| /* |
| ** 2017-01-27 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ****************************************************************************** |
| ** |
| ** This SQLite extension implements functions that compute SHA1 hashes. |
| ** Two SQL functions are implemented: |
| ** |
| ** sha1(X) |
| ** sha1_query(Y) |
| ** |
| ** The sha1(X) function computes the SHA1 hash of the input X, or NULL if |
| ** X is NULL. |
| ** |
| ** The sha1_query(Y) function evalutes all queries in the SQL statements of Y |
| ** and returns a hash of their results. |
| */ |
| #include "sqlite3ext.h" |
| SQLITE_EXTENSION_INIT1 |
| #include <assert.h> |
| #include <string.h> |
| #include <stdarg.h> |
| |
| /****************************************************************************** |
| ** The Hash Engine |
| */ |
| /* Context for the SHA1 hash */ |
| typedef struct SHA1Context SHA1Context; |
| struct SHA1Context { |
| unsigned int state[5]; |
| unsigned int count[2]; |
| unsigned char buffer[64]; |
| }; |
| |
| #define SHA_ROT(x,l,r) ((x) << (l) | (x) >> (r)) |
| #define rol(x,k) SHA_ROT(x,k,32-(k)) |
| #define ror(x,k) SHA_ROT(x,32-(k),k) |
| |
| #define blk0le(i) (block[i] = (ror(block[i],8)&0xFF00FF00) \ |
| |(rol(block[i],8)&0x00FF00FF)) |
| #define blk0be(i) block[i] |
| #define blk(i) (block[i&15] = rol(block[(i+13)&15]^block[(i+8)&15] \ |
| ^block[(i+2)&15]^block[i&15],1)) |
| |
| /* |
| * (R0+R1), R2, R3, R4 are the different operations (rounds) used in SHA1 |
| * |
| * Rl0() for little-endian and Rb0() for big-endian. Endianness is |
| * determined at run-time. |
| */ |
| #define Rl0(v,w,x,y,z,i) \ |
| z+=((w&(x^y))^y)+blk0le(i)+0x5A827999+rol(v,5);w=ror(w,2); |
| #define Rb0(v,w,x,y,z,i) \ |
| z+=((w&(x^y))^y)+blk0be(i)+0x5A827999+rol(v,5);w=ror(w,2); |
| #define R1(v,w,x,y,z,i) \ |
| z+=((w&(x^y))^y)+blk(i)+0x5A827999+rol(v,5);w=ror(w,2); |
| #define R2(v,w,x,y,z,i) \ |
| z+=(w^x^y)+blk(i)+0x6ED9EBA1+rol(v,5);w=ror(w,2); |
| #define R3(v,w,x,y,z,i) \ |
| z+=(((w|x)&y)|(w&x))+blk(i)+0x8F1BBCDC+rol(v,5);w=ror(w,2); |
| #define R4(v,w,x,y,z,i) \ |
| z+=(w^x^y)+blk(i)+0xCA62C1D6+rol(v,5);w=ror(w,2); |
| |
| /* |
| * Hash a single 512-bit block. This is the core of the algorithm. |
| */ |
| void SHA1Transform(unsigned int state[5], const unsigned char buffer[64]){ |
| unsigned int qq[5]; /* a, b, c, d, e; */ |
| static int one = 1; |
| unsigned int block[16]; |
| memcpy(block, buffer, 64); |
| memcpy(qq,state,5*sizeof(unsigned int)); |
| |
| #define a qq[0] |
| #define b qq[1] |
| #define c qq[2] |
| #define d qq[3] |
| #define e qq[4] |
| |
| /* Copy p->state[] to working vars */ |
| /* |
| a = state[0]; |
| b = state[1]; |
| c = state[2]; |
| d = state[3]; |
| e = state[4]; |
| */ |
| |
| /* 4 rounds of 20 operations each. Loop unrolled. */ |
| if( 1 == *(unsigned char*)&one ){ |
| Rl0(a,b,c,d,e, 0); Rl0(e,a,b,c,d, 1); Rl0(d,e,a,b,c, 2); Rl0(c,d,e,a,b, 3); |
| Rl0(b,c,d,e,a, 4); Rl0(a,b,c,d,e, 5); Rl0(e,a,b,c,d, 6); Rl0(d,e,a,b,c, 7); |
| Rl0(c,d,e,a,b, 8); Rl0(b,c,d,e,a, 9); Rl0(a,b,c,d,e,10); Rl0(e,a,b,c,d,11); |
| Rl0(d,e,a,b,c,12); Rl0(c,d,e,a,b,13); Rl0(b,c,d,e,a,14); Rl0(a,b,c,d,e,15); |
| }else{ |
| Rb0(a,b,c,d,e, 0); Rb0(e,a,b,c,d, 1); Rb0(d,e,a,b,c, 2); Rb0(c,d,e,a,b, 3); |
| Rb0(b,c,d,e,a, 4); Rb0(a,b,c,d,e, 5); Rb0(e,a,b,c,d, 6); Rb0(d,e,a,b,c, 7); |
| Rb0(c,d,e,a,b, 8); Rb0(b,c,d,e,a, 9); Rb0(a,b,c,d,e,10); Rb0(e,a,b,c,d,11); |
| Rb0(d,e,a,b,c,12); Rb0(c,d,e,a,b,13); Rb0(b,c,d,e,a,14); Rb0(a,b,c,d,e,15); |
| } |
| R1(e,a,b,c,d,16); R1(d,e,a,b,c,17); R1(c,d,e,a,b,18); R1(b,c,d,e,a,19); |
| R2(a,b,c,d,e,20); R2(e,a,b,c,d,21); R2(d,e,a,b,c,22); R2(c,d,e,a,b,23); |
| R2(b,c,d,e,a,24); R2(a,b,c,d,e,25); R2(e,a,b,c,d,26); R2(d,e,a,b,c,27); |
| R2(c,d,e,a,b,28); R2(b,c,d,e,a,29); R2(a,b,c,d,e,30); R2(e,a,b,c,d,31); |
| R2(d,e,a,b,c,32); R2(c,d,e,a,b,33); R2(b,c,d,e,a,34); R2(a,b,c,d,e,35); |
| R2(e,a,b,c,d,36); R2(d,e,a,b,c,37); R2(c,d,e,a,b,38); R2(b,c,d,e,a,39); |
| R3(a,b,c,d,e,40); R3(e,a,b,c,d,41); R3(d,e,a,b,c,42); R3(c,d,e,a,b,43); |
| R3(b,c,d,e,a,44); R3(a,b,c,d,e,45); R3(e,a,b,c,d,46); R3(d,e,a,b,c,47); |
| R3(c,d,e,a,b,48); R3(b,c,d,e,a,49); R3(a,b,c,d,e,50); R3(e,a,b,c,d,51); |
| R3(d,e,a,b,c,52); R3(c,d,e,a,b,53); R3(b,c,d,e,a,54); R3(a,b,c,d,e,55); |
| R3(e,a,b,c,d,56); R3(d,e,a,b,c,57); R3(c,d,e,a,b,58); R3(b,c,d,e,a,59); |
| R4(a,b,c,d,e,60); R4(e,a,b,c,d,61); R4(d,e,a,b,c,62); R4(c,d,e,a,b,63); |
| R4(b,c,d,e,a,64); R4(a,b,c,d,e,65); R4(e,a,b,c,d,66); R4(d,e,a,b,c,67); |
| R4(c,d,e,a,b,68); R4(b,c,d,e,a,69); R4(a,b,c,d,e,70); R4(e,a,b,c,d,71); |
| R4(d,e,a,b,c,72); R4(c,d,e,a,b,73); R4(b,c,d,e,a,74); R4(a,b,c,d,e,75); |
| R4(e,a,b,c,d,76); R4(d,e,a,b,c,77); R4(c,d,e,a,b,78); R4(b,c,d,e,a,79); |
| |
| /* Add the working vars back into context.state[] */ |
| state[0] += a; |
| state[1] += b; |
| state[2] += c; |
| state[3] += d; |
| state[4] += e; |
| |
| #undef a |
| #undef b |
| #undef c |
| #undef d |
| #undef e |
| } |
| |
| |
| /* Initialize a SHA1 context */ |
| static void hash_init(SHA1Context *p){ |
| /* SHA1 initialization constants */ |
| p->state[0] = 0x67452301; |
| p->state[1] = 0xEFCDAB89; |
| p->state[2] = 0x98BADCFE; |
| p->state[3] = 0x10325476; |
| p->state[4] = 0xC3D2E1F0; |
| p->count[0] = p->count[1] = 0; |
| } |
| |
| /* Add new content to the SHA1 hash */ |
| static void hash_step( |
| SHA1Context *p, /* Add content to this context */ |
| const unsigned char *data, /* Data to be added */ |
| unsigned int len /* Number of bytes in data */ |
| ){ |
| unsigned int i, j; |
| |
| j = p->count[0]; |
| if( (p->count[0] += len << 3) < j ){ |
| p->count[1] += (len>>29)+1; |
| } |
| j = (j >> 3) & 63; |
| if( (j + len) > 63 ){ |
| (void)memcpy(&p->buffer[j], data, (i = 64-j)); |
| SHA1Transform(p->state, p->buffer); |
| for(; i + 63 < len; i += 64){ |
| SHA1Transform(p->state, &data[i]); |
| } |
| j = 0; |
| }else{ |
| i = 0; |
| } |
| (void)memcpy(&p->buffer[j], &data[i], len - i); |
| } |
| |
| /* Compute a string using sqlite3_vsnprintf() and hash it */ |
| static void hash_step_vformat( |
| SHA1Context *p, /* Add content to this context */ |
| const char *zFormat, |
| ... |
| ){ |
| va_list ap; |
| int n; |
| char zBuf[50]; |
| va_start(ap, zFormat); |
| sqlite3_vsnprintf(sizeof(zBuf),zBuf,zFormat,ap); |
| va_end(ap); |
| n = (int)strlen(zBuf); |
| hash_step(p, (unsigned char*)zBuf, n); |
| } |
| |
| |
| /* Add padding and compute the message digest. Render the |
| ** message digest as lower-case hexadecimal and put it into |
| ** zOut[]. zOut[] must be at least 41 bytes long. */ |
| static void hash_finish( |
| SHA1Context *p, /* The SHA1 context to finish and render */ |
| char *zOut /* Store hexadecimal hash here */ |
| ){ |
| unsigned int i; |
| unsigned char finalcount[8]; |
| unsigned char digest[20]; |
| static const char zEncode[] = "0123456789abcdef"; |
| |
| for (i = 0; i < 8; i++){ |
| finalcount[i] = (unsigned char)((p->count[(i >= 4 ? 0 : 1)] |
| >> ((3-(i & 3)) * 8) ) & 255); /* Endian independent */ |
| } |
| hash_step(p, (const unsigned char *)"\200", 1); |
| while ((p->count[0] & 504) != 448){ |
| hash_step(p, (const unsigned char *)"\0", 1); |
| } |
| hash_step(p, finalcount, 8); /* Should cause a SHA1Transform() */ |
| for (i = 0; i < 20; i++){ |
| digest[i] = (unsigned char)((p->state[i>>2] >> ((3-(i & 3)) * 8) ) & 255); |
| } |
| for(i=0; i<20; i++){ |
| zOut[i*2] = zEncode[(digest[i]>>4)&0xf]; |
| zOut[i*2+1] = zEncode[digest[i] & 0xf]; |
| } |
| zOut[i*2]= 0; |
| } |
| /* End of the hashing logic |
| *****************************************************************************/ |
| |
| /* |
| ** Implementation of the sha1(X) function. |
| ** |
| ** Return a lower-case hexadecimal rendering of the SHA1 hash of the |
| ** argument X. If X is a BLOB, it is hashed as is. For all other |
| ** types of input, X is converted into a UTF-8 string and the string |
| ** is hash without the trailing 0x00 terminator. The hash of a NULL |
| ** value is NULL. |
| */ |
| static void sha1Func( |
| sqlite3_context *context, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| SHA1Context cx; |
| int eType = sqlite3_value_type(argv[0]); |
| int nByte = sqlite3_value_bytes(argv[0]); |
| char zOut[44]; |
| |
| assert( argc==1 ); |
| if( eType==SQLITE_NULL ) return; |
| hash_init(&cx); |
| if( eType==SQLITE_BLOB ){ |
| hash_step(&cx, sqlite3_value_blob(argv[0]), nByte); |
| }else{ |
| hash_step(&cx, sqlite3_value_text(argv[0]), nByte); |
| } |
| hash_finish(&cx, zOut); |
| sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT); |
| } |
| |
| /* |
| ** Implementation of the sha1_query(SQL) function. |
| ** |
| ** This function compiles and runs the SQL statement(s) given in the |
| ** argument. The results are hashed using SHA1 and that hash is returned. |
| ** |
| ** The original SQL text is included as part of the hash. |
| ** |
| ** The hash is not just a concatenation of the outputs. Each query |
| ** is delimited and each row and value within the query is delimited, |
| ** with all values being marked with their datatypes. |
| */ |
| static void sha1QueryFunc( |
| sqlite3_context *context, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| sqlite3 *db = sqlite3_context_db_handle(context); |
| const char *zSql = (const char*)sqlite3_value_text(argv[0]); |
| sqlite3_stmt *pStmt = 0; |
| int nCol; /* Number of columns in the result set */ |
| int i; /* Loop counter */ |
| int rc; |
| int n; |
| const char *z; |
| SHA1Context cx; |
| char zOut[44]; |
| |
| assert( argc==1 ); |
| if( zSql==0 ) return; |
| hash_init(&cx); |
| while( zSql[0] ){ |
| rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, &zSql); |
| if( rc ){ |
| char *zMsg = sqlite3_mprintf("error SQL statement [%s]: %s", |
| zSql, sqlite3_errmsg(db)); |
| sqlite3_finalize(pStmt); |
| sqlite3_result_error(context, zMsg, -1); |
| sqlite3_free(zMsg); |
| return; |
| } |
| if( !sqlite3_stmt_readonly(pStmt) ){ |
| char *zMsg = sqlite3_mprintf("non-query: [%s]", sqlite3_sql(pStmt)); |
| sqlite3_finalize(pStmt); |
| sqlite3_result_error(context, zMsg, -1); |
| sqlite3_free(zMsg); |
| return; |
| } |
| nCol = sqlite3_column_count(pStmt); |
| z = sqlite3_sql(pStmt); |
| n = (int)strlen(z); |
| hash_step_vformat(&cx,"S%d:",n); |
| hash_step(&cx,(unsigned char*)z,n); |
| |
| /* Compute a hash over the result of the query */ |
| while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| hash_step(&cx,(const unsigned char*)"R",1); |
| for(i=0; i<nCol; i++){ |
| switch( sqlite3_column_type(pStmt,i) ){ |
| case SQLITE_NULL: { |
| hash_step(&cx, (const unsigned char*)"N",1); |
| break; |
| } |
| case SQLITE_INTEGER: { |
| sqlite3_uint64 u; |
| int j; |
| unsigned char x[9]; |
| sqlite3_int64 v = sqlite3_column_int64(pStmt,i); |
| memcpy(&u, &v, 8); |
| for(j=8; j>=1; j--){ |
| x[j] = u & 0xff; |
| u >>= 8; |
| } |
| x[0] = 'I'; |
| hash_step(&cx, x, 9); |
| break; |
| } |
| case SQLITE_FLOAT: { |
| sqlite3_uint64 u; |
| int j; |
| unsigned char x[9]; |
| double r = sqlite3_column_double(pStmt,i); |
| memcpy(&u, &r, 8); |
| for(j=8; j>=1; j--){ |
| x[j] = u & 0xff; |
| u >>= 8; |
| } |
| x[0] = 'F'; |
| hash_step(&cx,x,9); |
| break; |
| } |
| case SQLITE_TEXT: { |
| int n2 = sqlite3_column_bytes(pStmt, i); |
| const unsigned char *z2 = sqlite3_column_text(pStmt, i); |
| hash_step_vformat(&cx,"T%d:",n2); |
| hash_step(&cx, z2, n2); |
| break; |
| } |
| case SQLITE_BLOB: { |
| int n2 = sqlite3_column_bytes(pStmt, i); |
| const unsigned char *z2 = sqlite3_column_blob(pStmt, i); |
| hash_step_vformat(&cx,"B%d:",n2); |
| hash_step(&cx, z2, n2); |
| break; |
| } |
| } |
| } |
| } |
| sqlite3_finalize(pStmt); |
| } |
| hash_finish(&cx, zOut); |
| sqlite3_result_text(context, zOut, 40, SQLITE_TRANSIENT); |
| } |
| |
| |
| #ifdef _WIN32 |
| __declspec(dllexport) |
| #endif |
| int sqlite3_sha_init( |
| sqlite3 *db, |
| char **pzErrMsg, |
| const sqlite3_api_routines *pApi |
| ){ |
| int rc = SQLITE_OK; |
| SQLITE_EXTENSION_INIT2(pApi); |
| (void)pzErrMsg; /* Unused parameter */ |
| rc = sqlite3_create_function(db, "sha1", 1, SQLITE_UTF8|SQLITE_INNOCUOUS, 0, |
| sha1Func, 0, 0); |
| if( rc==SQLITE_OK ){ |
| rc = sqlite3_create_function(db, "sha1_query", 1, |
| SQLITE_UTF8|SQLITE_DIRECTONLY, 0, |
| sha1QueryFunc, 0, 0); |
| } |
| return rc; |
| } |