| /* |
| ** 2015-04-17 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** |
| ** This is a utility program designed to aid running the SQLite library |
| ** against an external fuzzer, such as American Fuzzy Lop (AFL) |
| ** (http://lcamtuf.coredump.cx/afl/). Basically, this program reads |
| ** SQL text from standard input and passes it through to SQLite for evaluation, |
| ** just like the "sqlite3" command-line shell. Differences from the |
| ** command-line shell: |
| ** |
| ** (1) The complex "dot-command" extensions are omitted. This |
| ** prevents the fuzzer from discovering that it can run things |
| ** like ".shell rm -rf ~" |
| ** |
| ** (2) The database is opened with the SQLITE_OPEN_MEMORY flag so that |
| ** no disk I/O from the database is permitted. The ATTACH command |
| ** with a filename still uses an in-memory database. |
| ** |
| ** (3) The main in-memory database can be initialized from a template |
| ** disk database so that the fuzzer starts with a database containing |
| ** content. |
| ** |
| ** (4) The eval() SQL function is added, allowing the fuzzer to do |
| ** interesting recursive operations. |
| ** |
| ** (5) An error is raised if there is a memory leak. |
| ** |
| ** The input text can be divided into separate test cases using comments |
| ** of the form: |
| ** |
| ** |****<...>****| |
| ** |
| ** where the "..." is arbitrary text. (Except the "|" should really be "/". |
| ** "|" is used here to avoid compiler errors about nested comments.) |
| ** A separate in-memory SQLite database is created to run each test case. |
| ** This feature allows the "queue" of AFL to be captured into a single big |
| ** file using a command like this: |
| ** |
| ** (for i in id:*; do echo '|****<'$i'>****|'; cat $i; done) >~/all-queue.txt |
| ** |
| ** (Once again, change the "|" to "/") Then all elements of the AFL queue |
| ** can be run in a single go (for regression testing, for example) by typing: |
| ** |
| ** fuzzershell -f ~/all-queue.txt |
| ** |
| ** After running each chunk of SQL, the database connection is closed. The |
| ** program aborts if the close fails or if there is any unfreed memory after |
| ** the close. |
| ** |
| ** New test cases can be appended to all-queue.txt at any time. If redundant |
| ** test cases are added, they can be eliminated by running: |
| ** |
| ** fuzzershell -f ~/all-queue.txt --unique-cases ~/unique-cases.txt |
| */ |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <stdarg.h> |
| #include <ctype.h> |
| #include "sqlite3.h" |
| #define ISDIGIT(X) isdigit((unsigned char)(X)) |
| |
| /* |
| ** All global variables are gathered into the "g" singleton. |
| */ |
| struct GlobalVars { |
| const char *zArgv0; /* Name of program */ |
| sqlite3_mem_methods sOrigMem; /* Original memory methods */ |
| sqlite3_mem_methods sOomMem; /* Memory methods with OOM simulator */ |
| int iOomCntdown; /* Memory fails on 1 to 0 transition */ |
| int nOomFault; /* Increments for each OOM fault */ |
| int bOomOnce; /* Fail just once if true */ |
| int bOomEnable; /* True to enable OOM simulation */ |
| int nOomBrkpt; /* Number of calls to oomFault() */ |
| char zTestName[100]; /* Name of current test */ |
| } g; |
| |
| /* |
| ** Maximum number of iterations for an OOM test |
| */ |
| #ifndef OOM_MAX |
| # define OOM_MAX 625 |
| #endif |
| |
| /* |
| ** This routine is called when a simulated OOM occurs. It exists as a |
| ** convenient place to set a debugger breakpoint. |
| */ |
| static void oomFault(void){ |
| g.nOomBrkpt++; /* Prevent oomFault() from being optimized out */ |
| } |
| |
| |
| /* Versions of malloc() and realloc() that simulate OOM conditions */ |
| static void *oomMalloc(int nByte){ |
| if( nByte>0 && g.bOomEnable && g.iOomCntdown>0 ){ |
| g.iOomCntdown--; |
| if( g.iOomCntdown==0 ){ |
| if( g.nOomFault==0 ) oomFault(); |
| g.nOomFault++; |
| if( !g.bOomOnce ) g.iOomCntdown = 1; |
| return 0; |
| } |
| } |
| return g.sOrigMem.xMalloc(nByte); |
| } |
| static void *oomRealloc(void *pOld, int nByte){ |
| if( nByte>0 && g.bOomEnable && g.iOomCntdown>0 ){ |
| g.iOomCntdown--; |
| if( g.iOomCntdown==0 ){ |
| if( g.nOomFault==0 ) oomFault(); |
| g.nOomFault++; |
| if( !g.bOomOnce ) g.iOomCntdown = 1; |
| return 0; |
| } |
| } |
| return g.sOrigMem.xRealloc(pOld, nByte); |
| } |
| |
| /* |
| ** Print an error message and abort in such a way to indicate to the |
| ** fuzzer that this counts as a crash. |
| */ |
| static void abendError(const char *zFormat, ...){ |
| va_list ap; |
| if( g.zTestName[0] ){ |
| fprintf(stderr, "%s (%s): ", g.zArgv0, g.zTestName); |
| }else{ |
| fprintf(stderr, "%s: ", g.zArgv0); |
| } |
| va_start(ap, zFormat); |
| vfprintf(stderr, zFormat, ap); |
| va_end(ap); |
| fprintf(stderr, "\n"); |
| abort(); |
| } |
| /* |
| ** Print an error message and quit, but not in a way that would look |
| ** like a crash. |
| */ |
| static void fatalError(const char *zFormat, ...){ |
| va_list ap; |
| if( g.zTestName[0] ){ |
| fprintf(stderr, "%s (%s): ", g.zArgv0, g.zTestName); |
| }else{ |
| fprintf(stderr, "%s: ", g.zArgv0); |
| } |
| va_start(ap, zFormat); |
| vfprintf(stderr, zFormat, ap); |
| va_end(ap); |
| fprintf(stderr, "\n"); |
| exit(1); |
| } |
| |
| /* |
| ** Evaluate some SQL. Abort if unable. |
| */ |
| static void sqlexec(sqlite3 *db, const char *zFormat, ...){ |
| va_list ap; |
| char *zSql; |
| char *zErrMsg = 0; |
| int rc; |
| va_start(ap, zFormat); |
| zSql = sqlite3_vmprintf(zFormat, ap); |
| va_end(ap); |
| rc = sqlite3_exec(db, zSql, 0, 0, &zErrMsg); |
| if( rc ) abendError("failed sql [%s]: %s", zSql, zErrMsg); |
| sqlite3_free(zSql); |
| } |
| |
| /* |
| ** This callback is invoked by sqlite3_log(). |
| */ |
| static void shellLog(void *pNotUsed, int iErrCode, const char *zMsg){ |
| printf("LOG: (%d) %s\n", iErrCode, zMsg); |
| fflush(stdout); |
| } |
| static void shellLogNoop(void *pNotUsed, int iErrCode, const char *zMsg){ |
| return; |
| } |
| |
| /* |
| ** This callback is invoked by sqlite3_exec() to return query results. |
| */ |
| static int execCallback(void *NotUsed, int argc, char **argv, char **colv){ |
| int i; |
| static unsigned cnt = 0; |
| printf("ROW #%u:\n", ++cnt); |
| if( argv ){ |
| for(i=0; i<argc; i++){ |
| printf(" %s=", colv[i]); |
| if( argv[i] ){ |
| printf("[%s]\n", argv[i]); |
| }else{ |
| printf("NULL\n"); |
| } |
| } |
| } |
| fflush(stdout); |
| return 0; |
| } |
| static int execNoop(void *NotUsed, int argc, char **argv, char **colv){ |
| return 0; |
| } |
| |
| #ifndef SQLITE_OMIT_TRACE |
| /* |
| ** This callback is invoked by sqlite3_trace() as each SQL statement |
| ** starts. |
| */ |
| static void traceCallback(void *NotUsed, const char *zMsg){ |
| printf("TRACE: %s\n", zMsg); |
| fflush(stdout); |
| } |
| static void traceNoop(void *NotUsed, const char *zMsg){ |
| return; |
| } |
| #endif |
| |
| /*************************************************************************** |
| ** String accumulator object |
| */ |
| typedef struct Str Str; |
| struct Str { |
| char *z; /* The string. Memory from malloc() */ |
| sqlite3_uint64 n; /* Bytes of input used */ |
| sqlite3_uint64 nAlloc; /* Bytes allocated to z[] */ |
| int oomErr; /* OOM error has been seen */ |
| }; |
| |
| /* Initialize a Str object */ |
| static void StrInit(Str *p){ |
| memset(p, 0, sizeof(*p)); |
| } |
| |
| /* Append text to the end of a Str object */ |
| static void StrAppend(Str *p, const char *z){ |
| sqlite3_uint64 n = strlen(z); |
| if( p->n + n >= p->nAlloc ){ |
| char *zNew; |
| sqlite3_uint64 nNew; |
| if( p->oomErr ) return; |
| nNew = p->nAlloc*2 + 100 + n; |
| zNew = sqlite3_realloc(p->z, (int)nNew); |
| if( zNew==0 ){ |
| sqlite3_free(p->z); |
| memset(p, 0, sizeof(*p)); |
| p->oomErr = 1; |
| return; |
| } |
| p->z = zNew; |
| p->nAlloc = nNew; |
| } |
| memcpy(p->z + p->n, z, (size_t)n); |
| p->n += n; |
| p->z[p->n] = 0; |
| } |
| |
| /* Return the current string content */ |
| static char *StrStr(Str *p){ |
| return p->z; |
| } |
| |
| /* Free the string */ |
| static void StrFree(Str *p){ |
| sqlite3_free(p->z); |
| StrInit(p); |
| } |
| |
| /*************************************************************************** |
| ** eval() implementation copied from ../ext/misc/eval.c |
| */ |
| /* |
| ** Structure used to accumulate the output |
| */ |
| struct EvalResult { |
| char *z; /* Accumulated output */ |
| const char *zSep; /* Separator */ |
| int szSep; /* Size of the separator string */ |
| sqlite3_int64 nAlloc; /* Number of bytes allocated for z[] */ |
| sqlite3_int64 nUsed; /* Number of bytes of z[] actually used */ |
| }; |
| |
| /* |
| ** Callback from sqlite_exec() for the eval() function. |
| */ |
| static int callback(void *pCtx, int argc, char **argv, char **colnames){ |
| struct EvalResult *p = (struct EvalResult*)pCtx; |
| int i; |
| for(i=0; i<argc; i++){ |
| const char *z = argv[i] ? argv[i] : ""; |
| size_t sz = strlen(z); |
| if( (sqlite3_int64)sz+p->nUsed+p->szSep+1 > p->nAlloc ){ |
| char *zNew; |
| p->nAlloc = p->nAlloc*2 + sz + p->szSep + 1; |
| /* Using sqlite3_realloc64() would be better, but it is a recent |
| ** addition and will cause a segfault if loaded by an older version |
| ** of SQLite. */ |
| zNew = p->nAlloc<=0x7fffffff ? sqlite3_realloc(p->z, (int)p->nAlloc) : 0; |
| if( zNew==0 ){ |
| sqlite3_free(p->z); |
| memset(p, 0, sizeof(*p)); |
| return 1; |
| } |
| p->z = zNew; |
| } |
| if( p->nUsed>0 ){ |
| memcpy(&p->z[p->nUsed], p->zSep, p->szSep); |
| p->nUsed += p->szSep; |
| } |
| memcpy(&p->z[p->nUsed], z, sz); |
| p->nUsed += sz; |
| } |
| return 0; |
| } |
| |
| /* |
| ** Implementation of the eval(X) and eval(X,Y) SQL functions. |
| ** |
| ** Evaluate the SQL text in X. Return the results, using string |
| ** Y as the separator. If Y is omitted, use a single space character. |
| */ |
| static void sqlEvalFunc( |
| sqlite3_context *context, |
| int argc, |
| sqlite3_value **argv |
| ){ |
| const char *zSql; |
| sqlite3 *db; |
| char *zErr = 0; |
| int rc; |
| struct EvalResult x; |
| |
| memset(&x, 0, sizeof(x)); |
| x.zSep = " "; |
| zSql = (const char*)sqlite3_value_text(argv[0]); |
| if( zSql==0 ) return; |
| if( argc>1 ){ |
| x.zSep = (const char*)sqlite3_value_text(argv[1]); |
| if( x.zSep==0 ) return; |
| } |
| x.szSep = (int)strlen(x.zSep); |
| db = sqlite3_context_db_handle(context); |
| rc = sqlite3_exec(db, zSql, callback, &x, &zErr); |
| if( rc!=SQLITE_OK ){ |
| sqlite3_result_error(context, zErr, -1); |
| sqlite3_free(zErr); |
| }else if( x.zSep==0 ){ |
| sqlite3_result_error_nomem(context); |
| sqlite3_free(x.z); |
| }else{ |
| sqlite3_result_text(context, x.z, (int)x.nUsed, sqlite3_free); |
| } |
| } |
| /* End of the eval() implementation |
| ******************************************************************************/ |
| |
| /****************************************************************************** |
| ** The generate_series(START,END,STEP) eponymous table-valued function. |
| ** |
| ** This code is copy/pasted from ext/misc/series.c in the SQLite source tree. |
| */ |
| /* series_cursor is a subclass of sqlite3_vtab_cursor which will |
| ** serve as the underlying representation of a cursor that scans |
| ** over rows of the result |
| */ |
| typedef struct series_cursor series_cursor; |
| struct series_cursor { |
| sqlite3_vtab_cursor base; /* Base class - must be first */ |
| int isDesc; /* True to count down rather than up */ |
| sqlite3_int64 iRowid; /* The rowid */ |
| sqlite3_int64 iValue; /* Current value ("value") */ |
| sqlite3_int64 mnValue; /* Mimimum value ("start") */ |
| sqlite3_int64 mxValue; /* Maximum value ("stop") */ |
| sqlite3_int64 iStep; /* Increment ("step") */ |
| }; |
| |
| /* |
| ** The seriesConnect() method is invoked to create a new |
| ** series_vtab that describes the generate_series virtual table. |
| ** |
| ** Think of this routine as the constructor for series_vtab objects. |
| ** |
| ** All this routine needs to do is: |
| ** |
| ** (1) Allocate the series_vtab object and initialize all fields. |
| ** |
| ** (2) Tell SQLite (via the sqlite3_declare_vtab() interface) what the |
| ** result set of queries against generate_series will look like. |
| */ |
| static int seriesConnect( |
| sqlite3 *db, |
| void *pAux, |
| int argc, const char *const*argv, |
| sqlite3_vtab **ppVtab, |
| char **pzErr |
| ){ |
| sqlite3_vtab *pNew; |
| int rc; |
| |
| /* Column numbers */ |
| #define SERIES_COLUMN_VALUE 0 |
| #define SERIES_COLUMN_START 1 |
| #define SERIES_COLUMN_STOP 2 |
| #define SERIES_COLUMN_STEP 3 |
| |
| rc = sqlite3_declare_vtab(db, |
| "CREATE TABLE x(value,start hidden,stop hidden,step hidden)"); |
| if( rc==SQLITE_OK ){ |
| pNew = *ppVtab = sqlite3_malloc( sizeof(*pNew) ); |
| if( pNew==0 ) return SQLITE_NOMEM; |
| memset(pNew, 0, sizeof(*pNew)); |
| } |
| return rc; |
| } |
| |
| /* |
| ** This method is the destructor for series_cursor objects. |
| */ |
| static int seriesDisconnect(sqlite3_vtab *pVtab){ |
| sqlite3_free(pVtab); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Constructor for a new series_cursor object. |
| */ |
| static int seriesOpen(sqlite3_vtab *p, sqlite3_vtab_cursor **ppCursor){ |
| series_cursor *pCur; |
| pCur = sqlite3_malloc( sizeof(*pCur) ); |
| if( pCur==0 ) return SQLITE_NOMEM; |
| memset(pCur, 0, sizeof(*pCur)); |
| *ppCursor = &pCur->base; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Destructor for a series_cursor. |
| */ |
| static int seriesClose(sqlite3_vtab_cursor *cur){ |
| sqlite3_free(cur); |
| return SQLITE_OK; |
| } |
| |
| |
| /* |
| ** Advance a series_cursor to its next row of output. |
| */ |
| static int seriesNext(sqlite3_vtab_cursor *cur){ |
| series_cursor *pCur = (series_cursor*)cur; |
| if( pCur->isDesc ){ |
| pCur->iValue -= pCur->iStep; |
| }else{ |
| pCur->iValue += pCur->iStep; |
| } |
| pCur->iRowid++; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Return values of columns for the row at which the series_cursor |
| ** is currently pointing. |
| */ |
| static int seriesColumn( |
| sqlite3_vtab_cursor *cur, /* The cursor */ |
| sqlite3_context *ctx, /* First argument to sqlite3_result_...() */ |
| int i /* Which column to return */ |
| ){ |
| series_cursor *pCur = (series_cursor*)cur; |
| sqlite3_int64 x = 0; |
| switch( i ){ |
| case SERIES_COLUMN_START: x = pCur->mnValue; break; |
| case SERIES_COLUMN_STOP: x = pCur->mxValue; break; |
| case SERIES_COLUMN_STEP: x = pCur->iStep; break; |
| default: x = pCur->iValue; break; |
| } |
| sqlite3_result_int64(ctx, x); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Return the rowid for the current row. In this implementation, the |
| ** rowid is the same as the output value. |
| */ |
| static int seriesRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ |
| series_cursor *pCur = (series_cursor*)cur; |
| *pRowid = pCur->iRowid; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Return TRUE if the cursor has been moved off of the last |
| ** row of output. |
| */ |
| static int seriesEof(sqlite3_vtab_cursor *cur){ |
| series_cursor *pCur = (series_cursor*)cur; |
| if( pCur->isDesc ){ |
| return pCur->iValue < pCur->mnValue; |
| }else{ |
| return pCur->iValue > pCur->mxValue; |
| } |
| } |
| |
| /* True to cause run-time checking of the start=, stop=, and/or step= |
| ** parameters. The only reason to do this is for testing the |
| ** constraint checking logic for virtual tables in the SQLite core. |
| */ |
| #ifndef SQLITE_SERIES_CONSTRAINT_VERIFY |
| # define SQLITE_SERIES_CONSTRAINT_VERIFY 0 |
| #endif |
| |
| /* |
| ** This method is called to "rewind" the series_cursor object back |
| ** to the first row of output. This method is always called at least |
| ** once prior to any call to seriesColumn() or seriesRowid() or |
| ** seriesEof(). |
| ** |
| ** The query plan selected by seriesBestIndex is passed in the idxNum |
| ** parameter. (idxStr is not used in this implementation.) idxNum |
| ** is a bitmask showing which constraints are available: |
| ** |
| ** 1: start=VALUE |
| ** 2: stop=VALUE |
| ** 4: step=VALUE |
| ** |
| ** Also, if bit 8 is set, that means that the series should be output |
| ** in descending order rather than in ascending order. |
| ** |
| ** This routine should initialize the cursor and position it so that it |
| ** is pointing at the first row, or pointing off the end of the table |
| ** (so that seriesEof() will return true) if the table is empty. |
| */ |
| static int seriesFilter( |
| sqlite3_vtab_cursor *pVtabCursor, |
| int idxNum, const char *idxStr, |
| int argc, sqlite3_value **argv |
| ){ |
| series_cursor *pCur = (series_cursor *)pVtabCursor; |
| int i = 0; |
| if( idxNum & 1 ){ |
| pCur->mnValue = sqlite3_value_int64(argv[i++]); |
| }else{ |
| pCur->mnValue = 0; |
| } |
| if( idxNum & 2 ){ |
| pCur->mxValue = sqlite3_value_int64(argv[i++]); |
| }else{ |
| pCur->mxValue = 0xffffffff; |
| } |
| if( idxNum & 4 ){ |
| pCur->iStep = sqlite3_value_int64(argv[i++]); |
| if( pCur->iStep<1 ) pCur->iStep = 1; |
| }else{ |
| pCur->iStep = 1; |
| } |
| if( idxNum & 8 ){ |
| pCur->isDesc = 1; |
| pCur->iValue = pCur->mxValue; |
| if( pCur->iStep>0 ){ |
| pCur->iValue -= (pCur->mxValue - pCur->mnValue)%pCur->iStep; |
| } |
| }else{ |
| pCur->isDesc = 0; |
| pCur->iValue = pCur->mnValue; |
| } |
| pCur->iRowid = 1; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** SQLite will invoke this method one or more times while planning a query |
| ** that uses the generate_series virtual table. This routine needs to create |
| ** a query plan for each invocation and compute an estimated cost for that |
| ** plan. |
| ** |
| ** In this implementation idxNum is used to represent the |
| ** query plan. idxStr is unused. |
| ** |
| ** The query plan is represented by bits in idxNum: |
| ** |
| ** (1) start = $value -- constraint exists |
| ** (2) stop = $value -- constraint exists |
| ** (4) step = $value -- constraint exists |
| ** (8) output in descending order |
| */ |
| static int seriesBestIndex( |
| sqlite3_vtab *tab, |
| sqlite3_index_info *pIdxInfo |
| ){ |
| int i; /* Loop over constraints */ |
| int idxNum = 0; /* The query plan bitmask */ |
| int startIdx = -1; /* Index of the start= constraint, or -1 if none */ |
| int stopIdx = -1; /* Index of the stop= constraint, or -1 if none */ |
| int stepIdx = -1; /* Index of the step= constraint, or -1 if none */ |
| int nArg = 0; /* Number of arguments that seriesFilter() expects */ |
| |
| const struct sqlite3_index_constraint *pConstraint; |
| pConstraint = pIdxInfo->aConstraint; |
| for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ |
| if( pConstraint->usable==0 ) continue; |
| if( pConstraint->op!=SQLITE_INDEX_CONSTRAINT_EQ ) continue; |
| switch( pConstraint->iColumn ){ |
| case SERIES_COLUMN_START: |
| startIdx = i; |
| idxNum |= 1; |
| break; |
| case SERIES_COLUMN_STOP: |
| stopIdx = i; |
| idxNum |= 2; |
| break; |
| case SERIES_COLUMN_STEP: |
| stepIdx = i; |
| idxNum |= 4; |
| break; |
| } |
| } |
| if( startIdx>=0 ){ |
| pIdxInfo->aConstraintUsage[startIdx].argvIndex = ++nArg; |
| pIdxInfo->aConstraintUsage[startIdx].omit= !SQLITE_SERIES_CONSTRAINT_VERIFY; |
| } |
| if( stopIdx>=0 ){ |
| pIdxInfo->aConstraintUsage[stopIdx].argvIndex = ++nArg; |
| pIdxInfo->aConstraintUsage[stopIdx].omit = !SQLITE_SERIES_CONSTRAINT_VERIFY; |
| } |
| if( stepIdx>=0 ){ |
| pIdxInfo->aConstraintUsage[stepIdx].argvIndex = ++nArg; |
| pIdxInfo->aConstraintUsage[stepIdx].omit = !SQLITE_SERIES_CONSTRAINT_VERIFY; |
| } |
| if( (idxNum & 3)==3 ){ |
| /* Both start= and stop= boundaries are available. This is the |
| ** the preferred case */ |
| pIdxInfo->estimatedCost = (double)(2 - ((idxNum&4)!=0)); |
| pIdxInfo->estimatedRows = 1000; |
| if( pIdxInfo->nOrderBy==1 ){ |
| if( pIdxInfo->aOrderBy[0].desc ) idxNum |= 8; |
| pIdxInfo->orderByConsumed = 1; |
| } |
| }else{ |
| /* If either boundary is missing, we have to generate a huge span |
| ** of numbers. Make this case very expensive so that the query |
| ** planner will work hard to avoid it. */ |
| pIdxInfo->estimatedCost = (double)2147483647; |
| pIdxInfo->estimatedRows = 2147483647; |
| } |
| pIdxInfo->idxNum = idxNum; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** This following structure defines all the methods for the |
| ** generate_series virtual table. |
| */ |
| static sqlite3_module seriesModule = { |
| 0, /* iVersion */ |
| 0, /* xCreate */ |
| seriesConnect, /* xConnect */ |
| seriesBestIndex, /* xBestIndex */ |
| seriesDisconnect, /* xDisconnect */ |
| 0, /* xDestroy */ |
| seriesOpen, /* xOpen - open a cursor */ |
| seriesClose, /* xClose - close a cursor */ |
| seriesFilter, /* xFilter - configure scan constraints */ |
| seriesNext, /* xNext - advance a cursor */ |
| seriesEof, /* xEof - check for end of scan */ |
| seriesColumn, /* xColumn - read data */ |
| seriesRowid, /* xRowid - read data */ |
| 0, /* xUpdate */ |
| 0, /* xBegin */ |
| 0, /* xSync */ |
| 0, /* xCommit */ |
| 0, /* xRollback */ |
| 0, /* xFindMethod */ |
| 0, /* xRename */ |
| }; |
| /* END the generate_series(START,END,STEP) implementation |
| *********************************************************************************/ |
| |
| /* |
| ** Print sketchy documentation for this utility program |
| */ |
| static void showHelp(void){ |
| printf("Usage: %s [options] ?FILE...?\n", g.zArgv0); |
| printf( |
| "Read SQL text from FILE... (or from standard input if FILE... is omitted)\n" |
| "and then evaluate each block of SQL contained therein.\n" |
| "Options:\n" |
| " --autovacuum Enable AUTOVACUUM mode\n" |
| " --database FILE Use database FILE instead of an in-memory database\n" |
| " --disable-lookaside Turn off lookaside memory\n" |
| " --heap SZ MIN Memory allocator uses SZ bytes & min allocation MIN\n" |
| " --help Show this help text\n" |
| " --lookaside N SZ Configure lookaside for N slots of SZ bytes each\n" |
| " --oom Run each test multiple times in a simulated OOM loop\n" |
| " --pagesize N Set the page size to N\n" |
| " --pcache N SZ Configure N pages of pagecache each of size SZ bytes\n" |
| " -q Reduced output\n" |
| " --quiet Reduced output\n" |
| " --scratch N SZ Configure scratch memory for N slots of SZ bytes each\n" |
| " --unique-cases FILE Write all unique test cases to FILE\n" |
| " --utf16be Set text encoding to UTF-16BE\n" |
| " --utf16le Set text encoding to UTF-16LE\n" |
| " -v Increased output\n" |
| " --verbose Increased output\n" |
| ); |
| } |
| |
| /* |
| ** Return the value of a hexadecimal digit. Return -1 if the input |
| ** is not a hex digit. |
| */ |
| static int hexDigitValue(char c){ |
| if( c>='0' && c<='9' ) return c - '0'; |
| if( c>='a' && c<='f' ) return c - 'a' + 10; |
| if( c>='A' && c<='F' ) return c - 'A' + 10; |
| return -1; |
| } |
| |
| /* |
| ** Interpret zArg as an integer value, possibly with suffixes. |
| */ |
| static int integerValue(const char *zArg){ |
| sqlite3_int64 v = 0; |
| static const struct { char *zSuffix; int iMult; } aMult[] = { |
| { "KiB", 1024 }, |
| { "MiB", 1024*1024 }, |
| { "GiB", 1024*1024*1024 }, |
| { "KB", 1000 }, |
| { "MB", 1000000 }, |
| { "GB", 1000000000 }, |
| { "K", 1000 }, |
| { "M", 1000000 }, |
| { "G", 1000000000 }, |
| }; |
| int i; |
| int isNeg = 0; |
| if( zArg[0]=='-' ){ |
| isNeg = 1; |
| zArg++; |
| }else if( zArg[0]=='+' ){ |
| zArg++; |
| } |
| if( zArg[0]=='0' && zArg[1]=='x' ){ |
| int x; |
| zArg += 2; |
| while( (x = hexDigitValue(zArg[0]))>=0 ){ |
| v = (v<<4) + x; |
| zArg++; |
| } |
| }else{ |
| while( ISDIGIT(zArg[0]) ){ |
| v = v*10 + zArg[0] - '0'; |
| zArg++; |
| } |
| } |
| for(i=0; i<sizeof(aMult)/sizeof(aMult[0]); i++){ |
| if( sqlite3_stricmp(aMult[i].zSuffix, zArg)==0 ){ |
| v *= aMult[i].iMult; |
| break; |
| } |
| } |
| if( v>0x7fffffff ) abendError("parameter too large - max 2147483648"); |
| return (int)(isNeg? -v : v); |
| } |
| |
| /* Return the current wall-clock time */ |
| static sqlite3_int64 timeOfDay(void){ |
| static sqlite3_vfs *clockVfs = 0; |
| sqlite3_int64 t; |
| if( clockVfs==0 ) clockVfs = sqlite3_vfs_find(0); |
| if( clockVfs->iVersion>=1 && clockVfs->xCurrentTimeInt64!=0 ){ |
| clockVfs->xCurrentTimeInt64(clockVfs, &t); |
| }else{ |
| double r; |
| clockVfs->xCurrentTime(clockVfs, &r); |
| t = (sqlite3_int64)(r*86400000.0); |
| } |
| return t; |
| } |
| |
| int main(int argc, char **argv){ |
| char *zIn = 0; /* Input text */ |
| int nAlloc = 0; /* Number of bytes allocated for zIn[] */ |
| int nIn = 0; /* Number of bytes of zIn[] used */ |
| size_t got; /* Bytes read from input */ |
| int rc = SQLITE_OK; /* Result codes from API functions */ |
| int i; /* Loop counter */ |
| int iNext; /* Next block of SQL */ |
| sqlite3 *db; /* Open database */ |
| char *zErrMsg = 0; /* Error message returned from sqlite3_exec() */ |
| const char *zEncoding = 0; /* --utf16be or --utf16le */ |
| int nHeap = 0, mnHeap = 0; /* Heap size from --heap */ |
| int nLook = 0, szLook = 0; /* --lookaside configuration */ |
| int nPCache = 0, szPCache = 0;/* --pcache configuration */ |
| int nScratch = 0, szScratch=0;/* --scratch configuration */ |
| int pageSize = 0; /* Desired page size. 0 means default */ |
| void *pHeap = 0; /* Allocated heap space */ |
| void *pLook = 0; /* Allocated lookaside space */ |
| void *pPCache = 0; /* Allocated storage for pcache */ |
| void *pScratch = 0; /* Allocated storage for scratch */ |
| int doAutovac = 0; /* True for --autovacuum */ |
| char *zSql; /* SQL to run */ |
| char *zToFree = 0; /* Call sqlite3_free() on this afte running zSql */ |
| int verboseFlag = 0; /* --verbose or -v flag */ |
| int quietFlag = 0; /* --quiet or -q flag */ |
| int nTest = 0; /* Number of test cases run */ |
| int multiTest = 0; /* True if there will be multiple test cases */ |
| int lastPct = -1; /* Previous percentage done output */ |
| sqlite3 *dataDb = 0; /* Database holding compacted input data */ |
| sqlite3_stmt *pStmt = 0; /* Statement to insert testcase into dataDb */ |
| const char *zDataOut = 0; /* Write compacted data to this output file */ |
| int nHeader = 0; /* Bytes of header comment text on input file */ |
| int oomFlag = 0; /* --oom */ |
| int oomCnt = 0; /* Counter for the OOM loop */ |
| char zErrBuf[200]; /* Space for the error message */ |
| const char *zFailCode; /* Value of the TEST_FAILURE environment var */ |
| const char *zPrompt; /* Initial prompt when large-file fuzzing */ |
| int nInFile = 0; /* Number of input files to read */ |
| char **azInFile = 0; /* Array of input file names */ |
| int jj; /* Loop counter for azInFile[] */ |
| sqlite3_int64 iBegin; /* Start time for the whole program */ |
| sqlite3_int64 iStart, iEnd; /* Start and end-times for a test case */ |
| const char *zDbName = 0; /* Name of an on-disk database file to open */ |
| |
| iBegin = timeOfDay(); |
| sqlite3_shutdown(); |
| zFailCode = getenv("TEST_FAILURE"); |
| g.zArgv0 = argv[0]; |
| zPrompt = "<stdin>"; |
| for(i=1; i<argc; i++){ |
| const char *z = argv[i]; |
| if( z[0]=='-' ){ |
| z++; |
| if( z[0]=='-' ) z++; |
| if( strcmp(z,"autovacuum")==0 ){ |
| doAutovac = 1; |
| }else |
| if( strcmp(z,"database")==0 ){ |
| if( i>=argc-1 ) abendError("missing argument on %s\n", argv[i]); |
| zDbName = argv[i+1]; |
| i += 1; |
| }else |
| if( strcmp(z,"disable-lookaside")==0 ){ |
| nLook = 1; |
| szLook = 0; |
| }else |
| if( strcmp(z, "f")==0 && i+1<argc ){ |
| i++; |
| goto addNewInFile; |
| }else |
| if( strcmp(z,"heap")==0 ){ |
| if( i>=argc-2 ) abendError("missing arguments on %s\n", argv[i]); |
| nHeap = integerValue(argv[i+1]); |
| mnHeap = integerValue(argv[i+2]); |
| i += 2; |
| }else |
| if( strcmp(z,"help")==0 ){ |
| showHelp(); |
| return 0; |
| }else |
| if( strcmp(z,"lookaside")==0 ){ |
| if( i>=argc-2 ) abendError("missing arguments on %s", argv[i]); |
| nLook = integerValue(argv[i+1]); |
| szLook = integerValue(argv[i+2]); |
| i += 2; |
| }else |
| if( strcmp(z,"oom")==0 ){ |
| oomFlag = 1; |
| }else |
| if( strcmp(z,"pagesize")==0 ){ |
| if( i>=argc-1 ) abendError("missing argument on %s", argv[i]); |
| pageSize = integerValue(argv[++i]); |
| }else |
| if( strcmp(z,"pcache")==0 ){ |
| if( i>=argc-2 ) abendError("missing arguments on %s", argv[i]); |
| nPCache = integerValue(argv[i+1]); |
| szPCache = integerValue(argv[i+2]); |
| i += 2; |
| }else |
| if( strcmp(z,"quiet")==0 || strcmp(z,"q")==0 ){ |
| quietFlag = 1; |
| verboseFlag = 0; |
| }else |
| if( strcmp(z,"scratch")==0 ){ |
| if( i>=argc-2 ) abendError("missing arguments on %s", argv[i]); |
| nScratch = integerValue(argv[i+1]); |
| szScratch = integerValue(argv[i+2]); |
| i += 2; |
| }else |
| if( strcmp(z, "unique-cases")==0 ){ |
| if( i>=argc-1 ) abendError("missing arguments on %s", argv[i]); |
| if( zDataOut ) abendError("only one --minimize allowed"); |
| zDataOut = argv[++i]; |
| }else |
| if( strcmp(z,"utf16le")==0 ){ |
| zEncoding = "utf16le"; |
| }else |
| if( strcmp(z,"utf16be")==0 ){ |
| zEncoding = "utf16be"; |
| }else |
| if( strcmp(z,"verbose")==0 || strcmp(z,"v")==0 ){ |
| quietFlag = 0; |
| verboseFlag = 1; |
| }else |
| { |
| abendError("unknown option: %s", argv[i]); |
| } |
| }else{ |
| addNewInFile: |
| nInFile++; |
| azInFile = realloc(azInFile, sizeof(azInFile[0])*nInFile); |
| if( azInFile==0 ) abendError("out of memory"); |
| azInFile[nInFile-1] = argv[i]; |
| } |
| } |
| |
| /* Do global SQLite initialization */ |
| sqlite3_config(SQLITE_CONFIG_LOG, verboseFlag ? shellLog : shellLogNoop, 0); |
| if( nHeap>0 ){ |
| pHeap = malloc( nHeap ); |
| if( pHeap==0 ) fatalError("cannot allocate %d-byte heap\n", nHeap); |
| rc = sqlite3_config(SQLITE_CONFIG_HEAP, pHeap, nHeap, mnHeap); |
| if( rc ) abendError("heap configuration failed: %d\n", rc); |
| } |
| if( oomFlag ){ |
| sqlite3_config(SQLITE_CONFIG_GETMALLOC, &g.sOrigMem); |
| g.sOomMem = g.sOrigMem; |
| g.sOomMem.xMalloc = oomMalloc; |
| g.sOomMem.xRealloc = oomRealloc; |
| sqlite3_config(SQLITE_CONFIG_MALLOC, &g.sOomMem); |
| } |
| if( nLook>0 ){ |
| sqlite3_config(SQLITE_CONFIG_LOOKASIDE, 0, 0); |
| if( szLook>0 ){ |
| pLook = malloc( nLook*szLook ); |
| if( pLook==0 ) fatalError("out of memory"); |
| } |
| } |
| if( nScratch>0 && szScratch>0 ){ |
| pScratch = malloc( nScratch*(sqlite3_int64)szScratch ); |
| if( pScratch==0 ) fatalError("cannot allocate %lld-byte scratch", |
| nScratch*(sqlite3_int64)szScratch); |
| rc = sqlite3_config(SQLITE_CONFIG_SCRATCH, pScratch, szScratch, nScratch); |
| if( rc ) abendError("scratch configuration failed: %d\n", rc); |
| } |
| if( nPCache>0 && szPCache>0 ){ |
| pPCache = malloc( nPCache*(sqlite3_int64)szPCache ); |
| if( pPCache==0 ) fatalError("cannot allocate %lld-byte pcache", |
| nPCache*(sqlite3_int64)szPCache); |
| rc = sqlite3_config(SQLITE_CONFIG_PAGECACHE, pPCache, szPCache, nPCache); |
| if( rc ) abendError("pcache configuration failed: %d", rc); |
| } |
| |
| /* If the --unique-cases option was supplied, open the database that will |
| ** be used to gather unique test cases. |
| */ |
| if( zDataOut ){ |
| rc = sqlite3_open(":memory:", &dataDb); |
| if( rc ) abendError("cannot open :memory: database"); |
| rc = sqlite3_exec(dataDb, |
| "CREATE TABLE testcase(sql BLOB PRIMARY KEY, tm) WITHOUT ROWID;",0,0,0); |
| if( rc ) abendError("%s", sqlite3_errmsg(dataDb)); |
| rc = sqlite3_prepare_v2(dataDb, |
| "INSERT OR IGNORE INTO testcase(sql,tm)VALUES(?1,?2)", |
| -1, &pStmt, 0); |
| if( rc ) abendError("%s", sqlite3_errmsg(dataDb)); |
| } |
| |
| /* Initialize the input buffer used to hold SQL text */ |
| if( nInFile==0 ) nInFile = 1; |
| nAlloc = 1000; |
| zIn = malloc(nAlloc); |
| if( zIn==0 ) fatalError("out of memory"); |
| |
| /* Loop over all input files */ |
| for(jj=0; jj<nInFile; jj++){ |
| |
| /* Read the complete content of the next input file into zIn[] */ |
| FILE *in; |
| if( azInFile ){ |
| int j, k; |
| in = fopen(azInFile[jj],"rb"); |
| if( in==0 ){ |
| abendError("cannot open %s for reading", azInFile[jj]); |
| } |
| zPrompt = azInFile[jj]; |
| for(j=k=0; zPrompt[j]; j++) if( zPrompt[j]=='/' ) k = j+1; |
| zPrompt += k; |
| }else{ |
| in = stdin; |
| zPrompt = "<stdin>"; |
| } |
| while( !feof(in) ){ |
| got = fread(zIn+nIn, 1, nAlloc-nIn-1, in); |
| nIn += (int)got; |
| zIn[nIn] = 0; |
| if( got==0 ) break; |
| if( nAlloc - nIn - 1 < 100 ){ |
| nAlloc += nAlloc+1000; |
| zIn = realloc(zIn, nAlloc); |
| if( zIn==0 ) fatalError("out of memory"); |
| } |
| } |
| if( in!=stdin ) fclose(in); |
| lastPct = -1; |
| |
| /* Skip initial lines of the input file that begin with "#" */ |
| for(i=0; i<nIn; i=iNext+1){ |
| if( zIn[i]!='#' ) break; |
| for(iNext=i+1; iNext<nIn && zIn[iNext]!='\n'; iNext++){} |
| } |
| nHeader = i; |
| |
| /* Process all test cases contained within the input file. |
| */ |
| for(; i<nIn; i=iNext, nTest++, g.zTestName[0]=0){ |
| char cSaved; |
| if( strncmp(&zIn[i], "/****<",6)==0 ){ |
| char *z = strstr(&zIn[i], ">****/"); |
| if( z ){ |
| z += 6; |
| sqlite3_snprintf(sizeof(g.zTestName), g.zTestName, "%.*s", |
| (int)(z-&zIn[i]) - 12, &zIn[i+6]); |
| if( verboseFlag ){ |
| printf("%.*s\n", (int)(z-&zIn[i]), &zIn[i]); |
| fflush(stdout); |
| } |
| i += (int)(z-&zIn[i]); |
| multiTest = 1; |
| } |
| } |
| for(iNext=i; iNext<nIn && strncmp(&zIn[iNext],"/****<",6)!=0; iNext++){} |
| cSaved = zIn[iNext]; |
| zIn[iNext] = 0; |
| |
| |
| /* Print out the SQL of the next test case is --verbose is enabled |
| */ |
| zSql = &zIn[i]; |
| if( verboseFlag ){ |
| printf("INPUT (offset: %d, size: %d): [%s]\n", |
| i, (int)strlen(&zIn[i]), &zIn[i]); |
| }else if( multiTest && !quietFlag ){ |
| if( oomFlag ){ |
| printf("%s\n", g.zTestName); |
| }else{ |
| int pct = (10*iNext)/nIn; |
| if( pct!=lastPct ){ |
| if( lastPct<0 ) printf("%s:", zPrompt); |
| printf(" %d%%", pct*10); |
| lastPct = pct; |
| } |
| } |
| }else if( nInFile>1 ){ |
| printf("%s\n", zPrompt); |
| } |
| fflush(stdout); |
| |
| /* Run the next test case. Run it multiple times in --oom mode |
| */ |
| if( oomFlag ){ |
| oomCnt = g.iOomCntdown = 1; |
| g.nOomFault = 0; |
| g.bOomOnce = 1; |
| if( verboseFlag ){ |
| printf("Once.%d\n", oomCnt); |
| fflush(stdout); |
| } |
| }else{ |
| oomCnt = 0; |
| } |
| do{ |
| Str sql; |
| StrInit(&sql); |
| if( zDbName ){ |
| rc = sqlite3_open_v2(zDbName, &db, SQLITE_OPEN_READWRITE, 0); |
| if( rc!=SQLITE_OK ){ |
| abendError("Cannot open database file %s", zDbName); |
| } |
| }else{ |
| rc = sqlite3_open_v2( |
| "main.db", &db, |
| SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE | SQLITE_OPEN_MEMORY, |
| 0); |
| if( rc!=SQLITE_OK ){ |
| abendError("Unable to open the in-memory database"); |
| } |
| } |
| if( pLook ){ |
| rc = sqlite3_db_config(db, SQLITE_DBCONFIG_LOOKASIDE,pLook,szLook,nLook); |
| if( rc!=SQLITE_OK ) abendError("lookaside configuration filed: %d", rc); |
| } |
| #ifndef SQLITE_OMIT_TRACE |
| sqlite3_trace(db, verboseFlag ? traceCallback : traceNoop, 0); |
| #endif |
| sqlite3_create_function(db, "eval", 1, SQLITE_UTF8, 0, sqlEvalFunc, 0, 0); |
| sqlite3_create_function(db, "eval", 2, SQLITE_UTF8, 0, sqlEvalFunc, 0, 0); |
| sqlite3_create_module(db, "generate_series", &seriesModule, 0); |
| sqlite3_limit(db, SQLITE_LIMIT_LENGTH, 1000000); |
| if( zEncoding ) sqlexec(db, "PRAGMA encoding=%s", zEncoding); |
| if( pageSize ) sqlexec(db, "PRAGMA pagesize=%d", pageSize); |
| if( doAutovac ) sqlexec(db, "PRAGMA auto_vacuum=FULL"); |
| iStart = timeOfDay(); |
| |
| /* If using an input database file and that database contains a table |
| ** named "autoexec" with a column "sql", then replace the input SQL |
| ** with the concatenated text of the autoexec table. In this way, |
| ** if the database file is the input being fuzzed, the SQL text is |
| ** fuzzed at the same time. */ |
| if( sqlite3_table_column_metadata(db,0,"autoexec","sql",0,0,0,0,0)==0 ){ |
| sqlite3_stmt *pStmt2; |
| rc = sqlite3_prepare_v2(db,"SELECT sql FROM autoexec",-1,&pStmt2,0); |
| if( rc==SQLITE_OK ){ |
| while( sqlite3_step(pStmt2)==SQLITE_ROW ){ |
| StrAppend(&sql, (const char*)sqlite3_column_text(pStmt2, 0)); |
| StrAppend(&sql, "\n"); |
| } |
| } |
| sqlite3_finalize(pStmt2); |
| zSql = StrStr(&sql); |
| } |
| |
| g.bOomEnable = 1; |
| if( verboseFlag ){ |
| zErrMsg = 0; |
| rc = sqlite3_exec(db, zSql, execCallback, 0, &zErrMsg); |
| if( zErrMsg ){ |
| sqlite3_snprintf(sizeof(zErrBuf),zErrBuf,"%z", zErrMsg); |
| zErrMsg = 0; |
| } |
| }else { |
| rc = sqlite3_exec(db, zSql, execNoop, 0, 0); |
| } |
| g.bOomEnable = 0; |
| iEnd = timeOfDay(); |
| StrFree(&sql); |
| rc = sqlite3_close(db); |
| if( rc ){ |
| abendError("sqlite3_close() failed with rc=%d", rc); |
| } |
| if( !zDataOut && sqlite3_memory_used()>0 ){ |
| abendError("memory in use after close: %lld bytes",sqlite3_memory_used()); |
| } |
| if( oomFlag ){ |
| /* Limit the number of iterations of the OOM loop to OOM_MAX. If the |
| ** first pass (single failure) exceeds 2/3rds of OOM_MAX this skip the |
| ** second pass (continuous failure after first) completely. */ |
| if( g.nOomFault==0 || oomCnt>OOM_MAX ){ |
| if( g.bOomOnce && oomCnt<=(OOM_MAX*2/3) ){ |
| oomCnt = g.iOomCntdown = 1; |
| g.bOomOnce = 0; |
| }else{ |
| oomCnt = 0; |
| } |
| }else{ |
| g.iOomCntdown = ++oomCnt; |
| g.nOomFault = 0; |
| } |
| if( oomCnt ){ |
| if( verboseFlag ){ |
| printf("%s.%d\n", g.bOomOnce ? "Once" : "Multi", oomCnt); |
| fflush(stdout); |
| } |
| nTest++; |
| } |
| } |
| }while( oomCnt>0 ); |
| |
| /* Store unique test cases in the in the dataDb database if the |
| ** --unique-cases flag is present |
| */ |
| if( zDataOut ){ |
| sqlite3_bind_blob(pStmt, 1, &zIn[i], iNext-i, SQLITE_STATIC); |
| sqlite3_bind_int64(pStmt, 2, iEnd - iStart); |
| rc = sqlite3_step(pStmt); |
| if( rc!=SQLITE_DONE ) abendError("%s", sqlite3_errmsg(dataDb)); |
| sqlite3_reset(pStmt); |
| } |
| |
| /* Free the SQL from the current test case |
| */ |
| if( zToFree ){ |
| sqlite3_free(zToFree); |
| zToFree = 0; |
| } |
| zIn[iNext] = cSaved; |
| |
| /* Show test-case results in --verbose mode |
| */ |
| if( verboseFlag ){ |
| printf("RESULT-CODE: %d\n", rc); |
| if( zErrMsg ){ |
| printf("ERROR-MSG: [%s]\n", zErrBuf); |
| } |
| fflush(stdout); |
| } |
| |
| /* Simulate an error if the TEST_FAILURE environment variable is "5". |
| ** This is used to verify that automated test script really do spot |
| ** errors that occur in this test program. |
| */ |
| if( zFailCode ){ |
| if( zFailCode[0]=='5' && zFailCode[1]==0 ){ |
| abendError("simulated failure"); |
| }else if( zFailCode[0]!=0 ){ |
| /* If TEST_FAILURE is something other than 5, just exit the test |
| ** early */ |
| printf("\nExit early due to TEST_FAILURE being set"); |
| break; |
| } |
| } |
| } |
| if( !verboseFlag && multiTest && !quietFlag && !oomFlag ) printf("\n"); |
| } |
| |
| /* Report total number of tests run |
| */ |
| if( nTest>1 && !quietFlag ){ |
| sqlite3_int64 iElapse = timeOfDay() - iBegin; |
| printf("%s: 0 errors out of %d tests in %d.%03d seconds\nSQLite %s %s\n", |
| g.zArgv0, nTest, (int)(iElapse/1000), (int)(iElapse%1000), |
| sqlite3_libversion(), sqlite3_sourceid()); |
| } |
| |
| /* Write the unique test cases if the --unique-cases flag was used |
| */ |
| if( zDataOut ){ |
| int n = 0; |
| FILE *out = fopen(zDataOut, "wb"); |
| if( out==0 ) abendError("cannot open %s for writing", zDataOut); |
| if( nHeader>0 ) fwrite(zIn, nHeader, 1, out); |
| sqlite3_finalize(pStmt); |
| rc = sqlite3_prepare_v2(dataDb, "SELECT sql, tm FROM testcase ORDER BY tm, sql", |
| -1, &pStmt, 0); |
| if( rc ) abendError("%s", sqlite3_errmsg(dataDb)); |
| while( sqlite3_step(pStmt)==SQLITE_ROW ){ |
| fprintf(out,"/****<%d:%dms>****/", ++n, sqlite3_column_int(pStmt,1)); |
| fwrite(sqlite3_column_blob(pStmt,0),sqlite3_column_bytes(pStmt,0),1,out); |
| } |
| fclose(out); |
| sqlite3_finalize(pStmt); |
| sqlite3_close(dataDb); |
| } |
| |
| /* Clean up and exit. |
| */ |
| free(azInFile); |
| free(zIn); |
| free(pHeap); |
| free(pLook); |
| free(pScratch); |
| free(pPCache); |
| return 0; |
| } |