparam - 1;
}
}
if (found) {
if (raw_nparam < found->nparam_min ||
(raw_nparam > found->nparam_max && !found->plus)) {
nasm_warn(WARN_MACRO_PARAMS_LEGACY,
"improperly calling multi-line macro `%s' with %d parameters",
found->name, raw_nparam);
} else if (comma) {
nasm_warn(WARN_MACRO_PARAMS_LEGACY,
"dropping trailing empty parameter in call to multi-line macro `%s'", found->name);
}
}
}
/*
* After all that, we didn't find one with the right number of
* parameters. Issue a warning, and fail to expand the macro.
*!
*!macro-params-multi [on] multi-line macro calls with wrong parameter count
*! warns about \i{multi-line macros} being invoked
*! with the wrong number of parameters. See \k{mlmacover} for an
*! example of why you might want to disable this warning.
*/
if (found)
return found;
nasm_warn(WARN_MACRO_PARAMS_MULTI,
"multi-line macro `%s' exists, but not taking %d parameter%s",
finding, nparam, (nparam == 1) ? "" : "s");
nasm_free(*paramsp);
return NULL;
}
#if 0
/*
* Save MMacro invocation specific fields in
* preparation for a recursive macro expansion
*/
static void push_mmacro(MMacro *m)
{
MMacroInvocation *i;
i = nasm_malloc(sizeof(MMacroInvocation));
i->prev = m->prev;
i->params = m->params;
i->iline = m->iline;
i->nparam = m->nparam;
i->rotate = m->rotate;
i->paramlen = m->paramlen;
i->unique = m->unique;
i->condcnt = m->condcnt;
m->prev = i;
}
/*
* Restore MMacro invocation specific fields that were
* saved during a previous recursive macro expansion
*/
static void pop_mmacro(MMacro *m)
{
MMacroInvocation *i;
if (m->prev) {
i = m->prev;
m->prev = i->prev;
m->params = i->params;
m->iline = i->iline;
m->nparam = i->nparam;
m->rotate = i->rotate;
m->paramlen = i->paramlen;
m->unique = i->unique;
m->condcnt = i->condcnt;
nasm_free(i);
}
}
#endif
/*
* List an mmacro call with arguments (-Lm option)
*/
static void list_mmacro_call(const MMacro *m)
{
const char prefix[] = " ;;; [macro] ";
size_t namelen, size;
char *buf, *p;
unsigned int i;
const Token *t;
namelen = strlen(m->iname);
size = namelen + sizeof(prefix); /* Includes final null (from prefix) */
for (i = 1; i <= m->nparam; i++) {
int j = 0;
size += 3; /* Braces and space/comma */
list_for_each(t, m->params[i]) {
if (j++ >= m->paramlen[i])
break;
size += (t->type == TOK_WHITESPACE) ? 1 : t->len;
}
}
buf = p = nasm_malloc(size);
p = mempcpy(p, prefix, sizeof(prefix) - 1);
p = mempcpy(p, m->iname, namelen);
*p++ = ' ';
for (i = 1; i <= m->nparam; i++) {
int j = 0;
*p++ = '{';
list_for_each(t, m->params[i]) {
if (j++ >= m->paramlen[i])
break;
p = mempcpy(p, tok_text(t), t->len);
}
*p++ = '}';
*p++ = ',';
}
*--p = '\0'; /* Replace last delimeter with null */
lfmt->line(LIST_MACRO, -1, buf);
nasm_free(buf);
}
/*
* Expand the multi-line macro call made by the given line, if
* there is one to be expanded. If there is, push the expansion on
* istk->expansion and return 1. Otherwise return 0.
*/
static int expand_mmacro(Token * tline)
{
Token *startline = tline;
Token *label = NULL;
bool dont_prepend = false;
Token **params, *t, *tt;
MMacro *m;
Line *l, *ll;
int i, *paramlen;
const char *mname;
int nparam = 0;
t = tline;
t = skip_white(t);
/* if (!tok_type(t, TOK_ID)) Lino 02/25/02 */
if (!tok_type(t, TOK_ID) && !tok_type(t, TOK_LOCAL_MACRO))
return 0;
m = is_mmacro(t, &nparam, &params);
if (m) {
mname = tok_text(t);
} else {
Token *last;
/*
* We have an id which isn't a macro call. We'll assume
* it might be a label; we'll also check to see if a
* colon follows it. Then, if there's another id after
* that lot, we'll check it again for macro-hood.
*/
label = last = t;
t = t->next;
if (tok_white(t))
last = t, t = t->next;
if (tok_is(t, ':')) {
dont_prepend = true;
last = t, t = t->next;
if (tok_white(t))
last = t, t = t->next;
}
if (!tok_type(t, TOK_ID) || !(m = is_mmacro(t, &nparam, &params)))
return 0;
last->next = NULL;
mname = tok_text(t);
tline = t;
}
if (unlikely(mmacro_deadman.total >= nasm_limit[LIMIT_MMACROS] ||
mmacro_deadman.levels >= nasm_limit[LIMIT_MACRO_LEVELS])) {
if (!mmacro_deadman.triggered) {
nasm_nonfatal("interminable multiline macro recursion");
mmacro_deadman.triggered = true;
}
return 0;
}
mmacro_deadman.total++;
mmacro_deadman.levels++;
/*
* Fix up the parameters: this involves stripping leading and
* trailing whitespace and stripping braces if they are present.
*/
nasm_newn(paramlen, nparam+1);
for (i = 1; (t = params[i]); i++) {
bool braced = false;
int brace = 0;
int white = 0;
bool comma = !m->plus || i < nparam;
t = skip_white(t);
if (tok_is(t, '{')) {
t = t->next;
brace = 1;
braced = true;
comma = false;
}
params[i] = t;
for (; t; t = t->next) {
if (tok_white(t)) {
white++;
continue;
}
if (t->type == TOK_OTHER && t->len == 1) {
switch (t->text.a[0]) {
case ',':
if (comma && !brace)
goto endparam;
break;
case '{':
brace++;
break;
case '}':
brace--;
if (braced && !brace) {
paramlen[i] += white;
goto endparam;
}
break;
default:
break;
}
}
paramlen[i] += white + 1;
white = 0;
}
endparam:
;
}
/*
* OK, we have a MMacro structure together with a set of
* parameters. We must now go through the expansion and push
* copies of each Line on to istk->expansion. Substitution of
* parameter tokens and macro-local tokens doesn't get done
* until the single-line macro substitution process; this is
* because delaying them allows us to change the semantics
* later through %rotate and give the right semantics for
* nested mmacros.
*
* First, push an end marker on to istk->expansion, mark this
* macro as in progress, and set up its invocation-specific
* variables.
*/
nasm_new(ll);
ll->next = istk->expansion;
ll->finishes = m;
ll->where = istk->where;
istk->expansion = ll;
/*
* Save the previous MMacro expansion in the case of
* macro recursion
*/
#if 0
if (m->max_depth && m->in_progress)
push_mmacro(m);
#endif
m->in_progress ++;
m->params = params;
m->iline = tline;
m->iname = nasm_strdup(mname);
m->nparam = nparam;
m->rotate = 0;
m->paramlen = paramlen;
m->unique = unique++;
m->condcnt = 0;
m->mstk = istk->mstk;
istk->mstk.mstk = istk->mstk.mmac = m;
list_for_each(l, m->expansion) {
nasm_new(ll);
ll->next = istk->expansion;
istk->expansion = ll;
ll->first = dup_tlist(l->first, NULL);
ll->where = l->where;
}
/*
* If we had a label, and this macro definition does not include
* a %00, push it on as the first line of, ot
* the macro expansion.
*/
if (label) {
/*
* We had a label. If this macro contains an %00 parameter,
* save the value as a special parameter (which is what it
* is), otherwise push it as the first line of the macro
* expansion.
*/
if (m->capture_label) {
params[0] = dup_Token(NULL, label);
paramlen[0] = 1;
free_tlist(startline);
} else {
nasm_new(ll);
ll->finishes = NULL;
ll->next = istk->expansion;
istk->expansion = ll;
ll->first = startline;
ll->where = istk->where;
if (!dont_prepend) {
while (label->next)
label = label->next;
label->next = tt = make_tok_char(NULL, ':');
}
}
}
istk->nolist += !!(m->nolist & NL_LIST);
istk->noline += !!(m->nolist & NL_LINE);
if (!istk->nolist) {
lfmt->uplevel(LIST_MACRO, 0);
if (list_option('m'))
list_mmacro_call(m);
}
if (!istk->noline)
src_macro_push(m, istk->where);
return 1;
}
/*
* This function decides if an error message should be suppressed.
* It will never be called with a severity level of ERR_FATAL or
* higher.
*/
static bool pp_suppress_error(errflags severity)
{
/*
* If we're in a dead branch of IF or something like it, ignore the error.
* However, because %else etc are evaluated in the state context
* of the previous branch, errors might get lost:
* %if 0 ... %else trailing garbage ... %endif
* So %else etc should set the ERR_PP_PRECOND flag.
*/
if (istk && istk->conds &&
((severity & ERR_PP_PRECOND) ?
istk->conds->state == COND_NEVER :
!emitting(istk->conds->state)))
return true;
return false;
}
static Token *
stdmac_file(const SMacro *s, Token **params, int nparams)
{
(void)s;
(void)params;
(void)nparams;
return make_tok_qstr(NULL, src_get_fname());
}
static Token *
stdmac_line(const SMacro *s, Token **params, int nparams)
{
(void)s;
(void)params;
(void)nparams;
return make_tok_num(NULL, src_get_linnum());
}
static Token *
stdmac_bits(const SMacro *s, Token **params, int nparams)
{
(void)s;
(void)params;
(void)nparams;
return make_tok_num(NULL, globalbits);
}
static Token *
stdmac_ptr(const SMacro *s, Token **params, int nparams)
{
(void)s;
(void)params;
(void)nparams;
switch (globalbits) {
case 16:
return new_Token(NULL, TOK_ID, "word", 4);
case 32:
return new_Token(NULL, TOK_ID, "dword", 5);
case 64:
return new_Token(NULL, TOK_ID, "qword", 5);
default:
panic();
}
}
/* Add magic standard macros */
struct magic_macros {
const char *name;
int nparam;
ExpandSMacro func;
};
static const struct magic_macros magic_macros[] =
{
{ "__?FILE?__", 0, stdmac_file },
{ "__?LINE?__", 0, stdmac_line },
{ "__?BITS?__", 0, stdmac_bits },
{ "__?PTR?__", 0, stdmac_ptr },
{ NULL, 0, NULL }
};
static void pp_add_magic_stdmac(void)
{
const struct magic_macros *m;
SMacro tmpl;
nasm_zero(tmpl);
for (m = magic_macros; m->name; m++) {
tmpl.nparam = m->nparam;
tmpl.expand = m->func;
define_smacro(m->name, true, NULL, &tmpl);
}
}
static void
pp_reset(const char *file, enum preproc_mode mode, struct strlist *dep_list)
{
int apass;
struct Include *inc;
cstk = NULL;
defining = NULL;
nested_mac_count = 0;
nested_rep_count = 0;
init_macros();
unique = 0;
deplist = dep_list;
pp_mode = mode;
/* Reset options to default */
nasm_zero(ppopt);
if (!use_loaded)
use_loaded = nasm_malloc(use_package_count * sizeof(bool));
memset(use_loaded, 0, use_package_count * sizeof(bool));
/* First set up the top level input file */
nasm_new(istk);
istk->fp = nasm_open_read(file, NF_TEXT);
if (!istk->fp) {
nasm_fatalf(ERR_NOFILE, "unable to open input file `%s'%s%s",
file, errno ? " " : "", errno ? strerror(errno) : "");
}
src_set(0, file);
istk->where = src_where();
istk->lineinc = 1;
strlist_add(deplist, file);
/*
* Set up the stdmac packages as a virtual include file,
* indicated by a null file pointer.
*/
nasm_new(inc);
inc->next = istk;
src_set(0, NULL);
inc->where = src_where();
inc->nolist = !list_option('b');
istk = inc;
lfmt->uplevel(LIST_INCLUDE, 0);
pp_add_magic_stdmac();
if (tasm_compatible_mode)
pp_add_stdmac(nasm_stdmac_tasm);
pp_add_stdmac(nasm_stdmac_nasm);
pp_add_stdmac(nasm_stdmac_version);
if (extrastdmac)
pp_add_stdmac(extrastdmac);
stdmacpos = stdmacros[0];
stdmacnext = &stdmacros[1];
do_predef = true;
/*
* Define the __?PASS?__ macro. This is defined here unlike all the
* other builtins, because it is special -- it varies between
* passes -- but there is really no particular reason to make it
* magic.
*
* 0 = dependencies only
* 1 = preparatory passes
* 2 = final pass
* 3 = preproces only
*/
switch (mode) {
case PP_NORMAL:
apass = pass_final() ? 2 : 1;
break;
case PP_DEPS:
apass = 0;
break;
case PP_PREPROC:
apass = 3;
break;
default:
panic();
}
define_smacro("__?PASS?__", true, make_tok_num(NULL, apass), NULL);
}
static void pp_init(void)
{
}
/*
* Get a line of tokens. If we popped the macro expansion/include stack,
* we return a pointer to the dummy token tok_pop; at that point if
* istk is NULL then we have reached end of input;
*/
static Token tok_pop; /* Dummy token placeholder */
static Token *pp_tokline(void)
{
while (true) {
Line *l = istk->expansion;
Token *tline = NULL;
Token *dtline;
/*
* Fetch a tokenized line, either from the macro-expansion
* buffer or from the input file.
*/
tline = NULL;
while (l && l->finishes) {
MMacro *fm = l->finishes;
nasm_assert(fm == istk->mstk.mstk);
if (!fm->name && fm->in_progress > 1) {
/*
* This is a macro-end marker for a macro with no
* name, which means it's not really a macro at all
* but a %rep block, and the `in_progress' field is
* more than 1, meaning that we still need to
* repeat. (1 means the natural last repetition; 0
* means termination by %exitrep.) We have
* therefore expanded up to the %endrep, and must
* push the whole block on to the expansion buffer
* again. We don't bother to remove the macro-end
* marker: we'd only have to generate another one
* if we did.
*/
fm->in_progress--;
list_for_each(l, fm->expansion) {
Line *ll;
nasm_new(ll);
ll->next = istk->expansion;
ll->first = dup_tlist(l->first, NULL);
ll->where = l->where;
istk->expansion = ll;
}
break;
} else {
MMacro *m = istk->mstk.mstk;
/*
* Check whether a `%rep' was started and not ended
* within this macro expansion. This can happen and
* should be detected. It's a fatal error because
* I'm too confused to work out how to recover
* sensibly from it.
*/
if (defining) {
if (defining->name)
nasm_panic("defining with name in expansion");
else if (m->name)
nasm_fatal("`%%rep' without `%%endrep' within"
" expansion of macro `%s'", m->name);
}
/*
* FIXME: investigate the relationship at this point between
* istk->mstk.mstk and fm
*/
istk->mstk = m->mstk;
if (m->name) {
/*
* This was a real macro call, not a %rep, and
* therefore the parameter information needs to
* be freed and the iteration count/nesting
* depth adjusted.
*/
if (!--mmacro_deadman.levels) {
/*
* If all mmacro processing done,
* clear all counters and the deadman
* message trigger.
*/
nasm_zero(mmacro_deadman); /* Clear all counters */
}
#if 0
if (m->prev) {
pop_mmacro(m);
fm->in_progress --;
} else
#endif
{
nasm_free(m->params);
free_tlist(m->iline);
nasm_free(m->paramlen);
fm->in_progress = 0;
}
}
if (fm->nolist & NL_LIST) {
istk->nolist--;
} else if (!istk->nolist) {
lfmt->downlevel(LIST_MACRO);
}
if (fm->nolist & NL_LINE) {
istk->noline--;
} else if (!istk->noline) {
if (fm == src_macro_current())
src_macro_pop();
src_update(l->where);
}
istk->where = l->where;
/*
* FIXME It is incorrect to always free_mmacro here.
* It leads to usage-after-free.
*
* https://bugzilla.nasm.us/show_bug.cgi?id=3392414
*/
#if 0
else
free_mmacro(m);
#endif
}
istk->expansion = l->next;
nasm_free(l);
return &tok_pop;
}
do { /* until we get a line we can use */
char *line;
if (istk->expansion) { /* from a macro expansion */
Line *l = istk->expansion;
istk->expansion = l->next;
istk->where = l->where;
tline = l->first;
nasm_free(l);
if (!istk->noline)
src_update(istk->where);
if (!istk->nolist) {
line = detoken(tline, false);
lfmt->line(LIST_MACRO, istk->where.lineno, line);
nasm_free(line);
}
} else if ((line = read_line())) {
line = prepreproc(line);
tline = tokenize(line);
nasm_free(line);
} else {
/*
* The current file has ended; work down the istk
*/
Include *i = istk;
Include *is;
if (i->fp)
fclose(i->fp);
if (i->conds) {
/* nasm_fatal can't be conditionally suppressed */
nasm_fatal("expected `%%endif' before end of file");
}
list_for_each(is, i->next) {
if (is->fp) {
lfmt->downlevel(LIST_INCLUDE);
src_update(is->where);
break;
}
}
istk = i->next;
nasm_free(i);
return &tok_pop;
}
} while (0);
/*
* We must expand MMacro parameters and MMacro-local labels
* _before_ we plunge into directive processing, to cope
* with things like `%define something %1' such as STRUC
* uses. Unless we're _defining_ a MMacro, in which case
* those tokens should be left alone to go into the
* definition; and unless we're in a non-emitting
* condition, in which case we don't want to meddle with
* anything.
*/
if (!defining &&
!(istk->conds && !emitting(istk->conds->state)) &&
!(istk->mstk.mmac && !istk->mstk.mmac->in_progress)) {
tline = expand_mmac_params(tline);
}
/*
* Check the line to see if it's a preprocessor directive.
*/
if (do_directive(tline, &dtline) == DIRECTIVE_FOUND) {
if (dtline)
return dtline;
} else if (defining) {
/*
* We're defining a multi-line macro. We emit nothing
* at all, and just
* shove the tokenized line on to the macro definition.
*/
MMacro *mmac = defining->dstk.mmac;
Line *l;
nasm_new(l);
l->next = defining->expansion;
l->first = tline;
l->finishes = NULL;
l->where = istk->where;
defining->expansion = l;
/*
* Remember if this mmacro expansion contains %00:
* if it does, we will have to handle leading labels
* specially.
*/
if (mmac) {
const Token *t;
list_for_each(t, tline) {
if (!memcmp(t->text.a, "%00", 4))
mmac->capture_label = true;
}
}
} else if (istk->conds && !emitting(istk->conds->state)) {
/*
* We're in a non-emitting branch of a condition block.
* Emit nothing at all, not even a blank line: when we
* emerge from the condition we'll give a line-number
* directive so we keep our place correctly.
*/
free_tlist(tline);
} else if (istk->mstk.mstk && !istk->mstk.mstk->in_progress) {
/*
* We're in a %rep block which has been terminated, so
* we're walking through to the %endrep without
* emitting anything. Emit nothing at all, not even a
* blank line: when we emerge from the %rep block we'll
* give a line-number directive so we keep our place
* correctly.
*/
free_tlist(tline);
} else {
tline = expand_smacro(tline);
if (!expand_mmacro(tline))
return tline;
}
}
}
static char *pp_getline(void)
{
char *line = NULL;
Token *tline;
while (true) {
tline = pp_tokline();
if (tline == &tok_pop) {
/*
* We popped the macro/include stack. If istk is empty,
* we are at end of input, otherwise just loop back.
*/
if (!istk)
break;
} else {
/*
* De-tokenize the line and emit it.
*/
line = detoken(tline, true);
free_tlist(tline);
break;
}
}
if (list_option('e') && istk && !istk->nolist && line && line[0]) {
char *buf = nasm_strcat(" ;;; ", line);
lfmt->line(LIST_MACRO, -1, buf);
nasm_free(buf);
}
return line;
}
static void pp_cleanup_pass(void)
{
if (defining) {
if (defining->name) {
nasm_nonfatal("end of file while still defining macro `%s'",
defining->name);
} else {
nasm_nonfatal("end of file while still in %%rep");
}
free_mmacro(defining);
defining = NULL;
}
while (cstk)
ctx_pop();
free_macros();
while (istk) {
Include *i = istk;
istk = istk->next;
fclose(i->fp);
nasm_free(i);
}
while (cstk)
ctx_pop();
src_set_fname(NULL);
}
static void pp_cleanup_session(void)
{
nasm_free(use_loaded);
free_llist(predef);
predef = NULL;
delete_Blocks();
ipath_list = NULL;
}
static void pp_include_path(struct strlist *list)
{
ipath_list = list;
}
static void pp_pre_include(char *fname)
{
Token *inc, *space, *name;
Line *l;
name = new_Token(NULL, TOK_INTERNAL_STRING, fname, 0);
space = new_White(name);
inc = new_Token(space, TOK_PREPROC_ID, "%include", 0);
l = nasm_malloc(sizeof(Line));
l->next = predef;
l->first = inc;
l->finishes = NULL;
predef = l;
}
static void pp_pre_define(char *definition)
{
Token *def, *space;
Line *l;
char *equals;
equals = strchr(definition, '=');
space = new_White(NULL);
def = new_Token(space, TOK_PREPROC_ID, "%define", 0);
if (equals)
*equals = ' ';
space->next = tokenize(definition);
if (equals)
*equals = '=';
/* We can't predefine a TOK_LOCAL_MACRO for obvious reasons... */
if (space->next->type != TOK_PREPROC_ID &&
space->next->type != TOK_ID)
nasm_warn(WARN_OTHER, "pre-defining non ID `%s\'\n", definition);
l = nasm_malloc(sizeof(Line));
l->next = predef;
l->first = def;
l->finishes = NULL;
predef = l;
}
static void pp_pre_undefine(char *definition)
{
Token *def, *space;
Line *l;
space = new_White(NULL);
def = new_Token(space, TOK_PREPROC_ID, "%undef", 0);
space->next = tokenize(definition);
l = nasm_malloc(sizeof(Line));
l->next = predef;
l->first = def;
l->finishes = NULL;
predef = l;
}
/* Insert an early preprocessor command that doesn't need special handling */
static void pp_pre_command(const char *what, char *string)
{
char *cmd;
Token *def, *space;
Line *l;
def = tokenize(string);
if (what) {
space = new_White(def);
cmd = nasm_strcat(what[0] == '%' ? "" : "%", what);
def = new_Token(space, TOK_PREPROC_ID, cmd, nasm_last_string_len());
nasm_free(cmd);
}
l = nasm_malloc(sizeof(Line));
l->next = predef;
l->first = def;
l->finishes = NULL;
predef = l;
}
static void pp_add_stdmac(macros_t *macros)
{
macros_t **mp;
/* Find the end of the list and avoid duplicates */
for (mp = stdmacros; *mp; mp++) {
if (*mp == macros)
return; /* Nothing to do */
}
nasm_assert(mp < &stdmacros[ARRAY_SIZE(stdmacros)-1]);
*mp = macros;
}
static void pp_extra_stdmac(macros_t *macros)
{
extrastdmac = macros;
}
/* Create a numeric token */
static Token *make_tok_num(Token *next, int64_t val)
{
char numbuf[32];
int len = snprintf(numbuf, sizeof(numbuf), "%"PRId64"", val);
return new_Token(next, TOK_NUMBER, numbuf, len);
}
/* Create a quoted string token */
static Token *make_tok_qstr_len(Token *next, const char *str, size_t len)
{
char *p = nasm_quote(str, &len);
return new_Token_free(next, TOK_STRING, p, len);
}
static Token *make_tok_qstr(Token *next, const char *str)
{
return make_tok_qstr_len(next, str, strlen(str));
}
/* Create a single-character operator token */
static Token *make_tok_char(Token *next, char op)
{
Token *t = new_Token(next, TOK_OTHER, NULL, 1);
t->text.a[0] = op;
return t;
}
/*
* Descent the macro hierarchy and display the expansion after
* encountering an error message.
*/
static void pp_error_list_macros(errflags severity)
{
const MMacro *m;
severity |= ERR_PP_LISTMACRO | ERR_NO_SEVERITY | ERR_HERE;
while ((m = src_error_down())) {
nasm_error(severity, "... from macro `%s' defined", m->name);
}
src_error_reset();
}
const struct preproc_ops nasmpp = {
pp_init,
pp_reset,
pp_getline,
pp_cleanup_pass,
pp_cleanup_session,
pp_extra_stdmac,
pp_pre_define,
pp_pre_undefine,
pp_pre_include,
pp_pre_command,
pp_include_path,
pp_error_list_macros,
pp_suppress_error
};