| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains routines used for analyzing expressions and |
| ** for generating VDBE code that evaluates expressions in SQLite. |
| */ |
| #include "sqliteInt.h" |
| |
| /* Forward declarations */ |
| static void exprCodeBetween(Parse*,Expr*,int,void(*)(Parse*,Expr*,int,int),int); |
| static int exprCodeVector(Parse *pParse, Expr *p, int *piToFree); |
| |
| /* |
| ** Return the affinity character for a single column of a table. |
| */ |
| char sqlite3TableColumnAffinity(Table *pTab, int iCol){ |
| assert( iCol<pTab->nCol ); |
| return iCol>=0 ? pTab->aCol[iCol].affinity : SQLITE_AFF_INTEGER; |
| } |
| |
| /* |
| ** Return the 'affinity' of the expression pExpr if any. |
| ** |
| ** If pExpr is a column, a reference to a column via an 'AS' alias, |
| ** or a sub-select with a column as the return value, then the |
| ** affinity of that column is returned. Otherwise, 0x00 is returned, |
| ** indicating no affinity for the expression. |
| ** |
| ** i.e. the WHERE clause expressions in the following statements all |
| ** have an affinity: |
| ** |
| ** CREATE TABLE t1(a); |
| ** SELECT * FROM t1 WHERE a; |
| ** SELECT a AS b FROM t1 WHERE b; |
| ** SELECT * FROM t1 WHERE (select a from t1); |
| */ |
| char sqlite3ExprAffinity(Expr *pExpr){ |
| int op; |
| while( ExprHasProperty(pExpr, EP_Skip) ){ |
| assert( pExpr->op==TK_COLLATE ); |
| pExpr = pExpr->pLeft; |
| assert( pExpr!=0 ); |
| } |
| op = pExpr->op; |
| if( op==TK_SELECT ){ |
| assert( pExpr->flags&EP_xIsSelect ); |
| return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); |
| } |
| if( op==TK_REGISTER ) op = pExpr->op2; |
| #ifndef SQLITE_OMIT_CAST |
| if( op==TK_CAST ){ |
| assert( !ExprHasProperty(pExpr, EP_IntValue) ); |
| return sqlite3AffinityType(pExpr->u.zToken, 0); |
| } |
| #endif |
| if( (op==TK_AGG_COLUMN || op==TK_COLUMN) && pExpr->y.pTab ){ |
| return sqlite3TableColumnAffinity(pExpr->y.pTab, pExpr->iColumn); |
| } |
| if( op==TK_SELECT_COLUMN ){ |
| assert( pExpr->pLeft->flags&EP_xIsSelect ); |
| return sqlite3ExprAffinity( |
| pExpr->pLeft->x.pSelect->pEList->a[pExpr->iColumn].pExpr |
| ); |
| } |
| if( op==TK_VECTOR ){ |
| return sqlite3ExprAffinity(pExpr->x.pList->a[0].pExpr); |
| } |
| return pExpr->affExpr; |
| } |
| |
| /* |
| ** Set the collating sequence for expression pExpr to be the collating |
| ** sequence named by pToken. Return a pointer to a new Expr node that |
| ** implements the COLLATE operator. |
| ** |
| ** If a memory allocation error occurs, that fact is recorded in pParse->db |
| ** and the pExpr parameter is returned unchanged. |
| */ |
| Expr *sqlite3ExprAddCollateToken( |
| Parse *pParse, /* Parsing context */ |
| Expr *pExpr, /* Add the "COLLATE" clause to this expression */ |
| const Token *pCollName, /* Name of collating sequence */ |
| int dequote /* True to dequote pCollName */ |
| ){ |
| if( pCollName->n>0 ){ |
| Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); |
| if( pNew ){ |
| pNew->pLeft = pExpr; |
| pNew->flags |= EP_Collate|EP_Skip; |
| pExpr = pNew; |
| } |
| } |
| return pExpr; |
| } |
| Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ |
| Token s; |
| assert( zC!=0 ); |
| sqlite3TokenInit(&s, (char*)zC); |
| return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); |
| } |
| |
| /* |
| ** Skip over any TK_COLLATE operators. |
| */ |
| Expr *sqlite3ExprSkipCollate(Expr *pExpr){ |
| while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ |
| assert( pExpr->op==TK_COLLATE ); |
| pExpr = pExpr->pLeft; |
| } |
| return pExpr; |
| } |
| |
| /* |
| ** Skip over any TK_COLLATE operators and/or any unlikely() |
| ** or likelihood() or likely() functions at the root of an |
| ** expression. |
| */ |
| Expr *sqlite3ExprSkipCollateAndLikely(Expr *pExpr){ |
| while( pExpr && ExprHasProperty(pExpr, EP_Skip|EP_Unlikely) ){ |
| if( ExprHasProperty(pExpr, EP_Unlikely) ){ |
| assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); |
| assert( pExpr->x.pList->nExpr>0 ); |
| assert( pExpr->op==TK_FUNCTION ); |
| pExpr = pExpr->x.pList->a[0].pExpr; |
| }else{ |
| assert( pExpr->op==TK_COLLATE ); |
| pExpr = pExpr->pLeft; |
| } |
| } |
| return pExpr; |
| } |
| |
| /* |
| ** Return the collation sequence for the expression pExpr. If |
| ** there is no defined collating sequence, return NULL. |
| ** |
| ** See also: sqlite3ExprNNCollSeq() |
| ** |
| ** The sqlite3ExprNNCollSeq() works the same exact that it returns the |
| ** default collation if pExpr has no defined collation. |
| ** |
| ** The collating sequence might be determined by a COLLATE operator |
| ** or by the presence of a column with a defined collating sequence. |
| ** COLLATE operators take first precedence. Left operands take |
| ** precedence over right operands. |
| */ |
| CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ |
| sqlite3 *db = pParse->db; |
| CollSeq *pColl = 0; |
| Expr *p = pExpr; |
| while( p ){ |
| int op = p->op; |
| if( op==TK_REGISTER ) op = p->op2; |
| if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_TRIGGER) |
| && p->y.pTab!=0 |
| ){ |
| /* op==TK_REGISTER && p->y.pTab!=0 happens when pExpr was originally |
| ** a TK_COLUMN but was previously evaluated and cached in a register */ |
| int j = p->iColumn; |
| if( j>=0 ){ |
| const char *zColl = p->y.pTab->aCol[j].zColl; |
| pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); |
| } |
| break; |
| } |
| if( op==TK_CAST || op==TK_UPLUS ){ |
| p = p->pLeft; |
| continue; |
| } |
| if( op==TK_VECTOR ){ |
| p = p->x.pList->a[0].pExpr; |
| continue; |
| } |
| if( op==TK_COLLATE ){ |
| pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); |
| break; |
| } |
| if( p->flags & EP_Collate ){ |
| if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ |
| p = p->pLeft; |
| }else{ |
| Expr *pNext = p->pRight; |
| /* The Expr.x union is never used at the same time as Expr.pRight */ |
| assert( p->x.pList==0 || p->pRight==0 ); |
| if( p->x.pList!=0 |
| && !db->mallocFailed |
| && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) |
| ){ |
| int i; |
| for(i=0; i<p->x.pList->nExpr; i++){ |
| if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ |
| pNext = p->x.pList->a[i].pExpr; |
| break; |
| } |
| } |
| } |
| p = pNext; |
| } |
| }else{ |
| break; |
| } |
| } |
| if( sqlite3CheckCollSeq(pParse, pColl) ){ |
| pColl = 0; |
| } |
| return pColl; |
| } |
| |
| /* |
| ** Return the collation sequence for the expression pExpr. If |
| ** there is no defined collating sequence, return a pointer to the |
| ** defautl collation sequence. |
| ** |
| ** See also: sqlite3ExprCollSeq() |
| ** |
| ** The sqlite3ExprCollSeq() routine works the same except that it |
| ** returns NULL if there is no defined collation. |
| */ |
| CollSeq *sqlite3ExprNNCollSeq(Parse *pParse, Expr *pExpr){ |
| CollSeq *p = sqlite3ExprCollSeq(pParse, pExpr); |
| if( p==0 ) p = pParse->db->pDfltColl; |
| assert( p!=0 ); |
| return p; |
| } |
| |
| /* |
| ** Return TRUE if the two expressions have equivalent collating sequences. |
| */ |
| int sqlite3ExprCollSeqMatch(Parse *pParse, Expr *pE1, Expr *pE2){ |
| CollSeq *pColl1 = sqlite3ExprNNCollSeq(pParse, pE1); |
| CollSeq *pColl2 = sqlite3ExprNNCollSeq(pParse, pE2); |
| return sqlite3StrICmp(pColl1->zName, pColl2->zName)==0; |
| } |
| |
| /* |
| ** pExpr is an operand of a comparison operator. aff2 is the |
| ** type affinity of the other operand. This routine returns the |
| ** type affinity that should be used for the comparison operator. |
| */ |
| char sqlite3CompareAffinity(Expr *pExpr, char aff2){ |
| char aff1 = sqlite3ExprAffinity(pExpr); |
| if( aff1>SQLITE_AFF_NONE && aff2>SQLITE_AFF_NONE ){ |
| /* Both sides of the comparison are columns. If one has numeric |
| ** affinity, use that. Otherwise use no affinity. |
| */ |
| if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ |
| return SQLITE_AFF_NUMERIC; |
| }else{ |
| return SQLITE_AFF_BLOB; |
| } |
| }else{ |
| /* One side is a column, the other is not. Use the columns affinity. */ |
| assert( aff1<=SQLITE_AFF_NONE || aff2<=SQLITE_AFF_NONE ); |
| return (aff1<=SQLITE_AFF_NONE ? aff2 : aff1) | SQLITE_AFF_NONE; |
| } |
| } |
| |
| /* |
| ** pExpr is a comparison operator. Return the type affinity that should |
| ** be applied to both operands prior to doing the comparison. |
| */ |
| static char comparisonAffinity(Expr *pExpr){ |
| char aff; |
| assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || |
| pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || |
| pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); |
| assert( pExpr->pLeft ); |
| aff = sqlite3ExprAffinity(pExpr->pLeft); |
| if( pExpr->pRight ){ |
| aff = sqlite3CompareAffinity(pExpr->pRight, aff); |
| }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
| aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); |
| }else if( aff==0 ){ |
| aff = SQLITE_AFF_BLOB; |
| } |
| return aff; |
| } |
| |
| /* |
| ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. |
| ** idx_affinity is the affinity of an indexed column. Return true |
| ** if the index with affinity idx_affinity may be used to implement |
| ** the comparison in pExpr. |
| */ |
| int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ |
| char aff = comparisonAffinity(pExpr); |
| if( aff<SQLITE_AFF_TEXT ){ |
| return 1; |
| } |
| if( aff==SQLITE_AFF_TEXT ){ |
| return idx_affinity==SQLITE_AFF_TEXT; |
| } |
| return sqlite3IsNumericAffinity(idx_affinity); |
| } |
| |
| /* |
| ** Return the P5 value that should be used for a binary comparison |
| ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. |
| */ |
| static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ |
| u8 aff = (char)sqlite3ExprAffinity(pExpr2); |
| aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; |
| return aff; |
| } |
| |
| /* |
| ** Return a pointer to the collation sequence that should be used by |
| ** a binary comparison operator comparing pLeft and pRight. |
| ** |
| ** If the left hand expression has a collating sequence type, then it is |
| ** used. Otherwise the collation sequence for the right hand expression |
| ** is used, or the default (BINARY) if neither expression has a collating |
| ** type. |
| ** |
| ** Argument pRight (but not pLeft) may be a null pointer. In this case, |
| ** it is not considered. |
| */ |
| CollSeq *sqlite3BinaryCompareCollSeq( |
| Parse *pParse, |
| Expr *pLeft, |
| Expr *pRight |
| ){ |
| CollSeq *pColl; |
| assert( pLeft ); |
| if( pLeft->flags & EP_Collate ){ |
| pColl = sqlite3ExprCollSeq(pParse, pLeft); |
| }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ |
| pColl = sqlite3ExprCollSeq(pParse, pRight); |
| }else{ |
| pColl = sqlite3ExprCollSeq(pParse, pLeft); |
| if( !pColl ){ |
| pColl = sqlite3ExprCollSeq(pParse, pRight); |
| } |
| } |
| return pColl; |
| } |
| |
| /* Expresssion p is a comparison operator. Return a collation sequence |
| ** appropriate for the comparison operator. |
| ** |
| ** This is normally just a wrapper around sqlite3BinaryCompareCollSeq(). |
| ** However, if the OP_Commuted flag is set, then the order of the operands |
| ** is reversed in the sqlite3BinaryCompareCollSeq() call so that the |
| ** correct collating sequence is found. |
| */ |
| CollSeq *sqlite3ExprCompareCollSeq(Parse *pParse, Expr *p){ |
| if( ExprHasProperty(p, EP_Commuted) ){ |
| return sqlite3BinaryCompareCollSeq(pParse, p->pRight, p->pLeft); |
| }else{ |
| return sqlite3BinaryCompareCollSeq(pParse, p->pLeft, p->pRight); |
| } |
| } |
| |
| /* |
| ** Generate code for a comparison operator. |
| */ |
| static int codeCompare( |
| Parse *pParse, /* The parsing (and code generating) context */ |
| Expr *pLeft, /* The left operand */ |
| Expr *pRight, /* The right operand */ |
| int opcode, /* The comparison opcode */ |
| int in1, int in2, /* Register holding operands */ |
| int dest, /* Jump here if true. */ |
| int jumpIfNull, /* If true, jump if either operand is NULL */ |
| int isCommuted /* The comparison has been commuted */ |
| ){ |
| int p5; |
| int addr; |
| CollSeq *p4; |
| |
| if( pParse->nErr ) return 0; |
| if( isCommuted ){ |
| p4 = sqlite3BinaryCompareCollSeq(pParse, pRight, pLeft); |
| }else{ |
| p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); |
| } |
| p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); |
| addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, |
| (void*)p4, P4_COLLSEQ); |
| sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); |
| return addr; |
| } |
| |
| /* |
| ** Return true if expression pExpr is a vector, or false otherwise. |
| ** |
| ** A vector is defined as any expression that results in two or more |
| ** columns of result. Every TK_VECTOR node is an vector because the |
| ** parser will not generate a TK_VECTOR with fewer than two entries. |
| ** But a TK_SELECT might be either a vector or a scalar. It is only |
| ** considered a vector if it has two or more result columns. |
| */ |
| int sqlite3ExprIsVector(Expr *pExpr){ |
| return sqlite3ExprVectorSize(pExpr)>1; |
| } |
| |
| /* |
| ** If the expression passed as the only argument is of type TK_VECTOR |
| ** return the number of expressions in the vector. Or, if the expression |
| ** is a sub-select, return the number of columns in the sub-select. For |
| ** any other type of expression, return 1. |
| */ |
| int sqlite3ExprVectorSize(Expr *pExpr){ |
| u8 op = pExpr->op; |
| if( op==TK_REGISTER ) op = pExpr->op2; |
| if( op==TK_VECTOR ){ |
| return pExpr->x.pList->nExpr; |
| }else if( op==TK_SELECT ){ |
| return pExpr->x.pSelect->pEList->nExpr; |
| }else{ |
| return 1; |
| } |
| } |
| |
| /* |
| ** Return a pointer to a subexpression of pVector that is the i-th |
| ** column of the vector (numbered starting with 0). The caller must |
| ** ensure that i is within range. |
| ** |
| ** If pVector is really a scalar (and "scalar" here includes subqueries |
| ** that return a single column!) then return pVector unmodified. |
| ** |
| ** pVector retains ownership of the returned subexpression. |
| ** |
| ** If the vector is a (SELECT ...) then the expression returned is |
| ** just the expression for the i-th term of the result set, and may |
| ** not be ready for evaluation because the table cursor has not yet |
| ** been positioned. |
| */ |
| Expr *sqlite3VectorFieldSubexpr(Expr *pVector, int i){ |
| assert( i<sqlite3ExprVectorSize(pVector) ); |
| if( sqlite3ExprIsVector(pVector) ){ |
| assert( pVector->op2==0 || pVector->op==TK_REGISTER ); |
| if( pVector->op==TK_SELECT || pVector->op2==TK_SELECT ){ |
| return pVector->x.pSelect->pEList->a[i].pExpr; |
| }else{ |
| return pVector->x.pList->a[i].pExpr; |
| } |
| } |
| return pVector; |
| } |
| |
| /* |
| ** Compute and return a new Expr object which when passed to |
| ** sqlite3ExprCode() will generate all necessary code to compute |
| ** the iField-th column of the vector expression pVector. |
| ** |
| ** It is ok for pVector to be a scalar (as long as iField==0). |
| ** In that case, this routine works like sqlite3ExprDup(). |
| ** |
| ** The caller owns the returned Expr object and is responsible for |
| ** ensuring that the returned value eventually gets freed. |
| ** |
| ** The caller retains ownership of pVector. If pVector is a TK_SELECT, |
| ** then the returned object will reference pVector and so pVector must remain |
| ** valid for the life of the returned object. If pVector is a TK_VECTOR |
| ** or a scalar expression, then it can be deleted as soon as this routine |
| ** returns. |
| ** |
| ** A trick to cause a TK_SELECT pVector to be deleted together with |
| ** the returned Expr object is to attach the pVector to the pRight field |
| ** of the returned TK_SELECT_COLUMN Expr object. |
| */ |
| Expr *sqlite3ExprForVectorField( |
| Parse *pParse, /* Parsing context */ |
| Expr *pVector, /* The vector. List of expressions or a sub-SELECT */ |
| int iField /* Which column of the vector to return */ |
| ){ |
| Expr *pRet; |
| if( pVector->op==TK_SELECT ){ |
| assert( pVector->flags & EP_xIsSelect ); |
| /* The TK_SELECT_COLUMN Expr node: |
| ** |
| ** pLeft: pVector containing TK_SELECT. Not deleted. |
| ** pRight: not used. But recursively deleted. |
| ** iColumn: Index of a column in pVector |
| ** iTable: 0 or the number of columns on the LHS of an assignment |
| ** pLeft->iTable: First in an array of register holding result, or 0 |
| ** if the result is not yet computed. |
| ** |
| ** sqlite3ExprDelete() specifically skips the recursive delete of |
| ** pLeft on TK_SELECT_COLUMN nodes. But pRight is followed, so pVector |
| ** can be attached to pRight to cause this node to take ownership of |
| ** pVector. Typically there will be multiple TK_SELECT_COLUMN nodes |
| ** with the same pLeft pointer to the pVector, but only one of them |
| ** will own the pVector. |
| */ |
| pRet = sqlite3PExpr(pParse, TK_SELECT_COLUMN, 0, 0); |
| if( pRet ){ |
| pRet->iColumn = iField; |
| pRet->pLeft = pVector; |
| } |
| assert( pRet==0 || pRet->iTable==0 ); |
| }else{ |
| if( pVector->op==TK_VECTOR ) pVector = pVector->x.pList->a[iField].pExpr; |
| pRet = sqlite3ExprDup(pParse->db, pVector, 0); |
| sqlite3RenameTokenRemap(pParse, pRet, pVector); |
| } |
| return pRet; |
| } |
| |
| /* |
| ** If expression pExpr is of type TK_SELECT, generate code to evaluate |
| ** it. Return the register in which the result is stored (or, if the |
| ** sub-select returns more than one column, the first in an array |
| ** of registers in which the result is stored). |
| ** |
| ** If pExpr is not a TK_SELECT expression, return 0. |
| */ |
| static int exprCodeSubselect(Parse *pParse, Expr *pExpr){ |
| int reg = 0; |
| #ifndef SQLITE_OMIT_SUBQUERY |
| if( pExpr->op==TK_SELECT ){ |
| reg = sqlite3CodeSubselect(pParse, pExpr); |
| } |
| #endif |
| return reg; |
| } |
| |
| /* |
| ** Argument pVector points to a vector expression - either a TK_VECTOR |
| ** or TK_SELECT that returns more than one column. This function returns |
| ** the register number of a register that contains the value of |
| ** element iField of the vector. |
| ** |
| ** If pVector is a TK_SELECT expression, then code for it must have |
| ** already been generated using the exprCodeSubselect() routine. In this |
| ** case parameter regSelect should be the first in an array of registers |
| ** containing the results of the sub-select. |
| ** |
| ** If pVector is of type TK_VECTOR, then code for the requested field |
| ** is generated. In this case (*pRegFree) may be set to the number of |
| ** a temporary register to be freed by the caller before returning. |
| ** |
| ** Before returning, output parameter (*ppExpr) is set to point to the |
| ** Expr object corresponding to element iElem of the vector. |
| */ |
| static int exprVectorRegister( |
| Parse *pParse, /* Parse context */ |
| Expr *pVector, /* Vector to extract element from */ |
| int iField, /* Field to extract from pVector */ |
| int regSelect, /* First in array of registers */ |
| Expr **ppExpr, /* OUT: Expression element */ |
| int *pRegFree /* OUT: Temp register to free */ |
| ){ |
| u8 op = pVector->op; |
| assert( op==TK_VECTOR || op==TK_REGISTER || op==TK_SELECT ); |
| if( op==TK_REGISTER ){ |
| *ppExpr = sqlite3VectorFieldSubexpr(pVector, iField); |
| return pVector->iTable+iField; |
| } |
| if( op==TK_SELECT ){ |
| *ppExpr = pVector->x.pSelect->pEList->a[iField].pExpr; |
| return regSelect+iField; |
| } |
| *ppExpr = pVector->x.pList->a[iField].pExpr; |
| return sqlite3ExprCodeTemp(pParse, *ppExpr, pRegFree); |
| } |
| |
| /* |
| ** Expression pExpr is a comparison between two vector values. Compute |
| ** the result of the comparison (1, 0, or NULL) and write that |
| ** result into register dest. |
| ** |
| ** The caller must satisfy the following preconditions: |
| ** |
| ** if pExpr->op==TK_IS: op==TK_EQ and p5==SQLITE_NULLEQ |
| ** if pExpr->op==TK_ISNOT: op==TK_NE and p5==SQLITE_NULLEQ |
| ** otherwise: op==pExpr->op and p5==0 |
| */ |
| static void codeVectorCompare( |
| Parse *pParse, /* Code generator context */ |
| Expr *pExpr, /* The comparison operation */ |
| int dest, /* Write results into this register */ |
| u8 op, /* Comparison operator */ |
| u8 p5 /* SQLITE_NULLEQ or zero */ |
| ){ |
| Vdbe *v = pParse->pVdbe; |
| Expr *pLeft = pExpr->pLeft; |
| Expr *pRight = pExpr->pRight; |
| int nLeft = sqlite3ExprVectorSize(pLeft); |
| int i; |
| int regLeft = 0; |
| int regRight = 0; |
| u8 opx = op; |
| int addrDone = sqlite3VdbeMakeLabel(pParse); |
| int isCommuted = ExprHasProperty(pExpr,EP_Commuted); |
| |
| if( pParse->nErr ) return; |
| if( nLeft!=sqlite3ExprVectorSize(pRight) ){ |
| sqlite3ErrorMsg(pParse, "row value misused"); |
| return; |
| } |
| assert( pExpr->op==TK_EQ || pExpr->op==TK_NE |
| || pExpr->op==TK_IS || pExpr->op==TK_ISNOT |
| || pExpr->op==TK_LT || pExpr->op==TK_GT |
| || pExpr->op==TK_LE || pExpr->op==TK_GE |
| ); |
| assert( pExpr->op==op || (pExpr->op==TK_IS && op==TK_EQ) |
| || (pExpr->op==TK_ISNOT && op==TK_NE) ); |
| assert( p5==0 || pExpr->op!=op ); |
| assert( p5==SQLITE_NULLEQ || pExpr->op==op ); |
| |
| p5 |= SQLITE_STOREP2; |
| if( opx==TK_LE ) opx = TK_LT; |
| if( opx==TK_GE ) opx = TK_GT; |
| |
| regLeft = exprCodeSubselect(pParse, pLeft); |
| regRight = exprCodeSubselect(pParse, pRight); |
| |
| for(i=0; 1 /*Loop exits by "break"*/; i++){ |
| int regFree1 = 0, regFree2 = 0; |
| Expr *pL, *pR; |
| int r1, r2; |
| assert( i>=0 && i<nLeft ); |
| r1 = exprVectorRegister(pParse, pLeft, i, regLeft, &pL, ®Free1); |
| r2 = exprVectorRegister(pParse, pRight, i, regRight, &pR, ®Free2); |
| codeCompare(pParse, pL, pR, opx, r1, r2, dest, p5, isCommuted); |
| testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); |
| testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); |
| testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); |
| testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); |
| testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); |
| testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); |
| sqlite3ReleaseTempReg(pParse, regFree1); |
| sqlite3ReleaseTempReg(pParse, regFree2); |
| if( i==nLeft-1 ){ |
| break; |
| } |
| if( opx==TK_EQ ){ |
| sqlite3VdbeAddOp2(v, OP_IfNot, dest, addrDone); VdbeCoverage(v); |
| p5 |= SQLITE_KEEPNULL; |
| }else if( opx==TK_NE ){ |
| sqlite3VdbeAddOp2(v, OP_If, dest, addrDone); VdbeCoverage(v); |
| p5 |= SQLITE_KEEPNULL; |
| }else{ |
| assert( op==TK_LT || op==TK_GT || op==TK_LE || op==TK_GE ); |
| sqlite3VdbeAddOp2(v, OP_ElseNotEq, 0, addrDone); |
| VdbeCoverageIf(v, op==TK_LT); |
| VdbeCoverageIf(v, op==TK_GT); |
| VdbeCoverageIf(v, op==TK_LE); |
| VdbeCoverageIf(v, op==TK_GE); |
| if( i==nLeft-2 ) opx = op; |
| } |
| } |
| sqlite3VdbeResolveLabel(v, addrDone); |
| } |
| |
| #if SQLITE_MAX_EXPR_DEPTH>0 |
| /* |
| ** Check that argument nHeight is less than or equal to the maximum |
| ** expression depth allowed. If it is not, leave an error message in |
| ** pParse. |
| */ |
| int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ |
| int rc = SQLITE_OK; |
| int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; |
| if( nHeight>mxHeight ){ |
| sqlite3ErrorMsg(pParse, |
| "Expression tree is too large (maximum depth %d)", mxHeight |
| ); |
| rc = SQLITE_ERROR; |
| } |
| return rc; |
| } |
| |
| /* The following three functions, heightOfExpr(), heightOfExprList() |
| ** and heightOfSelect(), are used to determine the maximum height |
| ** of any expression tree referenced by the structure passed as the |
| ** first argument. |
| ** |
| ** If this maximum height is greater than the current value pointed |
| ** to by pnHeight, the second parameter, then set *pnHeight to that |
| ** value. |
| */ |
| static void heightOfExpr(Expr *p, int *pnHeight){ |
| if( p ){ |
| if( p->nHeight>*pnHeight ){ |
| *pnHeight = p->nHeight; |
| } |
| } |
| } |
| static void heightOfExprList(ExprList *p, int *pnHeight){ |
| if( p ){ |
| int i; |
| for(i=0; i<p->nExpr; i++){ |
| heightOfExpr(p->a[i].pExpr, pnHeight); |
| } |
| } |
| } |
| static void heightOfSelect(Select *pSelect, int *pnHeight){ |
| Select *p; |
| for(p=pSelect; p; p=p->pPrior){ |
| heightOfExpr(p->pWhere, pnHeight); |
| heightOfExpr(p->pHaving, pnHeight); |
| heightOfExpr(p->pLimit, pnHeight); |
| heightOfExprList(p->pEList, pnHeight); |
| heightOfExprList(p->pGroupBy, pnHeight); |
| heightOfExprList(p->pOrderBy, pnHeight); |
| } |
| } |
| |
| /* |
| ** Set the Expr.nHeight variable in the structure passed as an |
| ** argument. An expression with no children, Expr.pList or |
| ** Expr.pSelect member has a height of 1. Any other expression |
| ** has a height equal to the maximum height of any other |
| ** referenced Expr plus one. |
| ** |
| ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, |
| ** if appropriate. |
| */ |
| static void exprSetHeight(Expr *p){ |
| int nHeight = 0; |
| heightOfExpr(p->pLeft, &nHeight); |
| heightOfExpr(p->pRight, &nHeight); |
| if( ExprHasProperty(p, EP_xIsSelect) ){ |
| heightOfSelect(p->x.pSelect, &nHeight); |
| }else if( p->x.pList ){ |
| heightOfExprList(p->x.pList, &nHeight); |
| p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); |
| } |
| p->nHeight = nHeight + 1; |
| } |
| |
| /* |
| ** Set the Expr.nHeight variable using the exprSetHeight() function. If |
| ** the height is greater than the maximum allowed expression depth, |
| ** leave an error in pParse. |
| ** |
| ** Also propagate all EP_Propagate flags from the Expr.x.pList into |
| ** Expr.flags. |
| */ |
| void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ |
| if( pParse->nErr ) return; |
| exprSetHeight(p); |
| sqlite3ExprCheckHeight(pParse, p->nHeight); |
| } |
| |
| /* |
| ** Return the maximum height of any expression tree referenced |
| ** by the select statement passed as an argument. |
| */ |
| int sqlite3SelectExprHeight(Select *p){ |
| int nHeight = 0; |
| heightOfSelect(p, &nHeight); |
| return nHeight; |
| } |
| #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ |
| /* |
| ** Propagate all EP_Propagate flags from the Expr.x.pList into |
| ** Expr.flags. |
| */ |
| void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ |
| if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ |
| p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); |
| } |
| } |
| #define exprSetHeight(y) |
| #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ |
| |
| /* |
| ** This routine is the core allocator for Expr nodes. |
| ** |
| ** Construct a new expression node and return a pointer to it. Memory |
| ** for this node and for the pToken argument is a single allocation |
| ** obtained from sqlite3DbMalloc(). The calling function |
| ** is responsible for making sure the node eventually gets freed. |
| ** |
| ** If dequote is true, then the token (if it exists) is dequoted. |
| ** If dequote is false, no dequoting is performed. The deQuote |
| ** parameter is ignored if pToken is NULL or if the token does not |
| ** appear to be quoted. If the quotes were of the form "..." (double-quotes) |
| ** then the EP_DblQuoted flag is set on the expression node. |
| ** |
| ** Special case: If op==TK_INTEGER and pToken points to a string that |
| ** can be translated into a 32-bit integer, then the token is not |
| ** stored in u.zToken. Instead, the integer values is written |
| ** into u.iValue and the EP_IntValue flag is set. No extra storage |
| ** is allocated to hold the integer text and the dequote flag is ignored. |
| */ |
| Expr *sqlite3ExprAlloc( |
| sqlite3 *db, /* Handle for sqlite3DbMallocRawNN() */ |
| int op, /* Expression opcode */ |
| const Token *pToken, /* Token argument. Might be NULL */ |
| int dequote /* True to dequote */ |
| ){ |
| Expr *pNew; |
| int nExtra = 0; |
| int iValue = 0; |
| |
| assert( db!=0 ); |
| if( pToken ){ |
| if( op!=TK_INTEGER || pToken->z==0 |
| || sqlite3GetInt32(pToken->z, &iValue)==0 ){ |
| nExtra = pToken->n+1; |
| assert( iValue>=0 ); |
| } |
| } |
| pNew = sqlite3DbMallocRawNN(db, sizeof(Expr)+nExtra); |
| if( pNew ){ |
| memset(pNew, 0, sizeof(Expr)); |
| pNew->op = (u8)op; |
| pNew->iAgg = -1; |
| if( pToken ){ |
| if( nExtra==0 ){ |
| pNew->flags |= EP_IntValue|EP_Leaf|(iValue?EP_IsTrue:EP_IsFalse); |
| pNew->u.iValue = iValue; |
| }else{ |
| pNew->u.zToken = (char*)&pNew[1]; |
| assert( pToken->z!=0 || pToken->n==0 ); |
| if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); |
| pNew->u.zToken[pToken->n] = 0; |
| if( dequote && sqlite3Isquote(pNew->u.zToken[0]) ){ |
| sqlite3DequoteExpr(pNew); |
| } |
| } |
| } |
| #if SQLITE_MAX_EXPR_DEPTH>0 |
| pNew->nHeight = 1; |
| #endif |
| } |
| return pNew; |
| } |
| |
| /* |
| ** Allocate a new expression node from a zero-terminated token that has |
| ** already been dequoted. |
| */ |
| Expr *sqlite3Expr( |
| sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ |
| int op, /* Expression opcode */ |
| const char *zToken /* Token argument. Might be NULL */ |
| ){ |
| Token x; |
| x.z = zToken; |
| x.n = sqlite3Strlen30(zToken); |
| return sqlite3ExprAlloc(db, op, &x, 0); |
| } |
| |
| /* |
| ** Attach subtrees pLeft and pRight to the Expr node pRoot. |
| ** |
| ** If pRoot==NULL that means that a memory allocation error has occurred. |
| ** In that case, delete the subtrees pLeft and pRight. |
| */ |
| void sqlite3ExprAttachSubtrees( |
| sqlite3 *db, |
| Expr *pRoot, |
| Expr *pLeft, |
| Expr *pRight |
| ){ |
| if( pRoot==0 ){ |
| assert( db->mallocFailed ); |
| sqlite3ExprDelete(db, pLeft); |
| sqlite3ExprDelete(db, pRight); |
| }else{ |
| if( pRight ){ |
| pRoot->pRight = pRight; |
| pRoot->flags |= EP_Propagate & pRight->flags; |
| } |
| if( pLeft ){ |
| pRoot->pLeft = pLeft; |
| pRoot->flags |= EP_Propagate & pLeft->flags; |
| } |
| exprSetHeight(pRoot); |
| } |
| } |
| |
| /* |
| ** Allocate an Expr node which joins as many as two subtrees. |
| ** |
| ** One or both of the subtrees can be NULL. Return a pointer to the new |
| ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, |
| ** free the subtrees and return NULL. |
| */ |
| Expr *sqlite3PExpr( |
| Parse *pParse, /* Parsing context */ |
| int op, /* Expression opcode */ |
| Expr *pLeft, /* Left operand */ |
| Expr *pRight /* Right operand */ |
| ){ |
| Expr *p; |
| p = sqlite3DbMallocRawNN(pParse->db, sizeof(Expr)); |
| if( p ){ |
| memset(p, 0, sizeof(Expr)); |
| p->op = op & 0xff; |
| p->iAgg = -1; |
| sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); |
| sqlite3ExprCheckHeight(pParse, p->nHeight); |
| }else{ |
| sqlite3ExprDelete(pParse->db, pLeft); |
| sqlite3ExprDelete(pParse->db, pRight); |
| } |
| return p; |
| } |
| |
| /* |
| ** Add pSelect to the Expr.x.pSelect field. Or, if pExpr is NULL (due |
| ** do a memory allocation failure) then delete the pSelect object. |
| */ |
| void sqlite3PExprAddSelect(Parse *pParse, Expr *pExpr, Select *pSelect){ |
| if( pExpr ){ |
| pExpr->x.pSelect = pSelect; |
| ExprSetProperty(pExpr, EP_xIsSelect|EP_Subquery); |
| sqlite3ExprSetHeightAndFlags(pParse, pExpr); |
| }else{ |
| assert( pParse->db->mallocFailed ); |
| sqlite3SelectDelete(pParse->db, pSelect); |
| } |
| } |
| |
| |
| /* |
| ** Join two expressions using an AND operator. If either expression is |
| ** NULL, then just return the other expression. |
| ** |
| ** If one side or the other of the AND is known to be false, then instead |
| ** of returning an AND expression, just return a constant expression with |
| ** a value of false. |
| */ |
| Expr *sqlite3ExprAnd(Parse *pParse, Expr *pLeft, Expr *pRight){ |
| sqlite3 *db = pParse->db; |
| if( pLeft==0 ){ |
| return pRight; |
| }else if( pRight==0 ){ |
| return pLeft; |
| }else if( (ExprAlwaysFalse(pLeft) || ExprAlwaysFalse(pRight)) |
| && !IN_RENAME_OBJECT |
| ){ |
| sqlite3ExprDelete(db, pLeft); |
| sqlite3ExprDelete(db, pRight); |
| return sqlite3Expr(db, TK_INTEGER, "0"); |
| }else{ |
| return sqlite3PExpr(pParse, TK_AND, pLeft, pRight); |
| } |
| } |
| |
| /* |
| ** Construct a new expression node for a function with multiple |
| ** arguments. |
| */ |
| Expr *sqlite3ExprFunction( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList, /* Argument list */ |
| Token *pToken, /* Name of the function */ |
| int eDistinct /* SF_Distinct or SF_ALL or 0 */ |
| ){ |
| Expr *pNew; |
| sqlite3 *db = pParse->db; |
| assert( pToken ); |
| pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); |
| if( pNew==0 ){ |
| sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ |
| return 0; |
| } |
| if( pList && pList->nExpr > pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ |
| sqlite3ErrorMsg(pParse, "too many arguments on function %T", pToken); |
| } |
| pNew->x.pList = pList; |
| ExprSetProperty(pNew, EP_HasFunc); |
| assert( !ExprHasProperty(pNew, EP_xIsSelect) ); |
| sqlite3ExprSetHeightAndFlags(pParse, pNew); |
| if( eDistinct==SF_Distinct ) ExprSetProperty(pNew, EP_Distinct); |
| return pNew; |
| } |
| |
| /* |
| ** Check to see if a function is usable according to current access |
| ** rules: |
| ** |
| ** SQLITE_FUNC_DIRECT - Only usable from top-level SQL |
| ** |
| ** SQLITE_FUNC_UNSAFE - Usable if TRUSTED_SCHEMA or from |
| ** top-level SQL |
| ** |
| ** If the function is not usable, create an error. |
| */ |
| void sqlite3ExprFunctionUsable( |
| Parse *pParse, /* Parsing and code generating context */ |
| Expr *pExpr, /* The function invocation */ |
| FuncDef *pDef /* The function being invoked */ |
| ){ |
| assert( !IN_RENAME_OBJECT ); |
| assert( (pDef->funcFlags & (SQLITE_FUNC_DIRECT|SQLITE_FUNC_UNSAFE))!=0 ); |
| if( ExprHasProperty(pExpr, EP_FromDDL) ){ |
| if( (pDef->funcFlags & SQLITE_FUNC_DIRECT)!=0 |
| || (pParse->db->flags & SQLITE_TrustedSchema)==0 |
| ){ |
| /* Functions prohibited in triggers and views if: |
| ** (1) tagged with SQLITE_DIRECTONLY |
| ** (2) not tagged with SQLITE_INNOCUOUS (which means it |
| ** is tagged with SQLITE_FUNC_UNSAFE) and |
| ** SQLITE_DBCONFIG_TRUSTED_SCHEMA is off (meaning |
| ** that the schema is possibly tainted). |
| */ |
| sqlite3ErrorMsg(pParse, "unsafe use of %s()", pDef->zName); |
| } |
| } |
| } |
| |
| /* |
| ** Assign a variable number to an expression that encodes a wildcard |
| ** in the original SQL statement. |
| ** |
| ** Wildcards consisting of a single "?" are assigned the next sequential |
| ** variable number. |
| ** |
| ** Wildcards of the form "?nnn" are assigned the number "nnn". We make |
| ** sure "nnn" is not too big to avoid a denial of service attack when |
| ** the SQL statement comes from an external source. |
| ** |
| ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number |
| ** as the previous instance of the same wildcard. Or if this is the first |
| ** instance of the wildcard, the next sequential variable number is |
| ** assigned. |
| */ |
| void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr, u32 n){ |
| sqlite3 *db = pParse->db; |
| const char *z; |
| ynVar x; |
| |
| if( pExpr==0 ) return; |
| assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); |
| z = pExpr->u.zToken; |
| assert( z!=0 ); |
| assert( z[0]!=0 ); |
| assert( n==(u32)sqlite3Strlen30(z) ); |
| if( z[1]==0 ){ |
| /* Wildcard of the form "?". Assign the next variable number */ |
| assert( z[0]=='?' ); |
| x = (ynVar)(++pParse->nVar); |
| }else{ |
| int doAdd = 0; |
| if( z[0]=='?' ){ |
| /* Wildcard of the form "?nnn". Convert "nnn" to an integer and |
| ** use it as the variable number */ |
| i64 i; |
| int bOk; |
| if( n==2 ){ /*OPTIMIZATION-IF-TRUE*/ |
| i = z[1]-'0'; /* The common case of ?N for a single digit N */ |
| bOk = 1; |
| }else{ |
| bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); |
| } |
| testcase( i==0 ); |
| testcase( i==1 ); |
| testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); |
| testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); |
| if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ |
| sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", |
| db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); |
| return; |
| } |
| x = (ynVar)i; |
| if( x>pParse->nVar ){ |
| pParse->nVar = (int)x; |
| doAdd = 1; |
| }else if( sqlite3VListNumToName(pParse->pVList, x)==0 ){ |
| doAdd = 1; |
| } |
| }else{ |
| /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable |
| ** number as the prior appearance of the same name, or if the name |
| ** has never appeared before, reuse the same variable number |
| */ |
| x = (ynVar)sqlite3VListNameToNum(pParse->pVList, z, n); |
| if( x==0 ){ |
| x = (ynVar)(++pParse->nVar); |
| doAdd = 1; |
| } |
| } |
| if( doAdd ){ |
| pParse->pVList = sqlite3VListAdd(db, pParse->pVList, z, n, x); |
| } |
| } |
| pExpr->iColumn = x; |
| if( x>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ |
| sqlite3ErrorMsg(pParse, "too many SQL variables"); |
| } |
| } |
| |
| /* |
| ** Recursively delete an expression tree. |
| */ |
| static SQLITE_NOINLINE void sqlite3ExprDeleteNN(sqlite3 *db, Expr *p){ |
| assert( p!=0 ); |
| /* Sanity check: Assert that the IntValue is non-negative if it exists */ |
| assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); |
| |
| assert( !ExprHasProperty(p, EP_WinFunc) || p->y.pWin!=0 || db->mallocFailed ); |
| assert( p->op!=TK_FUNCTION || ExprHasProperty(p, EP_TokenOnly|EP_Reduced) |
| || p->y.pWin==0 || ExprHasProperty(p, EP_WinFunc) ); |
| #ifdef SQLITE_DEBUG |
| if( ExprHasProperty(p, EP_Leaf) && !ExprHasProperty(p, EP_TokenOnly) ){ |
| assert( p->pLeft==0 ); |
| assert( p->pRight==0 ); |
| assert( p->x.pSelect==0 ); |
| } |
| #endif |
| if( !ExprHasProperty(p, (EP_TokenOnly|EP_Leaf)) ){ |
| /* The Expr.x union is never used at the same time as Expr.pRight */ |
| assert( p->x.pList==0 || p->pRight==0 ); |
| if( p->pLeft && p->op!=TK_SELECT_COLUMN ) sqlite3ExprDeleteNN(db, p->pLeft); |
| if( p->pRight ){ |
| assert( !ExprHasProperty(p, EP_WinFunc) ); |
| sqlite3ExprDeleteNN(db, p->pRight); |
| }else if( ExprHasProperty(p, EP_xIsSelect) ){ |
| assert( !ExprHasProperty(p, EP_WinFunc) ); |
| sqlite3SelectDelete(db, p->x.pSelect); |
| }else{ |
| sqlite3ExprListDelete(db, p->x.pList); |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| if( ExprHasProperty(p, EP_WinFunc) ){ |
| sqlite3WindowDelete(db, p->y.pWin); |
| } |
| #endif |
| } |
| } |
| if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); |
| if( !ExprHasProperty(p, EP_Static) ){ |
| sqlite3DbFreeNN(db, p); |
| } |
| } |
| void sqlite3ExprDelete(sqlite3 *db, Expr *p){ |
| if( p ) sqlite3ExprDeleteNN(db, p); |
| } |
| |
| /* Invoke sqlite3RenameExprUnmap() and sqlite3ExprDelete() on the |
| ** expression. |
| */ |
| void sqlite3ExprUnmapAndDelete(Parse *pParse, Expr *p){ |
| if( p ){ |
| if( IN_RENAME_OBJECT ){ |
| sqlite3RenameExprUnmap(pParse, p); |
| } |
| sqlite3ExprDeleteNN(pParse->db, p); |
| } |
| } |
| |
| /* |
| ** Return the number of bytes allocated for the expression structure |
| ** passed as the first argument. This is always one of EXPR_FULLSIZE, |
| ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. |
| */ |
| static int exprStructSize(Expr *p){ |
| if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; |
| if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; |
| return EXPR_FULLSIZE; |
| } |
| |
| /* |
| ** The dupedExpr*Size() routines each return the number of bytes required |
| ** to store a copy of an expression or expression tree. They differ in |
| ** how much of the tree is measured. |
| ** |
| ** dupedExprStructSize() Size of only the Expr structure |
| ** dupedExprNodeSize() Size of Expr + space for token |
| ** dupedExprSize() Expr + token + subtree components |
| ** |
| *************************************************************************** |
| ** |
| ** The dupedExprStructSize() function returns two values OR-ed together: |
| ** (1) the space required for a copy of the Expr structure only and |
| ** (2) the EP_xxx flags that indicate what the structure size should be. |
| ** The return values is always one of: |
| ** |
| ** EXPR_FULLSIZE |
| ** EXPR_REDUCEDSIZE | EP_Reduced |
| ** EXPR_TOKENONLYSIZE | EP_TokenOnly |
| ** |
| ** The size of the structure can be found by masking the return value |
| ** of this routine with 0xfff. The flags can be found by masking the |
| ** return value with EP_Reduced|EP_TokenOnly. |
| ** |
| ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size |
| ** (unreduced) Expr objects as they or originally constructed by the parser. |
| ** During expression analysis, extra information is computed and moved into |
| ** later parts of the Expr object and that extra information might get chopped |
| ** off if the expression is reduced. Note also that it does not work to |
| ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal |
| ** to reduce a pristine expression tree from the parser. The implementation |
| ** of dupedExprStructSize() contain multiple assert() statements that attempt |
| ** to enforce this constraint. |
| */ |
| static int dupedExprStructSize(Expr *p, int flags){ |
| int nSize; |
| assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ |
| assert( EXPR_FULLSIZE<=0xfff ); |
| assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); |
| if( 0==flags || p->op==TK_SELECT_COLUMN |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| || ExprHasProperty(p, EP_WinFunc) |
| #endif |
| ){ |
| nSize = EXPR_FULLSIZE; |
| }else{ |
| assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); |
| assert( !ExprHasProperty(p, EP_FromJoin) ); |
| assert( !ExprHasProperty(p, EP_MemToken) ); |
| assert( !ExprHasProperty(p, EP_NoReduce) ); |
| if( p->pLeft || p->x.pList ){ |
| nSize = EXPR_REDUCEDSIZE | EP_Reduced; |
| }else{ |
| assert( p->pRight==0 ); |
| nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; |
| } |
| } |
| return nSize; |
| } |
| |
| /* |
| ** This function returns the space in bytes required to store the copy |
| ** of the Expr structure and a copy of the Expr.u.zToken string (if that |
| ** string is defined.) |
| */ |
| static int dupedExprNodeSize(Expr *p, int flags){ |
| int nByte = dupedExprStructSize(p, flags) & 0xfff; |
| if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ |
| nByte += sqlite3Strlen30NN(p->u.zToken)+1; |
| } |
| return ROUND8(nByte); |
| } |
| |
| /* |
| ** Return the number of bytes required to create a duplicate of the |
| ** expression passed as the first argument. The second argument is a |
| ** mask containing EXPRDUP_XXX flags. |
| ** |
| ** The value returned includes space to create a copy of the Expr struct |
| ** itself and the buffer referred to by Expr.u.zToken, if any. |
| ** |
| ** If the EXPRDUP_REDUCE flag is set, then the return value includes |
| ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft |
| ** and Expr.pRight variables (but not for any structures pointed to or |
| ** descended from the Expr.x.pList or Expr.x.pSelect variables). |
| */ |
| static int dupedExprSize(Expr *p, int flags){ |
| int nByte = 0; |
| if( p ){ |
| nByte = dupedExprNodeSize(p, flags); |
| if( flags&EXPRDUP_REDUCE ){ |
| nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); |
| } |
| } |
| return nByte; |
| } |
| |
| /* |
| ** This function is similar to sqlite3ExprDup(), except that if pzBuffer |
| ** is not NULL then *pzBuffer is assumed to point to a buffer large enough |
| ** to store the copy of expression p, the copies of p->u.zToken |
| ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, |
| ** if any. Before returning, *pzBuffer is set to the first byte past the |
| ** portion of the buffer copied into by this function. |
| */ |
| static Expr *exprDup(sqlite3 *db, Expr *p, int dupFlags, u8 **pzBuffer){ |
| Expr *pNew; /* Value to return */ |
| u8 *zAlloc; /* Memory space from which to build Expr object */ |
| u32 staticFlag; /* EP_Static if space not obtained from malloc */ |
| |
| assert( db!=0 ); |
| assert( p ); |
| assert( dupFlags==0 || dupFlags==EXPRDUP_REDUCE ); |
| assert( pzBuffer==0 || dupFlags==EXPRDUP_REDUCE ); |
| |
| /* Figure out where to write the new Expr structure. */ |
| if( pzBuffer ){ |
| zAlloc = *pzBuffer; |
| staticFlag = EP_Static; |
| }else{ |
| zAlloc = sqlite3DbMallocRawNN(db, dupedExprSize(p, dupFlags)); |
| staticFlag = 0; |
| } |
| pNew = (Expr *)zAlloc; |
| |
| if( pNew ){ |
| /* Set nNewSize to the size allocated for the structure pointed to |
| ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or |
| ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed |
| ** by the copy of the p->u.zToken string (if any). |
| */ |
| const unsigned nStructSize = dupedExprStructSize(p, dupFlags); |
| const int nNewSize = nStructSize & 0xfff; |
| int nToken; |
| if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ |
| nToken = sqlite3Strlen30(p->u.zToken) + 1; |
| }else{ |
| nToken = 0; |
| } |
| if( dupFlags ){ |
| assert( ExprHasProperty(p, EP_Reduced)==0 ); |
| memcpy(zAlloc, p, nNewSize); |
| }else{ |
| u32 nSize = (u32)exprStructSize(p); |
| memcpy(zAlloc, p, nSize); |
| if( nSize<EXPR_FULLSIZE ){ |
| memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); |
| } |
| } |
| |
| /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ |
| pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); |
| pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); |
| pNew->flags |= staticFlag; |
| |
| /* Copy the p->u.zToken string, if any. */ |
| if( nToken ){ |
| char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; |
| memcpy(zToken, p->u.zToken, nToken); |
| } |
| |
| if( 0==((p->flags|pNew->flags) & (EP_TokenOnly|EP_Leaf)) ){ |
| /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ |
| if( ExprHasProperty(p, EP_xIsSelect) ){ |
| pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, dupFlags); |
| }else{ |
| pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, dupFlags); |
| } |
| } |
| |
| /* Fill in pNew->pLeft and pNew->pRight. */ |
| if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly|EP_WinFunc) ){ |
| zAlloc += dupedExprNodeSize(p, dupFlags); |
| if( !ExprHasProperty(pNew, EP_TokenOnly|EP_Leaf) ){ |
| pNew->pLeft = p->pLeft ? |
| exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc) : 0; |
| pNew->pRight = p->pRight ? |
| exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc) : 0; |
| } |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| if( ExprHasProperty(p, EP_WinFunc) ){ |
| pNew->y.pWin = sqlite3WindowDup(db, pNew, p->y.pWin); |
| assert( ExprHasProperty(pNew, EP_WinFunc) ); |
| } |
| #endif /* SQLITE_OMIT_WINDOWFUNC */ |
| if( pzBuffer ){ |
| *pzBuffer = zAlloc; |
| } |
| }else{ |
| if( !ExprHasProperty(p, EP_TokenOnly|EP_Leaf) ){ |
| if( pNew->op==TK_SELECT_COLUMN ){ |
| pNew->pLeft = p->pLeft; |
| assert( p->iColumn==0 || p->pRight==0 ); |
| assert( p->pRight==0 || p->pRight==p->pLeft ); |
| }else{ |
| pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); |
| } |
| pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); |
| } |
| } |
| } |
| return pNew; |
| } |
| |
| /* |
| ** Create and return a deep copy of the object passed as the second |
| ** argument. If an OOM condition is encountered, NULL is returned |
| ** and the db->mallocFailed flag set. |
| */ |
| #ifndef SQLITE_OMIT_CTE |
| static With *withDup(sqlite3 *db, With *p){ |
| With *pRet = 0; |
| if( p ){ |
| sqlite3_int64 nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); |
| pRet = sqlite3DbMallocZero(db, nByte); |
| if( pRet ){ |
| int i; |
| pRet->nCte = p->nCte; |
| for(i=0; i<p->nCte; i++){ |
| pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); |
| pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); |
| pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); |
| } |
| } |
| } |
| return pRet; |
| } |
| #else |
| # define withDup(x,y) 0 |
| #endif |
| |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| /* |
| ** The gatherSelectWindows() procedure and its helper routine |
| ** gatherSelectWindowsCallback() are used to scan all the expressions |
| ** an a newly duplicated SELECT statement and gather all of the Window |
| ** objects found there, assembling them onto the linked list at Select->pWin. |
| */ |
| static int gatherSelectWindowsCallback(Walker *pWalker, Expr *pExpr){ |
| if( pExpr->op==TK_FUNCTION && ExprHasProperty(pExpr, EP_WinFunc) ){ |
| Select *pSelect = pWalker->u.pSelect; |
| Window *pWin = pExpr->y.pWin; |
| assert( pWin ); |
| assert( IsWindowFunc(pExpr) ); |
| assert( pWin->ppThis==0 ); |
| sqlite3WindowLink(pSelect, pWin); |
| } |
| return WRC_Continue; |
| } |
| static int gatherSelectWindowsSelectCallback(Walker *pWalker, Select *p){ |
| return p==pWalker->u.pSelect ? WRC_Continue : WRC_Prune; |
| } |
| static void gatherSelectWindows(Select *p){ |
| Walker w; |
| w.xExprCallback = gatherSelectWindowsCallback; |
| w.xSelectCallback = gatherSelectWindowsSelectCallback; |
| w.xSelectCallback2 = 0; |
| w.pParse = 0; |
| w.u.pSelect = p; |
| sqlite3WalkSelect(&w, p); |
| } |
| #endif |
| |
| |
| /* |
| ** The following group of routines make deep copies of expressions, |
| ** expression lists, ID lists, and select statements. The copies can |
| ** be deleted (by being passed to their respective ...Delete() routines) |
| ** without effecting the originals. |
| ** |
| ** The expression list, ID, and source lists return by sqlite3ExprListDup(), |
| ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded |
| ** by subsequent calls to sqlite*ListAppend() routines. |
| ** |
| ** Any tables that the SrcList might point to are not duplicated. |
| ** |
| ** The flags parameter contains a combination of the EXPRDUP_XXX flags. |
| ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a |
| ** truncated version of the usual Expr structure that will be stored as |
| ** part of the in-memory representation of the database schema. |
| */ |
| Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ |
| assert( flags==0 || flags==EXPRDUP_REDUCE ); |
| return p ? exprDup(db, p, flags, 0) : 0; |
| } |
| ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ |
| ExprList *pNew; |
| struct ExprList_item *pItem, *pOldItem; |
| int i; |
| Expr *pPriorSelectCol = 0; |
| assert( db!=0 ); |
| if( p==0 ) return 0; |
| pNew = sqlite3DbMallocRawNN(db, sqlite3DbMallocSize(db, p)); |
| if( pNew==0 ) return 0; |
| pNew->nExpr = p->nExpr; |
| pItem = pNew->a; |
| pOldItem = p->a; |
| for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ |
| Expr *pOldExpr = pOldItem->pExpr; |
| Expr *pNewExpr; |
| pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); |
| if( pOldExpr |
| && pOldExpr->op==TK_SELECT_COLUMN |
| && (pNewExpr = pItem->pExpr)!=0 |
| ){ |
| assert( pNewExpr->iColumn==0 || i>0 ); |
| if( pNewExpr->iColumn==0 ){ |
| assert( pOldExpr->pLeft==pOldExpr->pRight ); |
| pPriorSelectCol = pNewExpr->pLeft = pNewExpr->pRight; |
| }else{ |
| assert( i>0 ); |
| assert( pItem[-1].pExpr!=0 ); |
| assert( pNewExpr->iColumn==pItem[-1].pExpr->iColumn+1 ); |
| assert( pPriorSelectCol==pItem[-1].pExpr->pLeft ); |
| pNewExpr->pLeft = pPriorSelectCol; |
| } |
| } |
| pItem->zEName = sqlite3DbStrDup(db, pOldItem->zEName); |
| pItem->sortFlags = pOldItem->sortFlags; |
| pItem->eEName = pOldItem->eEName; |
| pItem->done = 0; |
| pItem->bNulls = pOldItem->bNulls; |
| pItem->bSorterRef = pOldItem->bSorterRef; |
| pItem->u = pOldItem->u; |
| } |
| return pNew; |
| } |
| |
| /* |
| ** If cursors, triggers, views and subqueries are all omitted from |
| ** the build, then none of the following routines, except for |
| ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes |
| ** called with a NULL argument. |
| */ |
| #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ |
| || !defined(SQLITE_OMIT_SUBQUERY) |
| SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ |
| SrcList *pNew; |
| int i; |
| int nByte; |
| assert( db!=0 ); |
| if( p==0 ) return 0; |
| nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); |
| pNew = sqlite3DbMallocRawNN(db, nByte ); |
| if( pNew==0 ) return 0; |
| pNew->nSrc = pNew->nAlloc = p->nSrc; |
| for(i=0; i<p->nSrc; i++){ |
| struct SrcList_item *pNewItem = &pNew->a[i]; |
| struct SrcList_item *pOldItem = &p->a[i]; |
| Table *pTab; |
| pNewItem->pSchema = pOldItem->pSchema; |
| pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); |
| pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
| pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); |
| pNewItem->fg = pOldItem->fg; |
| pNewItem->iCursor = pOldItem->iCursor; |
| pNewItem->addrFillSub = pOldItem->addrFillSub; |
| pNewItem->regReturn = pOldItem->regReturn; |
| if( pNewItem->fg.isIndexedBy ){ |
| pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); |
| } |
| pNewItem->pIBIndex = pOldItem->pIBIndex; |
| if( pNewItem->fg.isTabFunc ){ |
| pNewItem->u1.pFuncArg = |
| sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); |
| } |
| pTab = pNewItem->pTab = pOldItem->pTab; |
| if( pTab ){ |
| pTab->nTabRef++; |
| } |
| pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); |
| pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); |
| pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); |
| pNewItem->colUsed = pOldItem->colUsed; |
| } |
| return pNew; |
| } |
| IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ |
| IdList *pNew; |
| int i; |
| assert( db!=0 ); |
| if( p==0 ) return 0; |
| pNew = sqlite3DbMallocRawNN(db, sizeof(*pNew) ); |
| if( pNew==0 ) return 0; |
| pNew->nId = p->nId; |
| pNew->a = sqlite3DbMallocRawNN(db, p->nId*sizeof(p->a[0]) ); |
| if( pNew->a==0 ){ |
| sqlite3DbFreeNN(db, pNew); |
| return 0; |
| } |
| /* Note that because the size of the allocation for p->a[] is not |
| ** necessarily a power of two, sqlite3IdListAppend() may not be called |
| ** on the duplicate created by this function. */ |
| for(i=0; i<p->nId; i++){ |
| struct IdList_item *pNewItem = &pNew->a[i]; |
| struct IdList_item *pOldItem = &p->a[i]; |
| pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); |
| pNewItem->idx = pOldItem->idx; |
| } |
| return pNew; |
| } |
| Select *sqlite3SelectDup(sqlite3 *db, Select *pDup, int flags){ |
| Select *pRet = 0; |
| Select *pNext = 0; |
| Select **pp = &pRet; |
| Select *p; |
| |
| assert( db!=0 ); |
| for(p=pDup; p; p=p->pPrior){ |
| Select *pNew = sqlite3DbMallocRawNN(db, sizeof(*p) ); |
| if( pNew==0 ) break; |
| pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); |
| pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); |
| pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); |
| pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); |
| pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); |
| pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); |
| pNew->op = p->op; |
| pNew->pNext = pNext; |
| pNew->pPrior = 0; |
| pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); |
| pNew->iLimit = 0; |
| pNew->iOffset = 0; |
| pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; |
| pNew->addrOpenEphm[0] = -1; |
| pNew->addrOpenEphm[1] = -1; |
| pNew->nSelectRow = p->nSelectRow; |
| pNew->pWith = withDup(db, p->pWith); |
| #ifndef SQLITE_OMIT_WINDOWFUNC |
| pNew->pWin = 0; |
| pNew->pWinDefn = sqlite3WindowListDup(db, p->pWinDefn); |
| if( p->pWin && db->mallocFailed==0 ) gatherSelectWindows(pNew); |
| #endif |
| pNew->selId = p->selId; |
| *pp = pNew; |
| pp = &pNew->pPrior; |
| pNext = pNew; |
| } |
| |
| return pRet; |
| } |
| #else |
| Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ |
| assert( p==0 ); |
| return 0; |
| } |
| #endif |
| |
| |
| /* |
| ** Add a new element to the end of an expression list. If pList is |
| ** initially NULL, then create a new expression list. |
| ** |
| ** The pList argument must be either NULL or a pointer to an ExprList |
| ** obtained from a prior call to sqlite3ExprListAppend(). This routine |
| ** may not be used with an ExprList obtained from sqlite3ExprListDup(). |
| ** Reason: This routine assumes that the number of slots in pList->a[] |
| ** is a power of two. That is true for sqlite3ExprListAppend() returns |
| ** but is not necessarily true from the return value of sqlite3ExprListDup(). |
| ** |
| ** If a memory allocation error occurs, the entire list is freed and |
| ** NULL is returned. If non-NULL is returned, then it is guaranteed |
| ** that the new entry was successfully appended. |
| */ |
| ExprList *sqlite3ExprListAppend( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList, /* List to which to append. Might be NULL */ |
| Expr *pExpr /* Expression to be appended. Might be NULL */ |
| ){ |
| struct ExprList_item *pItem; |
| sqlite3 *db = pParse->db; |
| assert( db!=0 ); |
| if( pList==0 ){ |
| pList = sqlite3DbMallocRawNN(db, sizeof(ExprList) ); |
| if( pList==0 ){ |
| goto no_mem; |
| } |
| pList->nExpr = 0; |
| }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ |
| ExprList *pNew; |
| pNew = sqlite3DbRealloc(db, pList, |
| sizeof(*pList)+(2*(sqlite3_int64)pList->nExpr-1)*sizeof(pList->a[0])); |
| if( pNew==0 ){ |
| goto no_mem; |
| } |
| pList = pNew; |
| } |
| pItem = &pList->a[pList->nExpr++]; |
| assert( offsetof(struct ExprList_item,zEName)==sizeof(pItem->pExpr) ); |
| assert( offsetof(struct ExprList_item,pExpr)==0 ); |
| memset(&pItem->zEName,0,sizeof(*pItem)-offsetof(struct ExprList_item,zEName)); |
| pItem->pExpr = pExpr; |
| return pList; |
| |
| no_mem: |
| /* Avoid leaking memory if malloc has failed. */ |
| sqlite3ExprDelete(db, pExpr); |
| sqlite3ExprListDelete(db, pList); |
| return 0; |
| } |
| |
| /* |
| ** pColumns and pExpr form a vector assignment which is part of the SET |
| ** clause of an UPDATE statement. Like this: |
| ** |
| ** (a,b,c) = (expr1,expr2,expr3) |
| ** Or: (a,b,c) = (SELECT x,y,z FROM ....) |
| ** |
| ** For each term of the vector assignment, append new entries to the |
| ** expression list pList. In the case of a subquery on the RHS, append |
| ** TK_SELECT_COLUMN expressions. |
| */ |
| ExprList *sqlite3ExprListAppendVector( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList, /* List to which to append. Might be NULL */ |
| IdList *pColumns, /* List of names of LHS of the assignment */ |
| Expr *pExpr /* Vector expression to be appended. Might be NULL */ |
| ){ |
| sqlite3 *db = pParse->db; |
| int n; |
| int i; |
| int iFirst = pList ? pList->nExpr : 0; |
| /* pColumns can only be NULL due to an OOM but an OOM will cause an |
| ** exit prior to this routine being invoked */ |
| if( NEVER(pColumns==0) ) goto vector_append_error; |
| if( pExpr==0 ) goto vector_append_error; |
| |
| /* If the RHS is a vector, then we can immediately check to see that |
| ** the size of the RHS and LHS match. But if the RHS is a SELECT, |
| ** wildcards ("*") in the result set of the SELECT must be expanded before |
| ** we can do the size check, so defer the size check until code generation. |
| */ |
| if( pExpr->op!=TK_SELECT && pColumns->nId!=(n=sqlite3ExprVectorSize(pExpr)) ){ |
| sqlite3ErrorMsg(pParse, "%d columns assigned %d values", |
| pColumns->nId, n); |
| goto vector_append_error; |
| } |
| |
| for(i=0; i<pColumns->nId; i++){ |
| Expr *pSubExpr = sqlite3ExprForVectorField(pParse, pExpr, i); |
| assert( pSubExpr!=0 || db->mallocFailed ); |
| assert( pSubExpr==0 || pSubExpr->iTable==0 ); |
| if( pSubExpr==0 ) continue; |
| pSubExpr->iTable = pColumns->nId; |
| pList = sqlite3ExprListAppend(pParse, pList, pSubExpr); |
| if( pList ){ |
| assert( pList->nExpr==iFirst+i+1 ); |
| pList->a[pList->nExpr-1].zEName = pColumns->a[i].zName; |
| pColumns->a[i].zName = 0; |
| } |
| } |
| |
| if( !db->mallocFailed && pExpr->op==TK_SELECT && ALWAYS(pList!=0) ){ |
| Expr *pFirst = pList->a[iFirst].pExpr; |
| assert( pFirst!=0 ); |
| assert( pFirst->op==TK_SELECT_COLUMN ); |
| |
| /* Store the SELECT statement in pRight so it will be deleted when |
| ** sqlite3ExprListDelete() is called */ |
| pFirst->pRight = pExpr; |
| pExpr = 0; |
| |
| /* Remember the size of the LHS in iTable so that we can check that |
| ** the RHS and LHS sizes match during code generation. */ |
| pFirst->iTable = pColumns->nId; |
| } |
| |
| vector_append_error: |
| sqlite3ExprUnmapAndDelete(pParse, pExpr); |
| sqlite3IdListDelete(db, pColumns); |
| return pList; |
| } |
| |
| /* |
| ** Set the sort order for the last element on the given ExprList. |
| */ |
| void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder, int eNulls){ |
| struct ExprList_item *pItem; |
| if( p==0 ) return; |
| assert( p->nExpr>0 ); |
| |
| assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC==0 && SQLITE_SO_DESC>0 ); |
| assert( iSortOrder==SQLITE_SO_UNDEFINED |
| || iSortOrder==SQLITE_SO_ASC |
| || iSortOrder==SQLITE_SO_DESC |
| ); |
| assert( eNulls==SQLITE_SO_UNDEFINED |
| || eNulls==SQLITE_SO_ASC |
| || eNulls==SQLITE_SO_DESC |
| ); |
| |
| pItem = &p->a[p->nExpr-1]; |
| assert( pItem->bNulls==0 ); |
| if( iSortOrder==SQLITE_SO_UNDEFINED ){ |
| iSortOrder = SQLITE_SO_ASC; |
| } |
| pItem->sortFlags = (u8)iSortOrder; |
| |
| if( eNulls!=SQLITE_SO_UNDEFINED ){ |
| pItem->bNulls = 1; |
| if( iSortOrder!=eNulls ){ |
| pItem->sortFlags |= KEYINFO_ORDER_BIGNULL; |
| } |
| } |
| } |
| |
| /* |
| ** Set the ExprList.a[].zEName element of the most recently added item |
| ** on the expression list. |
| ** |
| ** pList might be NULL following an OOM error. But pName should never be |
| ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag |
| ** is set. |
| */ |
| void sqlite3ExprListSetName( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList, /* List to which to add the span. */ |
| Token *pName, /* Name to be added */ |
| int dequote /* True to cause the name to be dequoted */ |
| ){ |
| assert( pList!=0 || pParse->db->mallocFailed!=0 ); |
| if( pList ){ |
| struct ExprList_item *pItem; |
| assert( pList->nExpr>0 ); |
| pItem = &pList->a[pList->nExpr-1]; |
| assert( pItem->zEName==0 ); |
| assert( pItem->eEName==ENAME_NAME ); |
| pItem->zEName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); |
| if( dequote ) sqlite3Dequote(pItem->zEName); |
| if( IN_RENAME_OBJECT ){ |
| sqlite3RenameTokenMap(pParse, (void*)pItem->zEName, pName); |
| } |
| } |
| } |
| |
| /* |
| ** Set the ExprList.a[].zSpan element of the most recently added item |
| ** on the expression list. |
| ** |
| ** pList might be NULL following an OOM error. But pSpan should never be |
| ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag |
| ** is set. |
| */ |
| void sqlite3ExprListSetSpan( |
| Parse *pParse, /* Parsing context */ |
| ExprList *pList, /* List to which to add the span. */ |
| const char *zStart, /* Start of the span */ |
| const char *zEnd /* End of the span */ |
| ){ |
| sqlite3 *db = pParse->db; |
| assert( pList!=0 || db->mallocFailed!=0 ); |
| if( pList ){ |
| struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; |
| assert( pList->nExpr>0 ); |
| if( pItem->zEName==0 ){ |
| pItem->zEName = sqlite3DbSpanDup(db, zStart, zEnd); |
| pItem->eEName = ENAME_SPAN; |
| } |
| } |
| } |
| |
| /* |
| ** If the expression list pEList contains more than iLimit elements, |
| ** leave an error message in pParse. |
| */ |
| void sqlite3ExprListCheckLength( |
| Parse *pParse, |
| ExprList *pEList, |
| const char *zObject |
| ){ |
| int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; |
| testcase( pEList && pEList->nExpr==mx ); |
| testcase( pEList && pEList->nExpr==mx+1 ); |
| if( pEList && pEList->nExpr>mx ){ |
| sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); |
| } |
| } |
| |
| /* |
| ** Delete an entire expression list. |
| */ |
| static SQLITE_NOINLINE void exprListDeleteNN(sqlite3 *db, ExprList *pList){ |
| int i = pList->nExpr; |
| struct ExprList_item *pItem = pList->a; |
| assert( pList->nExpr>0 ); |
| do{ |
| sqlite3ExprDelete(db, pItem->pExpr); |
| sqlite3DbFree(db, pItem->zEName); |
| pItem++; |
| }while( --i>0 ); |
| sqlite3DbFreeNN(db, pList); |
| } |
| void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ |
| if( pList ) exprListDeleteNN(db, pList); |
| } |
| |
| /* |
| ** Return the bitwise-OR of all Expr.flags fields in the given |
| ** ExprList. |
| */ |
| u32 sqlite3ExprListFlags(const ExprList *pList){ |
| int i; |
| u32 m = 0; |
| assert( pList!=0 ); |
| for(i=0; i<pList->nExpr; i++){ |
| Expr *pExpr = pList->a[i].pExpr; |
| assert( pExpr!=0 ); |
| m |= pExpr->flags; |
| } |
| return m; |
| } |
| |
| /* |
| ** This is a SELECT-node callback for the expression walker that |
| ** always "fails". By "fail" in this case, we mean set |
| ** pWalker->eCode to zero and abort. |
| ** |
| ** This callback is used by multiple expression walkers. |
| */ |
| int sqlite3SelectWalkFail(Walker *pWalker, Select *NotUsed){ |
| UNUSED_PARAMETER(NotUsed); |
| pWalker->eCode = 0; |
| return WRC_Abort; |
| } |
| |
| /* |
| ** Check the input string to see if it is "true" or "false" (in any case). |
| ** |
| ** If the string is.... Return |
| ** "true" EP_IsTrue |
| ** "false" EP_IsFalse |
| ** anything else 0 |
| */ |
| u32 sqlite3IsTrueOrFalse(const char *zIn){ |
| if( sqlite3StrICmp(zIn, "true")==0 ) return EP_IsTrue; |
| if( sqlite3StrICmp(zIn, "false")==0 ) return EP_IsFalse; |
| return 0; |
| } |
| |
| |
| /* |
| ** If the input expression is an ID with the name "true" or "false" |
| ** then convert it into an TK_TRUEFALSE term. Return non-zero if |
| ** the conversion happened, and zero if the expression is unaltered. |
| */ |
| int sqlite3ExprIdToTrueFalse(Expr *pExpr){ |
| u32 v; |
| assert( pExpr->op==TK_ID || pExpr->op==TK_STRING ); |
| if( !ExprHasProperty(pExpr, EP_Quoted) |
| && (v = sqlite3IsTrueOrFalse(pExpr->u.zToken))!=0 |
| ){ |
| pExpr->op = TK_TRUEFALSE; |
| ExprSetProperty(pExpr, v); |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| ** The argument must be a TK_TRUEFALSE Expr node. Return 1 if it is TRUE |
| ** and 0 if it is FALSE. |
| */ |
| int sqlite3ExprTruthValue(const Expr *pExpr){ |
| pExpr = sqlite3ExprSkipCollate((Expr*)pExpr); |
| assert( pExpr->op==TK_TRUEFALSE ); |
| assert( sqlite3StrICmp(pExpr->u.zToken,"true")==0 |
| || sqlite3StrICmp(pExpr->u.zToken,"false")==0 ); |
| return pExpr->u.zToken[4]==0; |
| } |
| |
| /* |
| ** If pExpr is an AND or OR expression, try to simplify it by eliminating |
| ** terms that are always true or false. Return the simplified expression. |
| ** Or return the original expression if no simplification is possible. |
| ** |
| ** Examples: |
| ** |
| ** (x<10) AND true => (x<10) |
| ** (x<10) AND false => false |
| ** (x<10) AND (y=22 OR false) => (x<10) AND (y=22) |
| ** (x<10) AND (y=22 OR true) => (x<10) |
| ** (y=22) OR true => true |
| */ |
| Expr *sqlite3ExprSimplifiedAndOr(Expr *pExpr){ |
| assert( pExpr!=0 ); |
| if( pExpr->op==TK_AND || pExpr->op==TK_OR ){ |
| Expr *pRight = sqlite3ExprSimplifiedAndOr(pExpr->pRight); |
| Expr *pLeft = sqlite3ExprSimplifiedAndOr(pExpr->pLeft); |
| if( ExprAlwaysTrue(pLeft) || ExprAlwaysFalse(pRight) ){ |
| pExpr = pExpr->op==TK_AND ? pRight : pLeft; |
| }else if( ExprAlwaysTrue(pRight) || ExprAlwaysFalse(pLeft) ){ |
| pExpr = pExpr->op==TK_AND ? pLeft : pRight; |
| } |
| } |
| return pExpr; |
| } |
| |
| |
| /* |
| ** These routines are Walker callbacks used to check expressions to |
| ** see if they are "constant" for some definition of constant. The |
| ** Walker.eCode value determines the type of "constant" we are looking |
| ** for. |
| ** |
| ** These callback routines are used to implement the following: |
| ** |
| ** sqlite3ExprIsConstant() pWalker->eCode==1 |
| ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 |
| ** sqlite3ExprIsTableConstant() pWalker->eCode==3 |
| ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 |
| ** |
| ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression |
| ** is found to not be a constant. |
| ** |
| ** The sqlite3ExprIsConstantOrFunction() is used for evaluating DEFAULT |
| ** expressions in a CREATE TABLE statement. The Walker.eCode value is 5 |
| ** when parsing an existing schema out of the sqlite_master table and 4 |
| ** when processing a new CREATE TABLE statement. A bound parameter raises |
| ** an error for new statements, but is silently converted |
| ** to NULL for existing schemas. This allows sqlite_master tables that |
| ** contain a bound parameter because they were generated by older versions |
| ** of SQLite to be parsed by newer versions of SQLite without raising a |
| ** malformed schema error. |
| */ |
| static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ |
| |
| /* If pWalker->eCode is 2 then any term of the expression that comes from |
| ** the ON or USING clauses of a left join disqualifies the expression |
| ** from being considered constant. */ |
| if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ |
| pWalker->eCode = 0; |
| return WRC_Abort; |
| } |
| |
| switch( pExpr->op ){ |
| /* Consider functions to be constant if all their arguments are constant |
| ** and either pWalker->eCode==4 or 5 or the function has the |
| ** SQLITE_FUNC_CONST flag. */ |
| case TK_FUNCTION: |
| if( (pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc)) |
| && !ExprHasProperty(pExpr, EP_WinFunc) |
| ){ |
| if( pWalker->eCode==5 ) ExprSetProperty(pExpr, EP_FromDDL); |
| return WRC_Continue; |
| }else{ |
| pWalker->eCode = 0; |
| return WRC_Abort; |
| } |
| case TK_ID: |
| /* Convert "true" or "false" in a DEFAULT clause into the |
| ** appropriate TK_TRUEFALSE operator */ |
| if( sqlite3ExprIdToTrueFalse(pExpr) ){ |
| return WRC_Prune; |
| } |
| /* Fall thru */ |
| case TK_COLUMN: |
| case TK_AGG_FUNCTION: |
| case TK_AGG_COLUMN: |
| testcase( pExpr->op==TK_ID ); |
| testcase( pExpr->op==TK_COLUMN ); |
| testcase( pExpr->op==TK_AGG_FUNCTION ); |
| testcase( pExpr->op==TK_AGG_COLUMN ); |
| if( ExprHasProperty(pExpr, EP_FixedCol) && pWalker->eCode!=2 ){ |
| return WRC_Continue; |
| } |
| if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ |
| return WRC_Continue; |
| } |
| /* Fall through */ |
| case TK_IF_NULL_ROW: |
| case TK_REGISTER: |
| testcase( pExpr->op==TK_REGISTER ); |
| testcase( pExpr->op==TK_IF_NULL_ROW ); |
| pWalker->eCode = 0; |
| return WRC_Abort; |
| case TK_VARIABLE: |
| if( pWalker->eCode==5 ){ |
| /* Silently convert bound parameters that appear inside of CREATE |
| ** statements into a NULL when parsing the CREATE statement text out |
| ** of the sqlite_master table */ |
| pExpr->op = TK_NULL; |
| }else if( pWalker->eCode==4 ){ |
| /* A bound parameter in a CREATE statement that originates from |
| ** sqlite3_prepare() causes an error */ |
| pWalker->eCode = 0; |
| return WRC_Abort; |
| } |
| /* Fall through */ |
| default: |
| testcase( pExpr->op==TK_SELECT ); /* sqlite3SelectWalkFail() disallows */ |
| testcase( pExpr->op==TK_EXISTS ); /* sqlite3SelectWalkFail() disallows */ |
| return WRC_Continue; |
| } |
| } |
| static int exprIsConst(Expr *p, int initFlag, int iCur){ |
| Walker w; |
| w.eCode = initFlag; |
| w.xExprCallback = exprNodeIsConstant; |
| w.xSelectCallback = sqlite3SelectWalkFail; |
| #ifdef SQLITE_DEBUG |
| w.xSelectCallback2 = sqlite3SelectWalkAssert2; |
| #endif |
| w.u.iCur = iCur; |
| sqlite3WalkExpr(&w, p); |
| return w.eCode; |
| } |
| |
| /* |
| ** Walk an expression tree. Return non-zero if the expression is constant |
| ** and 0 if it involves variables or function calls. |
| ** |
| ** For the purposes of this function, a double-quoted string (ex: "abc") |
| ** is considered a variable but a single-quoted string (ex: 'abc') is |
| ** a constant. |
| */ |
| int sqlite3ExprIsConstant(Expr *p){ |
| return exprIsConst(p, 1, 0); |
| } |
| |
| /* |
| ** Walk an expression tree. Return non-zero if |
| ** |
| ** (1) the expression is constant, and |
| ** (2) the expression does originate in the ON or USING clause |
| ** of a LEFT JOIN, and |
| ** (3) the expression does not contain any EP_FixedCol TK_COLUMN |
| ** operands created by the constant propagation optimization. |
| ** |
| ** When this routine returns true, it indicates that the expression |
| ** can be added to the pParse->pConstExpr list and evaluated once when |
| ** the prepared statement starts up. See sqlite3ExprCodeAtInit(). |
| */ |
| int sqlite3ExprIsConstantNotJoin(Expr *p){ |
| return exprIsConst(p, 2, 0); |
| } |
| |
| /* |
| ** Walk an expression tree. Return non-zero if the expression is constant |
| ** for any single row of the table with cursor iCur. In other words, the |
| ** expression must not refer to any non-deterministic function nor any |
| ** table other than iCur. |
| */ |
| int sqlite3ExprIsTableConstant(Expr *p, int iCur){ |
| return exprIsConst(p, 3, iCur); |
| } |
| |
| |
| /* |
| ** sqlite3WalkExpr() callback used by sqlite3ExprIsConstantOrGroupBy(). |
| */ |
| static int exprNodeIsConstantOrGroupBy(Walker *pWalker, Expr *pExpr){ |
| ExprList *pGroupBy = pWalker->u.pGroupBy; |
| int i; |
| |
| /* Check if pExpr is identical to any GROUP BY term. If so, consider |
| ** it constant. */ |
| for(i=0; i<pGroupBy->nExpr; i++){ |
| Expr *p = pGroupBy->a[i].pExpr; |
| if( sqlite3ExprCompare(0, pExpr, p, -1)<2 ){ |
| CollSeq *pColl = sqlite3ExprNNCollSeq(pWalker->pParse, p); |
| if( sqlite3IsBinary(pColl) ){ |
| return WRC_Prune; |
| } |
| } |
| } |
| |
| /* Check if pExpr is a sub-select. If so, consider it variable. */ |
| if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
| pWalker->eCode = 0; |
| return WRC_Abort; |
| } |
| |
| return exprNodeIsConstant(pWalker, pExpr); |
| } |
| |
| /* |
| ** Walk the expression tree passed as the first argument. Return non-zero |
| ** if the expression consists entirely of constants or copies of terms |
| ** in pGroupBy that sort with the BINARY collation sequence. |
| ** |
| ** This routine is used to determine if a term of the HAVING clause can |
| ** be promoted into the WHERE clause. In order for such a promotion to work, |
| ** the value of the HAVING clause term must be the same for all members of |
| ** a "group". The requirement that the GROUP BY term must be BINARY |
| ** assumes that no other collating sequence will have a finer-grained |
| ** grouping than binary. In other words (A=B COLLATE binary) implies |
| ** A=B in every other collating sequence. The requirement that the |
| ** GROUP BY be BINARY is stricter than necessary. It would also work |
| ** to promote HAVING clauses that use the same alternative collating |
| ** sequence as the GROUP BY term, but that is much harder to check, |
| ** alternative collating sequences are uncommon, and this is only an |
| ** optimization, so we take the easy way out and simply require the |
| ** GROUP BY to use the BINARY collating sequence. |
| */ |
| int sqlite3ExprIsConstantOrGroupBy(Parse *pParse, Expr *p, ExprList *pGroupBy){ |
| Walker w; |
| w.eCode = 1; |
| w.xExprCallback = exprNodeIsConstantOrGroupBy; |
| w.xSelectCallback = 0; |
| w.u.pGroupBy = pGroupBy; |
| w.pParse = pParse; |
| sqlite3WalkExpr(&w, p); |
| return w.eCode; |
| } |
| |
| /* |
| ** Walk an expression tree for the DEFAULT field of a column definition |
| ** in a CREATE TABLE statement. Return non-zero if the expression is |
| ** acceptable for use as a DEFAULT. That is to say, return non-zero if |
| ** the expression is constant or a function call with constant arguments. |
| ** Return and 0 if there are any variables. |
| ** |
| ** isInit is true when parsing from sqlite_master. isInit is false when |
| ** processing a new CREATE TABLE statement. When isInit is true, parameters |
| ** (such as ? or $abc) in the expression are converted into NULL. When |
| ** isInit is false, parameters raise an error. Parameters should not be |
| ** allowed in a CREATE TABLE statement, but some legacy versions of SQLite |
| ** allowed it, so we need to support it when reading sqlite_master for |
| ** backwards compatibility. |
| ** |
| ** If isInit is true, set EP_FromDDL on every TK_FUNCTION node. |
| ** |
| ** For the purposes of this function, a double-quoted string (ex: "abc") |
| ** is considered a variable but a single-quoted string (ex: 'abc') is |
| ** a constant. |
| */ |
| int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ |
| assert( isInit==0 || isInit==1 ); |
| return exprIsConst(p, 4+isInit, 0); |
| } |
| |
| #ifdef SQLITE_ENABLE_CURSOR_HINTS |
| /* |
| ** Walk an expression tree. Return 1 if the expression contains a |
| ** subquery of some kind. Return 0 if there are no subqueries. |
| */ |
| int sqlite3ExprContainsSubquery(Expr *p){ |
| Walker w; |
| w.eCode = 1; |
| w.xExprCallback = sqlite3ExprWalkNoop; |
| w.xSelectCallback = sqlite3SelectWalkFail; |
| #ifdef SQLITE_DEBUG |
| w.xSelectCallback2 = sqlite3SelectWalkAssert2; |
| #endif |
| sqlite3WalkExpr(&w, p); |
| return w.eCode==0; |
| } |
| #endif |
| |
| /* |
| ** If the expression p codes a constant integer that is small enough |
| ** to fit in a 32-bit integer, return 1 and put the value of the integer |
| ** in *pValue. If the expression is not an integer or if it is too big |
| ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. |
| */ |
| int sqlite3ExprIsInteger(Expr *p, int *pValue){ |
| int rc = 0; |
| if( NEVER(p==0) ) return 0; /* Used to only happen following on OOM */ |
| |
| /* If an expression is an integer literal that fits in a signed 32-bit |
| ** integer, then the EP_IntValue flag will have already been set */ |
| assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 |
| || sqlite3GetInt32(p->u.zToken, &rc)==0 ); |
| |
| if( p->flags & EP_IntValue ){ |
| *pValue = p->u.iValue; |
| return 1; |
| } |
| switch( p->op ){ |
| case TK_UPLUS: { |
| rc = sqlite3ExprIsInteger(p->pLeft, pValue); |
| break; |
| } |
| case TK_UMINUS: { |
| int v; |
| if( sqlite3ExprIsInteger(p->pLeft, &v) ){ |
| assert( v!=(-2147483647-1) ); |
| *pValue = -v; |
| rc = 1; |
| } |
| break; |
| } |
| default: break; |
| } |
| return rc; |
| } |
| |
| /* |
| ** Return FALSE if there is no chance that the expression can be NULL. |
| ** |
| ** If the expression might be NULL or if the expression is too complex |
| ** to tell return TRUE. |
| ** |
| ** This routine is used as an optimization, to skip OP_IsNull opcodes |
| ** when we know that a value cannot be NULL. Hence, a false positive |
| ** (returning TRUE when in fact the expression can never be NULL) might |
| ** be a small performance hit but is otherwise harmless. On the other |
| ** hand, a false negative (returning FALSE when the result could be NULL) |
| ** will likely result in an incorrect answer. So when in doubt, return |
| ** TRUE. |
| */ |
| int sqlite3ExprCanBeNull(const Expr *p){ |
| u8 op; |
| while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ |
| p = p->pLeft; |
| } |
| op = p->op; |
| if( op==TK_REGISTER ) op = p->op2; |
| switch( op ){ |
| case TK_INTEGER: |
| case TK_STRING: |
| case TK_FLOAT: |
| case TK_BLOB: |
| return 0; |
| case TK_COLUMN: |
| return ExprHasProperty(p, EP_CanBeNull) || |
| p->y.pTab==0 || /* Reference to column of index on expression */ |
| (p->iColumn>=0 |
| && ALWAYS(p->y.pTab->aCol!=0) /* Defense against OOM problems */ |
| && p->y.pTab->aCol[p->iColumn].notNull==0); |
| default: |
| return 1; |
| } |
| } |
| |
| /* |
| ** Return TRUE if the given expression is a constant which would be |
| ** unchanged by OP_Affinity with the affinity given in the second |
| ** argument. |
| ** |
| ** This routine is used to determine if the OP_Affinity operation |
| ** can be omitted. When in doubt return FALSE. A false negative |
| ** is harmless. A false positive, however, can result in the wrong |
| ** answer. |
| */ |
| int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ |
| u8 op; |
| int unaryMinus = 0; |
| if( aff==SQLITE_AFF_BLOB ) return 1; |
| while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ |
| if( p->op==TK_UMINUS ) unaryMinus = 1; |
| p = p->pLeft; |
| } |
| op = p->op; |
| if( op==TK_REGISTER ) op = p->op2; |
| switch( op ){ |
| case TK_INTEGER: { |
| return aff>=SQLITE_AFF_NUMERIC; |
| } |
| case TK_FLOAT: { |
| return aff>=SQLITE_AFF_NUMERIC; |
| } |
| case TK_STRING: { |
| return !unaryMinus && aff==SQLITE_AFF_TEXT; |
| } |
| case TK_BLOB: { |
| return !unaryMinus; |
| } |
| case TK_COLUMN: { |
| assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ |
| return aff>=SQLITE_AFF_NUMERIC && p->iColumn<0; |
| } |
| default: { |
| return 0; |
| } |
| } |
| } |
| |
| /* |
| ** Return TRUE if the given string is a row-id column name. |
| */ |
| int sqlite3IsRowid(const char *z){ |
| if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; |
| if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; |
| if( sqlite3StrICmp(z, "OID")==0 ) return 1; |
| return 0; |
| } |
| |
| /* |
| ** pX is the RHS of an IN operator. If pX is a SELECT statement |
| ** that can be simplified to a direct table access, then return |
| ** a pointer to the SELECT statement. If pX is not a SELECT statement, |
| ** or if the SELECT statement needs to be manifested into a transient |
| ** table, then return NULL. |
| */ |
| #ifndef SQLITE_OMIT_SUBQUERY |
| static Select *isCandidateForInOpt(Expr *pX){ |
| Select *p; |
| SrcList *pSrc; |
| ExprList *pEList; |
| Table *pTab; |
| int i; |
| if( !ExprHasProperty(pX, EP_xIsSelect) ) return 0; /* Not a subquery */ |
| if( ExprHasProperty(pX, EP_VarSelect) ) return 0; /* Correlated subq */ |
| p = pX->x.pSelect; |
| if( p->pPrior ) return 0; /* Not a compound SELECT */ |
| if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ |
| testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); |
| testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); |
| return 0; /* No DISTINCT keyword and no aggregate functions */ |
| } |
| assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ |
| if( p->pLimit ) return 0; /* Has no LIMIT clause */ |
| if( p->pWhere ) return 0; /* Has no WHERE clause */ |
| pSrc = p->pSrc; |
| assert( pSrc!=0 ); |
| if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ |
| if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ |
| pTab = pSrc->a[0].pTab; |
| assert( pTab!=0 ); |
| assert( pTab->pSelect==0 ); /* FROM clause is not a view */ |
| if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ |
| pEList = p->pEList; |
| assert( pEList!=0 ); |
| /* All SELECT results must be columns. */ |
| for(i=0; i<pEList->nExpr; i++){ |
| Expr *pRes = pEList->a[i].pExpr; |
| if( pRes->op!=TK_COLUMN ) return 0; |
| assert( pRes->iTable==pSrc->a[0].iCursor ); /* Not a correlated subquery */ |
| } |
| return p; |
| } |
| #endif /* SQLITE_OMIT_SUBQUERY */ |
| |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* |
| ** Generate code that checks the left-most column of index table iCur to see if |
| ** it contains any NULL entries. Cause the register at regHasNull to be set |
| ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull |
| ** to be set to NULL if iCur contains one or more NULL values. |
| */ |
| static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ |
| int addr1; |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); |
| addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); |
| sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); |
| sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); |
| VdbeComment((v, "first_entry_in(%d)", iCur)); |
| sqlite3VdbeJumpHere(v, addr1); |
| } |
| #endif |
| |
| |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* |
| ** The argument is an IN operator with a list (not a subquery) on the |
| ** right-hand side. Return TRUE if that list is constant. |
| */ |
| static int sqlite3InRhsIsConstant(Expr *pIn){ |
| Expr *pLHS; |
| int res; |
| assert( !ExprHasProperty(pIn, EP_xIsSelect) ); |
| pLHS = pIn->pLeft; |
| pIn->pLeft = 0; |
| res = sqlite3ExprIsConstant(pIn); |
| pIn->pLeft = pLHS; |
| return res; |
| } |
| #endif |
| |
| /* |
| ** This function is used by the implementation of the IN (...) operator. |
| ** The pX parameter is the expression on the RHS of the IN operator, which |
| ** might be either a list of expressions or a subquery. |
| ** |
| ** The job of this routine is to find or create a b-tree object that can |
| ** be used either to test for membership in the RHS set or to iterate through |
| ** all members of the RHS set, skipping duplicates. |
| ** |
| ** A cursor is opened on the b-tree object that is the RHS of the IN operator |
| ** and pX->iTable is set to the index of that cursor. |
| ** |
| ** The returned value of this function indicates the b-tree type, as follows: |
| ** |
| ** IN_INDEX_ROWID - The cursor was opened on a database table. |
| ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. |
| ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. |
| ** IN_INDEX_EPH - The cursor was opened on a specially created and |
| ** populated epheremal table. |
| ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be |
| ** implemented as a sequence of comparisons. |
| ** |
| ** An existing b-tree might be used if the RHS expression pX is a simple |
| ** subquery such as: |
| ** |
| ** SELECT <column1>, <column2>... FROM <table> |
| ** |
| ** If the RHS of the IN operator is a list or a more complex subquery, then |
| ** an ephemeral table might need to be generated from the RHS and then |
| ** pX->iTable made to point to the ephemeral table instead of an |
| ** existing table. |
| ** |
| ** The inFlags parameter must contain, at a minimum, one of the bits |
| ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP but not both. If inFlags contains |
| ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a fast |
| ** membership test. When the IN_INDEX_LOOP bit is set, the IN index will |
| ** be used to loop over all values of the RHS of the IN operator. |
| ** |
| ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate |
| ** through the set members) then the b-tree must not contain duplicates. |
| ** An epheremal table will be created unless the selected columns are guaranteed |
| ** to be unique - either because it is an INTEGER PRIMARY KEY or due to |
| ** a UNIQUE constraint or index. |
| ** |
| ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used |
| ** for fast set membership tests) then an epheremal table must |
| ** be used unless <columns> is a single INTEGER PRIMARY KEY column or an |
| ** index can be found with the specified <columns> as its left-most. |
| ** |
| ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and |
| ** if the RHS of the IN operator is a list (not a subquery) then this |
| ** routine might decide that creating an ephemeral b-tree for membership |
| ** testing is too expensive and return IN_INDEX_NOOP. In that case, the |
| ** calling routine should implement the IN operator using a sequence |
| ** of Eq or Ne comparison operations. |
| ** |
| ** When the b-tree is being used for membership tests, the calling function |
| ** might need to know whether or not the RHS side of the IN operator |
| ** contains a NULL. If prRhsHasNull is not a NULL pointer and |
| ** if there is any chance that the (...) might contain a NULL value at |
| ** runtime, then a register is allocated and the register number written |
| ** to *prRhsHasNull. If there is no chance that the (...) contains a |
| ** NULL value, then *prRhsHasNull is left unchanged. |
| ** |
| ** If a register is allocated and its location stored in *prRhsHasNull, then |
| ** the value in that register will be NULL if the b-tree contains one or more |
| ** NULL values, and it will be some non-NULL value if the b-tree contains no |
| ** NULL values. |
| ** |
| ** If the aiMap parameter is not NULL, it must point to an array containing |
| ** one element for each column returned by the SELECT statement on the RHS |
| ** of the IN(...) operator. The i'th entry of the array is populated with the |
| ** offset of the index column that matches the i'th column returned by the |
| ** SELECT. For example, if the expression and selected index are: |
| ** |
| ** (?,?,?) IN (SELECT a, b, c FROM t1) |
| ** CREATE INDEX i1 ON t1(b, c, a); |
| ** |
| ** then aiMap[] is populated with {2, 0, 1}. |
| */ |
| #ifndef SQLITE_OMIT_SUBQUERY |
| int sqlite3FindInIndex( |
| Parse *pParse, /* Parsing context */ |
| Expr *pX, /* The IN expression */ |
| u32 inFlags, /* IN_INDEX_LOOP, _MEMBERSHIP, and/or _NOOP_OK */ |
| int *prRhsHasNull, /* Register holding NULL status. See notes */ |
| int *aiMap, /* Mapping from Index fields to RHS fields */ |
| int *piTab /* OUT: index to use */ |
| ){ |
| Select *p; /* SELECT to the right of IN operator */ |
| int eType = 0; /* Type of RHS table. IN_INDEX_* */ |
| int iTab = pParse->nTab++; /* Cursor of the RHS table */ |
| int mustBeUnique; /* True if RHS must be unique */ |
| Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ |
| |
| assert( pX->op==TK_IN ); |
| mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; |
| |
| /* If the RHS of this IN(...) operator is a SELECT, and if it matters |
| ** whether or not the SELECT result contains NULL values, check whether |
| ** or not NULL is actually possible (it may not be, for example, due |
| ** to NOT NULL constraints in the schema). If no NULL values are possible, |
| ** set prRhsHasNull to 0 before continuing. */ |
| if( prRhsHasNull && (pX->flags & EP_xIsSelect) ){ |
| int i; |
| ExprList *pEList = pX->x.pSelect->pEList; |
| for(i=0; i<pEList->nExpr; i++){ |
| if( sqlite3ExprCanBeNull(pEList->a[i].pExpr) ) break; |
| } |
| if( i==pEList->nExpr ){ |
| prRhsHasNull = 0; |
| } |
| } |
| |
| /* Check to see if an existing table or index can be used to |
| ** satisfy the query. This is preferable to generating a new |
| ** ephemeral table. */ |
| if( pParse->nErr==0 && (p = isCandidateForInOpt(pX))!=0 ){ |
| sqlite3 *db = pParse->db; /* Database connection */ |
| Table *pTab; /* Table <table>. */ |
| i16 iDb; /* Database idx for pTab */ |
| ExprList *pEList = p->pEList; |
| int nExpr = pEList->nExpr; |
| |
| assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ |
| assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ |
| assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ |
| pTab = p->pSrc->a[0].pTab; |
| |
| /* Code an OP_Transaction and OP_TableLock for <table>. */ |
| iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| sqlite3CodeVerifySchema(pParse, iDb); |
| sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); |
| |
| assert(v); /* sqlite3GetVdbe() has always been previously called */ |
| if( nExpr==1 && pEList->a[0].pExpr->iColumn<0 ){ |
| /* The "x IN (SELECT rowid FROM table)" case */ |
| int iAddr = sqlite3VdbeAddOp0(v, OP_Once); |
| VdbeCoverage(v); |
| |
| sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); |
| eType = IN_INDEX_ROWID; |
| ExplainQueryPlan((pParse, 0, |
| "USING ROWID SEARCH ON TABLE %s FOR IN-OPERATOR",pTab->zName)); |
| sqlite3VdbeJumpHere(v, iAddr); |
| }else{ |
| Index *pIdx; /* Iterator variable */ |
| int affinity_ok = 1; |
| int i; |
| |
| /* Check that the affinity that will be used to perform each |
| ** comparison is the same as the affinity of each column in table |
| ** on the RHS of the IN operator. If it not, it is not possible to |
| ** use any index of the RHS table. */ |
| for(i=0; i<nExpr && affinity_ok; i++){ |
| Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); |
| int iCol = pEList->a[i].pExpr->iColumn; |
| char idxaff = sqlite3TableColumnAffinity(pTab,iCol); /* RHS table */ |
| char cmpaff = sqlite3CompareAffinity(pLhs, idxaff); |
| testcase( cmpaff==SQLITE_AFF_BLOB ); |
| testcase( cmpaff==SQLITE_AFF_TEXT ); |
| switch( cmpaff ){ |
| case SQLITE_AFF_BLOB: |
| break; |
| case SQLITE_AFF_TEXT: |
| /* sqlite3CompareAffinity() only returns TEXT if one side or the |
| ** other has no affinity and the other side is TEXT. Hence, |
| ** the only way for cmpaff to be TEXT is for idxaff to be TEXT |
| ** and for the term on the LHS of the IN to have no affinity. */ |
| assert( idxaff==SQLITE_AFF_TEXT ); |
| break; |
| default: |
| affinity_ok = sqlite3IsNumericAffinity(idxaff); |
| } |
| } |
| |
| if( affinity_ok ){ |
| /* Search for an existing index that will work for this IN operator */ |
| for(pIdx=pTab->pIndex; pIdx && eType==0; pIdx=pIdx->pNext){ |
| Bitmask colUsed; /* Columns of the index used */ |
| Bitmask mCol; /* Mask for the current column */ |
| if( pIdx->nColumn<nExpr ) continue; |
| if( pIdx->pPartIdxWhere!=0 ) continue; |
| /* Maximum nColumn is BMS-2, not BMS-1, so that we can compute |
| ** BITMASK(nExpr) without overflowing */ |
| testcase( pIdx->nColumn==BMS-2 ); |
| testcase( pIdx->nColumn==BMS-1 ); |
| if( pIdx->nColumn>=BMS-1 ) continue; |
| if( mustBeUnique ){ |
| if( pIdx->nKeyCol>nExpr |
| ||(pIdx->nColumn>nExpr && !IsUniqueIndex(pIdx)) |
| ){ |
| continue; /* This index is not unique over the IN RHS columns */ |
| } |
| } |
| |
| colUsed = 0; /* Columns of index used so far */ |
| for(i=0; i<nExpr; i++){ |
| Expr *pLhs = sqlite3VectorFieldSubexpr(pX->pLeft, i); |
| Expr *pRhs = pEList->a[i].pExpr; |
| CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pLhs, pRhs); |
| int j; |
| |
| assert( pReq!=0 || pRhs->iColumn==XN_ROWID || pParse->nErr ); |
| for(j=0; j<nExpr; j++){ |
| if( pIdx->aiColumn[j]!=pRhs->iColumn ) continue; |
| assert( pIdx->azColl[j] ); |
| if( pReq!=0 && sqlite3StrICmp(pReq->zName, pIdx->azColl[j])!=0 ){ |
| continue; |
| } |
| break; |
| } |
| if( j==nExpr ) break; |
| mCol = MASKBIT(j); |
| if( mCol & colUsed ) break; /* Each column used only once */ |
| colUsed |= mCol; |
| if( aiMap ) aiMap[i] = j; |
| } |
| |
| assert( i==nExpr || colUsed!=(MASKBIT(nExpr)-1) ); |
| if( colUsed==(MASKBIT(nExpr)-1) ){ |
| /* If we reach this point, that means the index pIdx is usable */ |
| int iAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); |
| ExplainQueryPlan((pParse, 0, |
| "USING INDEX %s FOR IN-OPERATOR",pIdx->zName)); |
| sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); |
| sqlite3VdbeSetP4KeyInfo(pParse, pIdx); |
| VdbeComment((v, "%s", pIdx->zName)); |
| assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); |
| eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; |
| |
| if( prRhsHasNull ){ |
| #ifdef SQLITE_ENABLE_COLUMN_USED_MASK |
| i64 mask = (1<<nExpr)-1; |
| sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, |
| iTab, 0, 0, (u8*)&mask, P4_INT64); |
| #endif |
| *prRhsHasNull = ++pParse->nMem; |
| if( nExpr==1 ){ |
| sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); |
| } |
| } |
| sqlite3VdbeJumpHere(v, iAddr); |
| } |
| } /* End loop over indexes */ |
| } /* End if( affinity_ok ) */ |
| } /* End if not an rowid index */ |
| } /* End attempt to optimize using an index */ |
| |
| /* If no preexisting index is available for the IN clause |
| ** and IN_INDEX_NOOP is an allowed reply |
| ** and the RHS of the IN operator is a list, not a subquery |
| ** and the RHS is not constant or has two or fewer terms, |
| ** then it is not worth creating an ephemeral table to evaluate |
| ** the IN operator so return IN_INDEX_NOOP. |
| */ |
| if( eType==0 |
| && (inFlags & IN_INDEX_NOOP_OK) |
| && !ExprHasProperty(pX, EP_xIsSelect) |
| && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) |
| ){ |
| eType = IN_INDEX_NOOP; |
| } |
| |
| if( eType==0 ){ |
| /* Could not find an existing table or index to use as the RHS b-tree. |
| ** We will have to generate an ephemeral table to do the job. |
| */ |
| u32 savedNQueryLoop = pParse->nQueryLoop; |
| int rMayHaveNull = 0; |
| eType = IN_INDEX_EPH; |
| if( inFlags & IN_INDEX_LOOP ){ |
| pParse->nQueryLoop = 0; |
| }else if( prRhsHasNull ){ |
| *prRhsHasNull = rMayHaveNull = ++pParse->nMem; |
| } |
| assert( pX->op==TK_IN ); |
| sqlite3CodeRhsOfIN(pParse, pX, iTab); |
| if( rMayHaveNull ){ |
| sqlite3SetHasNullFlag(v, iTab, rMayHaveNull); |
| } |
| pParse->nQueryLoop = savedNQueryLoop; |
| } |
| |
| if( aiMap && eType!=IN_INDEX_INDEX_ASC && eType!=IN_INDEX_INDEX_DESC ){ |
| int i, n; |
| n = sqlite3ExprVectorSize(pX->pLeft); |
| for(i=0; i<n; i++) aiMap[i] = i; |
| } |
| *piTab = iTab; |
| return eType; |
| } |
| #endif |
| |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* |
| ** Argument pExpr is an (?, ?...) IN(...) expression. This |
| ** function allocates and returns a nul-terminated string containing |
| ** the affinities to be used for each column of the comparison. |
| ** |
| ** It is the responsibility of the caller to ensure that the returned |
| ** string is eventually freed using sqlite3DbFree(). |
| */ |
| static char *exprINAffinity(Parse *pParse, Expr *pExpr){ |
| Expr *pLeft = pExpr->pLeft; |
| int nVal = sqlite3ExprVectorSize(pLeft); |
| Select *pSelect = (pExpr->flags & EP_xIsSelect) ? pExpr->x.pSelect : 0; |
| char *zRet; |
| |
| assert( pExpr->op==TK_IN ); |
| zRet = sqlite3DbMallocRaw(pParse->db, nVal+1); |
| if( zRet ){ |
| int i; |
| for(i=0; i<nVal; i++){ |
| Expr *pA = sqlite3VectorFieldSubexpr(pLeft, i); |
| char a = sqlite3ExprAffinity(pA); |
| if( pSelect ){ |
| zRet[i] = sqlite3CompareAffinity(pSelect->pEList->a[i].pExpr, a); |
| }else{ |
| zRet[i] = a; |
| } |
| } |
| zRet[nVal] = '\0'; |
| } |
| return zRet; |
| } |
| #endif |
| |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* |
| ** Load the Parse object passed as the first argument with an error |
| ** message of the form: |
| ** |
| ** "sub-select returns N columns - expected M" |
| */ |
| void sqlite3SubselectError(Parse *pParse, int nActual, int nExpect){ |
| if( pParse->nErr==0 ){ |
| const char *zFmt = "sub-select returns %d columns - expected %d"; |
| sqlite3ErrorMsg(pParse, zFmt, nActual, nExpect); |
| } |
| } |
| #endif |
| |
| /* |
| ** Expression pExpr is a vector that has been used in a context where |
| ** it is not permitted. If pExpr is a sub-select vector, this routine |
| ** loads the Parse object with a message of the form: |
| ** |
| ** "sub-select returns N columns - expected 1" |
| ** |
| ** Or, if it is a regular scalar vector: |
| ** |
| ** "row value misused" |
| */ |
| void sqlite3VectorErrorMsg(Parse *pParse, Expr *pExpr){ |
| #ifndef SQLITE_OMIT_SUBQUERY |
| if( pExpr->flags & EP_xIsSelect ){ |
| sqlite3SubselectError(pParse, pExpr->x.pSelect->pEList->nExpr, 1); |
| }else |
| #endif |
| { |
| sqlite3ErrorMsg(pParse, "row value misused"); |
| } |
| } |
| |
| #ifndef SQLITE_OMIT_SUBQUERY |
| /* |
| ** Generate code that will construct an ephemeral table containing all terms |
| ** in the RHS of an IN operator. The IN operator can be in either of two |
| ** forms: |
| ** |
| ** x IN (4,5,11) -- IN operator with list on right-hand side |
| ** x IN (SELECT a FROM b) -- IN operator with subquery on the right |
| ** |
| ** The pExpr parameter is the IN operator. The cursor number for the |
| ** constructed ephermeral table is returned. The first time the ephemeral |
| ** table is computed, the cursor number is also stored in pExpr->iTable, |
| ** however the cursor number returned might not be the same, as it might |
| ** have been duplicated using OP_OpenDup. |
| ** |
| ** If the LHS expression ("x" in the examples) is a column value, or |
| ** the SELECT statement returns a column value, then the affinity of that |
| ** column is used to build the index keys. If both 'x' and the |
| ** SELECT... statement are columns, then numeric affinity is used |
| ** if either column has NUMERIC or INTEGER affinity. If neither |
| ** 'x' nor the SELECT... statement are columns, then numeric affinity |
| ** is used. |
| */ |
| void sqlite3CodeRhsOfIN( |
| Parse *pParse, /* Parsing context */ |
| Expr *pExpr, /* The IN operator */ |
| int iTab /* Use this cursor number */ |
| ){ |
| int addrOnce = 0; /* Address of the OP_Once instruction at top */ |
| int addr; /* Address of OP_OpenEphemeral instruction */ |
| Expr *pLeft; /* the LHS of the IN operator */ |
| KeyInfo *pKeyInfo = 0; /* Key information */ |
| int nVal; /* Size of vector pLeft */ |
| Vdbe *v; /* The prepared statement under construction */ |
| |
| v = pParse->pVdbe; |
| assert( v!=0 ); |
| |
| /* The evaluation of the IN must be repeated every time it |
| ** is encountered if any of the following is true: |
| ** |
| ** * The right-hand side is a correlated subquery |
| ** * The right-hand side is an expression list containing variables |
| ** * We are inside a trigger |
| ** |
| ** If all of the above are false, then we can compute the RHS just once |
| ** and reuse it many names. |
| */ |
| if( !ExprHasProperty(pExpr, EP_VarSelect) && pParse->iSelfTab==0 ){ |
| /* Reuse of the RHS is allowed */ |
| /* If this routine has already been coded, but the previous code |
| ** might not have been invoked yet, so invoke it now as a subroutine. |
| */ |
| if( ExprHasProperty(pExpr, EP_Subrtn) ){ |
| addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); |
| if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
| ExplainQueryPlan((pParse, 0, "REUSE LIST SUBQUERY %d", |
| pExpr->x.pSelect->selId)); |
| } |
| sqlite3VdbeAddOp2(v, OP_Gosub, pExpr->y.sub.regReturn, |
| pExpr->y.sub.iAddr); |
| sqlite3VdbeAddOp2(v, OP_OpenDup, iTab, pExpr->iTable); |
| sqlite3VdbeJumpHere(v, addrOnce); |
| return; |
| } |
| |
| /* Begin coding the subroutine */ |
| ExprSetProperty(pExpr, EP_Subrtn); |
| pExpr->y.sub.regReturn = ++pParse->nMem; |
| pExpr->y.sub.iAddr = |
| sqlite3VdbeAddOp2(v, OP_Integer, 0, pExpr->y.sub.regReturn) + 1; |
| VdbeComment((v, "return address")); |
| |
| addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v); |
| } |
| |
| /* Check to see if this is a vector IN operator */ |
| pLeft = pExpr->pLeft; |
| nVal = sqlite3ExprVectorSize(pLeft); |
| |
| /* Construct the ephemeral table that will contain the content of |
| ** RHS of the IN operator. |
| */ |
| pExpr->iTable = iTab; |
| addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, nVal); |
| #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS |
| if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
| VdbeComment((v, "Result of SELECT %u", pExpr->x.pSelect->selId)); |
| }else{ |
| VdbeComment((v, "RHS of IN operator")); |
| } |
| #endif |
| pKeyInfo = sqlite3KeyInfoAlloc(pParse->db, nVal, 1); |
| |
| if( ExprHasProperty(pExpr, EP_xIsSelect) ){ |
| /* Case 1: expr IN (SELECT ...) |
| ** |
| ** Generate code to write the results of the select into the temporary |
| ** table allocated and opened above. |
| */ |
| Select *pSelect = pExpr->x.pSelect; |
| ExprList *pEList = pSelect->pEList; |
| |
| ExplainQueryPlan((pParse, 1, "%sLIST SUBQUERY %d", |
| addrOnce?"":"CORRELATED ", pSelect->selId |
| )); |
| /* If the LHS and RHS of the IN operator do not match, that |
| ** error will have been caught long before we reach this point. */ |
| if( ALWAYS(pEList->nExpr==nVal) ){ |
| SelectDest dest; |
| int i; |
| sqlite3SelectDestInit(&dest, SRT_Set, iTab); |
| dest.zAffSdst = exprINAffinity(pParse, pExpr); |
| pSelect->iLimit = 0; |
| testcase( pSelect->selFlags & SF_Distinct ); |
| testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ |
| if( sqlite3Select(pParse, pSelect, &dest) ){ |
| sqlite3DbFree(pParse->db, dest.zAffSdst); |
| sqlite3KeyInfoUnref(pKeyInfo); |
| return; |
| } |
| sqlite3DbFree(pParse->db, dest.zAffSdst); |
| assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ |
| assert( pEList!=0 ); |
| assert( pEList->nExpr>0 ); |
| assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); |
| for(i=0; i<nVal; i++){ |
| Expr *p = sqlite3VectorFieldSubexpr(pLeft, i); |
| pKeyInfo->aColl[i] = sqlite3BinaryCompareCollSeq( |
| pParse, p, pEList->a[i].pExpr |
| ); |
| } |
| } |
| }else if( ALWAYS(pExpr->x.pList!=0) ){ |
| /* Case 2: expr IN (exprlist) |
| ** |
| ** For each expression, build an index key from the evaluation and |
| ** store it in the temporary table. If <expr> is a column, then use |
| ** that columns affinity when building index keys. If <expr> is not |
| ** a column, use numeric affinity. |
| */ |
| char affinity; /* Affinity of the LHS of the IN */ |
| int i; |
| ExprList *pList = pExpr->x.pList; |
| struct ExprList_item *pItem; |
| int r1, r2; |
| affinity = sqlite3ExprAffinity(pLeft); |
| if( affinity<=SQLITE_AFF_NONE ){ |
| affinity = SQLITE_AFF_BLOB; |
| } |
| if( pKeyInfo ){ |
| assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); |
| pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); |
| } |
| |
| /* Loop through each expression in <exprlist>. */ |
| r1 = sqlite3GetTempReg(pParse); |
| r2 = sqlite3GetTempReg(pParse); |
| for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ |
| Expr *pE2 = pItem->pExpr; |
| |
| /* If the expression is not constant then we will need to |
| ** disable the test that was generated above that makes sure |
| ** this code only executes once. Because for a non-constant |
| <
|