| /* |
| ** Compile and run this standalone program in order to generate code that |
| ** implements a function that will translate alphabetic identifiers into |
| ** parser token codes. |
| */ |
| #include <stdio.h> |
| #include <string.h> |
| #include <stdlib.h> |
| #include <assert.h> |
| |
| /* |
| ** A header comment placed at the beginning of generated code. |
| */ |
| static const char zHdr[] = |
| "/***** This file contains automatically generated code ******\n" |
| "**\n" |
| "** The code in this file has been automatically generated by\n" |
| "**\n" |
| "** sqlite/tool/mkkeywordhash.c\n" |
| "**\n" |
| "** The code in this file implements a function that determines whether\n" |
| "** or not a given identifier is really an SQL keyword. The same thing\n" |
| "** might be implemented more directly using a hand-written hash table.\n" |
| "** But by using this automatically generated code, the size of the code\n" |
| "** is substantially reduced. This is important for embedded applications\n" |
| "** on platforms with limited memory.\n" |
| "*/\n" |
| ; |
| |
| /* |
| ** All the keywords of the SQL language are stored in a hash |
| ** table composed of instances of the following structure. |
| */ |
| typedef struct Keyword Keyword; |
| struct Keyword { |
| char *zName; /* The keyword name */ |
| char *zTokenType; /* Token value for this keyword */ |
| int mask; /* Code this keyword if non-zero */ |
| int priority; /* Put higher priorities earlier in the hash chain */ |
| int id; /* Unique ID for this record */ |
| int hash; /* Hash on the keyword */ |
| int offset; /* Offset to start of name string */ |
| int len; /* Length of this keyword, not counting final \000 */ |
| int prefix; /* Number of characters in prefix */ |
| int longestSuffix; /* Longest suffix that is a prefix on another word */ |
| int iNext; /* Index in aKeywordTable[] of next with same hash */ |
| int substrId; /* Id to another keyword this keyword is embedded in */ |
| int substrOffset; /* Offset into substrId for start of this keyword */ |
| char zOrigName[20]; /* Original keyword name before processing */ |
| }; |
| |
| /* |
| ** Define masks used to determine which keywords are allowed |
| */ |
| #ifdef SQLITE_OMIT_ALTERTABLE |
| # define ALTER 0 |
| #else |
| # define ALTER 0x00000001 |
| #endif |
| #define ALWAYS 0x00000002 |
| #ifdef SQLITE_OMIT_ANALYZE |
| # define ANALYZE 0 |
| #else |
| # define ANALYZE 0x00000004 |
| #endif |
| #ifdef SQLITE_OMIT_ATTACH |
| # define ATTACH 0 |
| #else |
| # define ATTACH 0x00000008 |
| #endif |
| #ifdef SQLITE_OMIT_AUTOINCREMENT |
| # define AUTOINCR 0 |
| #else |
| # define AUTOINCR 0x00000010 |
| #endif |
| #ifdef SQLITE_OMIT_CAST |
| # define CAST 0 |
| #else |
| # define CAST 0x00000020 |
| #endif |
| #ifdef SQLITE_OMIT_COMPOUND_SELECT |
| # define COMPOUND 0 |
| #else |
| # define COMPOUND 0x00000040 |
| #endif |
| #ifdef SQLITE_OMIT_CONFLICT_CLAUSE |
| # define CONFLICT 0 |
| #else |
| # define CONFLICT 0x00000080 |
| #endif |
| #ifdef SQLITE_OMIT_EXPLAIN |
| # define EXPLAIN 0 |
| #else |
| # define EXPLAIN 0x00000100 |
| #endif |
| #ifdef SQLITE_OMIT_FOREIGN_KEY |
| # define FKEY 0 |
| #else |
| # define FKEY 0x00000200 |
| #endif |
| #ifdef SQLITE_OMIT_PRAGMA |
| # define PRAGMA 0 |
| #else |
| # define PRAGMA 0x00000400 |
| #endif |
| #ifdef SQLITE_OMIT_REINDEX |
| # define REINDEX 0 |
| #else |
| # define REINDEX 0x00000800 |
| #endif |
| #ifdef SQLITE_OMIT_SUBQUERY |
| # define SUBQUERY 0 |
| #else |
| # define SUBQUERY 0x00001000 |
| #endif |
| #ifdef SQLITE_OMIT_TRIGGER |
| # define TRIGGER 0 |
| #else |
| # define TRIGGER 0x00002000 |
| #endif |
| #if defined(SQLITE_OMIT_AUTOVACUUM) && \ |
| (defined(SQLITE_OMIT_VACUUM) || defined(SQLITE_OMIT_ATTACH)) |
| # define VACUUM 0 |
| #else |
| # define VACUUM 0x00004000 |
| #endif |
| #ifdef SQLITE_OMIT_VIEW |
| # define VIEW 0 |
| #else |
| # define VIEW 0x00008000 |
| #endif |
| #ifdef SQLITE_OMIT_VIRTUALTABLE |
| # define VTAB 0 |
| #else |
| # define VTAB 0x00010000 |
| #endif |
| #ifdef SQLITE_OMIT_AUTOVACUUM |
| # define AUTOVACUUM 0 |
| #else |
| # define AUTOVACUUM 0x00020000 |
| #endif |
| #ifdef SQLITE_OMIT_CTE |
| # define CTE 0 |
| #else |
| # define CTE 0x00040000 |
| #endif |
| #ifdef SQLITE_OMIT_UPSERT |
| # define UPSERT 0 |
| #else |
| # define UPSERT 0x00080000 |
| #endif |
| #ifdef SQLITE_OMIT_WINDOWFUNC |
| # define WINDOWFUNC 0 |
| #else |
| # define WINDOWFUNC 0x00100000 |
| #endif |
| #ifdef SQLITE_OMIT_GENERATED_COLUMNS |
| # define GENCOL 0 |
| #else |
| # define GENCOL 0x00200000 |
| #endif |
| |
| /* |
| ** These are the keywords |
| */ |
| static Keyword aKeywordTable[] = { |
| { "ABORT", "TK_ABORT", CONFLICT|TRIGGER, 0 }, |
| { "ACTION", "TK_ACTION", FKEY, 0 }, |
| { "ADD", "TK_ADD", ALTER, 1 }, |
| { "AFTER", "TK_AFTER", TRIGGER, 0 }, |
| { "ALL", "TK_ALL", ALWAYS, 0 }, |
| { "ALTER", "TK_ALTER", ALTER, 0 }, |
| { "ALWAYS", "TK_ALWAYS", GENCOL, 0 }, |
| { "ANALYZE", "TK_ANALYZE", ANALYZE, 0 }, |
| { "AND", "TK_AND", ALWAYS, 10 }, |
| { "AS", "TK_AS", ALWAYS, 10 }, |
| { "ASC", "TK_ASC", ALWAYS, 0 }, |
| { "ATTACH", "TK_ATTACH", ATTACH, 1 }, |
| { "AUTOINCREMENT", "TK_AUTOINCR", AUTOINCR, 0 }, |
| { "BEFORE", "TK_BEFORE", TRIGGER, 0 }, |
| { "BEGIN", "TK_BEGIN", ALWAYS, 1 }, |
| { "BETWEEN", "TK_BETWEEN", ALWAYS, 5 }, |
| { "BY", "TK_BY", ALWAYS, 10 }, |
| { "CASCADE", "TK_CASCADE", FKEY, 1 }, |
| { "CASE", "TK_CASE", ALWAYS, 5 }, |
| { "CAST", "TK_CAST", CAST, 5 }, |
| { "CHECK", "TK_CHECK", ALWAYS, 1 }, |
| { "COLLATE", "TK_COLLATE", ALWAYS, 1 }, |
| { "COLUMN", "TK_COLUMNKW", ALTER, 1 }, |
| { "COMMIT", "TK_COMMIT", ALWAYS, 1 }, |
| { "CONFLICT", "TK_CONFLICT", CONFLICT, 0 }, |
| { "CONSTRAINT", "TK_CONSTRAINT", ALWAYS, 1 }, |
| { "CREATE", "TK_CREATE", ALWAYS, 2 }, |
| { "CROSS", "TK_JOIN_KW", ALWAYS, 3 }, |
| { "CURRENT", "TK_CURRENT", WINDOWFUNC, 1 }, |
| { "CURRENT_DATE", "TK_CTIME_KW", ALWAYS, 1 }, |
| { "CURRENT_TIME", "TK_CTIME_KW", ALWAYS, 1 }, |
| { "CURRENT_TIMESTAMP","TK_CTIME_KW", ALWAYS, 1 }, |
| { "DATABASE", "TK_DATABASE", ATTACH, 0 }, |
| { "DEFAULT", "TK_DEFAULT", ALWAYS, 1 }, |
| { "DEFERRED", "TK_DEFERRED", ALWAYS, 1 }, |
| { "DEFERRABLE", "TK_DEFERRABLE", FKEY, 1 }, |
| { "DELETE", "TK_DELETE", ALWAYS, 10 }, |
| { "DESC", "TK_DESC", ALWAYS, 3 }, |
| { "DETACH", "TK_DETACH", ATTACH, 0 }, |
| { "DISTINCT", "TK_DISTINCT", ALWAYS, 5 }, |
| { "DO", "TK_DO", UPSERT, 2 }, |
| { "DROP", "TK_DROP", ALWAYS, 1 }, |
| { "END", "TK_END", ALWAYS, 1 }, |
| { "EACH", "TK_EACH", TRIGGER, 1 }, |
| { "ELSE", "TK_ELSE", ALWAYS, 2 }, |
| { "ESCAPE", "TK_ESCAPE", ALWAYS, 4 }, |
| { "EXCEPT", "TK_EXCEPT", COMPOUND, 4 }, |
| { "EXCLUSIVE", "TK_EXCLUSIVE", ALWAYS, 1 }, |
| { "EXCLUDE", "TK_EXCLUDE", WINDOWFUNC, 1 }, |
| { "EXISTS", "TK_EXISTS", ALWAYS, 4 }, |
| { "EXPLAIN", "TK_EXPLAIN", EXPLAIN, 1 }, |
| { "FAIL", "TK_FAIL", CONFLICT|TRIGGER, 1 }, |
| { "FILTER", "TK_FILTER", WINDOWFUNC, 4 }, |
| { "FIRST", "TK_FIRST", ALWAYS, 4 }, |
| { "FOLLOWING", "TK_FOLLOWING", WINDOWFUNC, 4 }, |
| { "FOR", "TK_FOR", TRIGGER, 2 }, |
| { "FOREIGN", "TK_FOREIGN", FKEY, 1 }, |
| { "FROM", "TK_FROM", ALWAYS, 10 }, |
| { "FULL", "TK_JOIN_KW", ALWAYS, 3 }, |
| { "GENERATED", "TK_GENERATED", GENCOL, 1 }, |
| { "GLOB", "TK_LIKE_KW", ALWAYS, 3 }, |
| { "GROUP", "TK_GROUP", ALWAYS, 5 }, |
| { "GROUPS", "TK_GROUPS", WINDOWFUNC, 2 }, |
| { "HAVING", "TK_HAVING", ALWAYS, 5 }, |
| { "IF", "TK_IF", ALWAYS, 2 }, |
| { "IGNORE", "TK_IGNORE", CONFLICT|TRIGGER, 1 }, |
| { "IMMEDIATE", "TK_IMMEDIATE", ALWAYS, 1 }, |
| { "IN", "TK_IN", ALWAYS, 10 }, |
| { "INDEX", "TK_INDEX", ALWAYS, 1 }, |
| { "INDEXED", "TK_INDEXED", ALWAYS, 0 }, |
| { "INITIALLY", "TK_INITIALLY", FKEY, 1 }, |
| { "INNER", "TK_JOIN_KW", ALWAYS, 1 }, |
| { "INSERT", "TK_INSERT", ALWAYS, 10 }, |
| { "INSTEAD", "TK_INSTEAD", TRIGGER, 1 }, |
| { "INTERSECT", "TK_INTERSECT", COMPOUND, 5 }, |
| { "INTO", "TK_INTO", ALWAYS, 10 }, |
| { "IS", "TK_IS", ALWAYS, 5 }, |
| { "ISNULL", "TK_ISNULL", ALWAYS, 5 }, |
| { "JOIN", "TK_JOIN", ALWAYS, 5 }, |
| { "KEY", "TK_KEY", ALWAYS, 1 }, |
| { "LAST", "TK_LAST", ALWAYS, 4 }, |
| { "LEFT", "TK_JOIN_KW", ALWAYS, 5 }, |
| { "LIKE", "TK_LIKE_KW", ALWAYS, 5 }, |
| { "LIMIT", "TK_LIMIT", ALWAYS, 3 }, |
| { "MATCH", "TK_MATCH", ALWAYS, 2 }, |
| { "NATURAL", "TK_JOIN_KW", ALWAYS, 3 }, |
| { "NO", "TK_NO", FKEY|WINDOWFUNC, 2 }, |
| { "NOT", "TK_NOT", ALWAYS, 10 }, |
| { "NOTHING", "TK_NOTHING", UPSERT, 1 }, |
| { "NOTNULL", "TK_NOTNULL", ALWAYS, 3 }, |
| { "NULL", "TK_NULL", ALWAYS, 10 }, |
| { "NULLS", "TK_NULLS", ALWAYS, 3 }, |
| { "OF", "TK_OF", ALWAYS, 3 }, |
| { "OFFSET", "TK_OFFSET", ALWAYS, 1 }, |
| { "ON", "TK_ON", ALWAYS, 1 }, |
| { "OR", "TK_OR", ALWAYS, 9 }, |
| { "ORDER", "TK_ORDER", ALWAYS, 10 }, |
| { "OTHERS", "TK_OTHERS", WINDOWFUNC, 3 }, |
| { "OUTER", "TK_JOIN_KW", ALWAYS, 5 }, |
| { "OVER", "TK_OVER", WINDOWFUNC, 3 }, |
| { "PARTITION", "TK_PARTITION", WINDOWFUNC, 3 }, |
| { "PLAN", "TK_PLAN", EXPLAIN, 0 }, |
| { "PRAGMA", "TK_PRAGMA", PRAGMA, 0 }, |
| { "PRECEDING", "TK_PRECEDING", WINDOWFUNC, 3 }, |
| { "PRIMARY", "TK_PRIMARY", ALWAYS, 1 }, |
| { "QUERY", "TK_QUERY", EXPLAIN, 0 }, |
| { "RAISE", "TK_RAISE", TRIGGER, 1 }, |
| { "RANGE", "TK_RANGE", WINDOWFUNC, 3 }, |
| { "RECURSIVE", "TK_RECURSIVE", CTE, 3 }, |
| { "REFERENCES", "TK_REFERENCES", FKEY, 1 }, |
| { "REGEXP", "TK_LIKE_KW", ALWAYS, 3 }, |
| { "REINDEX", "TK_REINDEX", REINDEX, 1 }, |
| { "RELEASE", "TK_RELEASE", ALWAYS, 1 }, |
| { "RENAME", "TK_RENAME", ALTER, 1 }, |
| { "REPLACE", "TK_REPLACE", CONFLICT, 10 }, |
| { "RESTRICT", "TK_RESTRICT", FKEY, 1 }, |
| { "RIGHT", "TK_JOIN_KW", ALWAYS, 0 }, |
| { "ROLLBACK", "TK_ROLLBACK", ALWAYS, 1 }, |
| { "ROW", "TK_ROW", TRIGGER, 1 }, |
| { "ROWS", "TK_ROWS", ALWAYS, 1 }, |
| { "SAVEPOINT", "TK_SAVEPOINT", ALWAYS, 1 }, |
| { "SELECT", "TK_SELECT", ALWAYS, 10 }, |
| { "SET", "TK_SET", ALWAYS, 10 }, |
| { "TABLE", "TK_TABLE", ALWAYS, 1 }, |
| { "TEMP", "TK_TEMP", ALWAYS, 1 }, |
| { "TEMPORARY", "TK_TEMP", ALWAYS, 1 }, |
| { "THEN", "TK_THEN", ALWAYS, 3 }, |
| { "TIES", "TK_TIES", WINDOWFUNC, 3 }, |
| { "TO", "TK_TO", ALWAYS, 3 }, |
| { "TRANSACTION", "TK_TRANSACTION", ALWAYS, 1 }, |
| { "TRIGGER", "TK_TRIGGER", TRIGGER, 1 }, |
| { "UNBOUNDED", "TK_UNBOUNDED", WINDOWFUNC, 3 }, |
| { "UNION", "TK_UNION", COMPOUND, 3 }, |
| { "UNIQUE", "TK_UNIQUE", ALWAYS, 1 }, |
| { "UPDATE", "TK_UPDATE", ALWAYS, 10 }, |
| { "USING", "TK_USING", ALWAYS, 8 }, |
| { "VACUUM", "TK_VACUUM", VACUUM, 1 }, |
| { "VALUES", "TK_VALUES", ALWAYS, 10 }, |
| { "VIEW", "TK_VIEW", VIEW, 1 }, |
| { "VIRTUAL", "TK_VIRTUAL", VTAB, 1 }, |
| { "WHEN", "TK_WHEN", ALWAYS, 1 }, |
| { "WHERE", "TK_WHERE", ALWAYS, 10 }, |
| { "WINDOW", "TK_WINDOW", WINDOWFUNC, 3 }, |
| { "WITH", "TK_WITH", CTE, 4 }, |
| { "WITHOUT", "TK_WITHOUT", ALWAYS, 1 }, |
| }; |
| |
| /* Number of keywords */ |
| static int nKeyword = (sizeof(aKeywordTable)/sizeof(aKeywordTable[0])); |
| |
| /* Map all alphabetic characters into lower-case for hashing. This is |
| ** only valid for alphabetics. In particular it does not work for '_' |
| ** and so the hash cannot be on a keyword position that might be an '_'. |
| */ |
| #define charMap(X) (0x20|(X)) |
| |
| /* |
| ** Comparision function for two Keyword records |
| */ |
| static int keywordCompare1(const void *a, const void *b){ |
| const Keyword *pA = (Keyword*)a; |
| const Keyword *pB = (Keyword*)b; |
| int n = pA->len - pB->len; |
| if( n==0 ){ |
| n = strcmp(pA->zName, pB->zName); |
| } |
| assert( n!=0 ); |
| return n; |
| } |
| static int keywordCompare2(const void *a, const void *b){ |
| const Keyword *pA = (Keyword*)a; |
| const Keyword *pB = (Keyword*)b; |
| int n = pB->longestSuffix - pA->longestSuffix; |
| if( n==0 ){ |
| n = strcmp(pA->zName, pB->zName); |
| } |
| assert( n!=0 ); |
| return n; |
| } |
| static int keywordCompare3(const void *a, const void *b){ |
| const Keyword *pA = (Keyword*)a; |
| const Keyword *pB = (Keyword*)b; |
| int n = pA->offset - pB->offset; |
| if( n==0 ) n = pB->id - pA->id; |
| assert( n!=0 ); |
| return n; |
| } |
| |
| /* |
| ** Return a KeywordTable entry with the given id |
| */ |
| static Keyword *findById(int id){ |
| int i; |
| for(i=0; i<nKeyword; i++){ |
| if( aKeywordTable[i].id==id ) break; |
| } |
| return &aKeywordTable[i]; |
| } |
| |
| /* |
| ** If aKeyword[*pFrom-1].iNext has a higher priority that aKeyword[*pFrom-1] |
| ** itself, then swap them. |
| */ |
| static void reorder(int *pFrom){ |
| int i = *pFrom - 1; |
| int j; |
| if( i<0 ) return; |
| j = aKeywordTable[i].iNext; |
| if( j==0 ) return; |
| j--; |
| if( aKeywordTable[i].priority >= aKeywordTable[j].priority ) return; |
| aKeywordTable[i].iNext = aKeywordTable[j].iNext; |
| aKeywordTable[j].iNext = i+1; |
| *pFrom = j+1; |
| reorder(&aKeywordTable[i].iNext); |
| } |
| |
| /* |
| ** This routine does the work. The generated code is printed on standard |
| ** output. |
| */ |
| int main(int argc, char **argv){ |
| int i, j, k, h; |
| int bestSize, bestCount; |
| int count; |
| int nChar; |
| int totalLen = 0; |
| int aKWHash[1000]; /* 1000 is much bigger than nKeyword */ |
| char zKWText[2000]; |
| |
| /* Remove entries from the list of keywords that have mask==0 */ |
| for(i=j=0; i<nKeyword; i++){ |
| if( aKeywordTable[i].mask==0 ) continue; |
| if( j<i ){ |
| aKeywordTable[j] = aKeywordTable[i]; |
| } |
| j++; |
| } |
| nKeyword = j; |
| |
| /* Fill in the lengths of strings and hashes for all entries. */ |
| for(i=0; i<nKeyword; i++){ |
| Keyword *p = &aKeywordTable[i]; |
| p->len = (int)strlen(p->zName); |
| assert( p->len<sizeof(p->zOrigName) ); |
| memcpy(p->zOrigName, p->zName, p->len+1); |
| totalLen += p->len; |
| p->hash = (charMap(p->zName[0])*4) ^ |
| (charMap(p->zName[p->len-1])*3) ^ (p->len*1); |
| p->id = i+1; |
| } |
| |
| /* Sort the table from shortest to longest keyword */ |
| qsort(aKeywordTable, nKeyword, sizeof(aKeywordTable[0]), keywordCompare1); |
| |
| /* Look for short keywords embedded in longer keywords */ |
| for(i=nKeyword-2; i>=0; i--){ |
| Keyword *p = &aKeywordTable[i]; |
| for(j=nKeyword-1; j>i && p->substrId==0; j--){ |
| Keyword *pOther = &aKeywordTable[j]; |
| if( pOther->substrId ) continue; |
| if( pOther->len<=p->len ) continue; |
| for(k=0; k<=pOther->len-p->len; k++){ |
| if( memcmp(p->zName, &pOther->zName[k], p->len)==0 ){ |
| p->substrId = pOther->id; |
| p->substrOffset = k; |
| break; |
| } |
| } |
| } |
| } |
| |
| /* Compute the longestSuffix value for every word */ |
| for(i=0; i<nKeyword; i++){ |
| Keyword *p = &aKeywordTable[i]; |
| if( p->substrId ) continue; |
| for(j=0; j<nKeyword; j++){ |
| Keyword *pOther; |
| if( j==i ) continue; |
| pOther = &aKeywordTable[j]; |
| if( pOther->substrId ) continue; |
| for(k=p->longestSuffix+1; k<p->len && k<pOther->len; k++){ |
| if( memcmp(&p->zName[p->len-k], pOther->zName, k)==0 ){ |
| p->longestSuffix = k; |
| } |
| } |
| } |
| } |
| |
| /* Sort the table into reverse order by length */ |
| qsort(aKeywordTable, nKeyword, sizeof(aKeywordTable[0]), keywordCompare2); |
| |
| /* Fill in the offset for all entries */ |
| nChar = 0; |
| for(i=0; i<nKeyword; i++){ |
| Keyword *p = &aKeywordTable[i]; |
| if( p->offset>0 || p->substrId ) continue; |
| p->offset = nChar; |
| nChar += p->len; |
| for(k=p->len-1; k>=1; k--){ |
| for(j=i+1; j<nKeyword; j++){ |
| Keyword *pOther = &aKeywordTable[j]; |
| if( pOther->offset>0 || pOther->substrId ) continue; |
| if( pOther->len<=k ) continue; |
| if( memcmp(&p->zName[p->len-k], pOther->zName, k)==0 ){ |
| p = pOther; |
| p->offset = nChar - k; |
| nChar = p->offset + p->len; |
| p->zName += k; |
| p->len -= k; |
| p->prefix = k; |
| j = i; |
| k = p->len; |
| } |
| } |
| } |
| } |
| for(i=0; i<nKeyword; i++){ |
| Keyword *p = &aKeywordTable[i]; |
| if( p->substrId ){ |
| p->offset = findById(p->substrId)->offset + p->substrOffset; |
| } |
| } |
| |
| /* Sort the table by offset */ |
| qsort(aKeywordTable, nKeyword, sizeof(aKeywordTable[0]), keywordCompare3); |
| |
| /* Figure out how big to make the hash table in order to minimize the |
| ** number of collisions */ |
| bestSize = nKeyword; |
| bestCount = nKeyword*nKeyword; |
| for(i=nKeyword/2; i<=2*nKeyword; i++){ |
| for(j=0; j<i; j++) aKWHash[j] = 0; |
| for(j=0; j<nKeyword; j++){ |
| h = aKeywordTable[j].hash % i; |
| aKWHash[h] *= 2; |
| aKWHash[h]++; |
| } |
| for(j=count=0; j<i; j++) count += aKWHash[j]; |
| if( count<bestCount ){ |
| bestCount = count; |
| bestSize = i; |
| } |
| } |
| |
| /* Compute the hash */ |
| for(i=0; i<bestSize; i++) aKWHash[i] = 0; |
| for(i=0; i<nKeyword; i++){ |
| h = aKeywordTable[i].hash % bestSize; |
| aKeywordTable[i].iNext = aKWHash[h]; |
| aKWHash[h] = i+1; |
| reorder(&aKWHash[h]); |
| } |
| |
| /* Begin generating code */ |
| printf("%s", zHdr); |
| printf("/* Hash score: %d */\n", bestCount); |
| printf("/* zKWText[] encodes %d bytes of keyword text in %d bytes */\n", |
| totalLen + nKeyword, nChar+1 ); |
| for(i=j=k=0; i<nKeyword; i++){ |
| Keyword *p = &aKeywordTable[i]; |
| if( p->substrId ) continue; |
| memcpy(&zKWText[k], p->zName, p->len); |
| k += p->len; |
| if( j+p->len>70 ){ |
| printf("%*s */\n", 74-j, ""); |
| j = 0; |
| } |
| if( j==0 ){ |
| printf("/* "); |
| j = 8; |
| } |
| printf("%s", p->zName); |
| j += p->len; |
| } |
| if( j>0 ){ |
| printf("%*s */\n", 74-j, ""); |
| } |
| printf("static const char zKWText[%d] = {\n", nChar); |
| zKWText[nChar] = 0; |
| for(i=j=0; i<k; i++){ |
| if( j==0 ){ |
| printf(" "); |
| } |
| if( zKWText[i]==0 ){ |
| printf("0"); |
| }else{ |
| printf("'%c',", zKWText[i]); |
| } |
| j += 4; |
| if( j>68 ){ |
| printf("\n"); |
| j = 0; |
| } |
| } |
| if( j>0 ) printf("\n"); |
| printf("};\n"); |
| |
| printf("/* aKWHash[i] is the hash value for the i-th keyword */\n"); |
| printf("static const unsigned char aKWHash[%d] = {\n", bestSize); |
| for(i=j=0; i<bestSize; i++){ |
| if( j==0 ) printf(" "); |
| printf(" %3d,", aKWHash[i]); |
| j++; |
| if( j>12 ){ |
| printf("\n"); |
| j = 0; |
| } |
| } |
| printf("%s};\n", j==0 ? "" : "\n"); |
| |
| printf("/* aKWNext[] forms the hash collision chain. If aKWHash[i]==0\n"); |
| printf("** then the i-th keyword has no more hash collisions. Otherwise,\n"); |
| printf("** the next keyword with the same hash is aKWHash[i]-1. */\n"); |
| printf("static const unsigned char aKWNext[%d] = {\n", nKeyword); |
| for(i=j=0; i<nKeyword; i++){ |
| if( j==0 ) printf(" "); |
| printf(" %3d,", aKeywordTable[i].iNext); |
| j++; |
| if( j>12 ){ |
| printf("\n"); |
| j = 0; |
| } |
| } |
| printf("%s};\n", j==0 ? "" : "\n"); |
| |
| printf("/* aKWLen[i] is the length (in bytes) of the i-th keyword */\n"); |
| printf("static const unsigned char aKWLen[%d] = {\n", nKeyword); |
| for(i=j=0; i<nKeyword; i++){ |
| if( j==0 ) printf(" "); |
| printf(" %3d,", aKeywordTable[i].len+aKeywordTable[i].prefix); |
| j++; |
| if( j>12 ){ |
| printf("\n"); |
| j = 0; |
| } |
| } |
| printf("%s};\n", j==0 ? "" : "\n"); |
| |
| printf("/* aKWOffset[i] is the index into zKWText[] of the start of\n"); |
| printf("** the text for the i-th keyword. */\n"); |
| printf("static const unsigned short int aKWOffset[%d] = {\n", nKeyword); |
| for(i=j=0; i<nKeyword; i++){ |
| if( j==0 ) printf(" "); |
| printf(" %3d,", aKeywordTable[i].offset); |
| j++; |
| if( j>12 ){ |
| printf("\n"); |
| j = 0; |
| } |
| } |
| printf("%s};\n", j==0 ? "" : "\n"); |
| |
| printf("/* aKWCode[i] is the parser symbol code for the i-th keyword */\n"); |
| printf("static const unsigned char aKWCode[%d] = {\n", nKeyword); |
| for(i=j=0; i<nKeyword; i++){ |
| char *zToken = aKeywordTable[i].zTokenType; |
| if( j==0 ) printf(" "); |
| printf("%s,%*s", zToken, (int)(14-strlen(zToken)), ""); |
| j++; |
| if( j>=5 ){ |
| printf("\n"); |
| j = 0; |
| } |
| } |
| printf("%s};\n", j==0 ? "" : "\n"); |
| printf("/* Hash table decoded:\n"); |
| for(i=0; i<bestSize; i++){ |
| j = aKWHash[i]; |
| printf("** %3d:", i); |
| while( j ){ |
| printf(" %s", aKeywordTable[j-1].zOrigName); |
| j = aKeywordTable[j-1].iNext; |
| } |
| printf("\n"); |
| } |
| printf("*/\n"); |
| printf("/* Check to see if z[0..n-1] is a keyword. If it is, write the\n"); |
| printf("** parser symbol code for that keyword into *pType. Always\n"); |
| printf("** return the integer n (the length of the token). */\n"); |
| printf("static int keywordCode(const char *z, int n, int *pType){\n"); |
| printf(" int i, j;\n"); |
| printf(" const char *zKW;\n"); |
| printf(" if( n>=2 ){\n"); |
| printf(" i = ((charMap(z[0])*4) ^ (charMap(z[n-1])*3) ^ n) %% %d;\n", |
| bestSize); |
| printf(" for(i=((int)aKWHash[i])-1; i>=0; i=((int)aKWNext[i])-1){\n"); |
| printf(" if( aKWLen[i]!=n ) continue;\n"); |
| printf(" j = 0;\n"); |
| printf(" zKW = &zKWText[aKWOffset[i]];\n"); |
| printf("#ifdef SQLITE_ASCII\n"); |
| printf(" while( j<n && (z[j]&~0x20)==zKW[j] ){ j++; }\n"); |
| printf("#endif\n"); |
| printf("#ifdef SQLITE_EBCDIC\n"); |
| printf(" while( j<n && toupper(z[j])==zKW[j] ){ j++; }\n"); |
| printf("#endif\n"); |
| printf(" if( j<n ) continue;\n"); |
| for(i=0; i<nKeyword; i++){ |
| printf(" testcase( i==%d ); /* %s */\n", |
| i, aKeywordTable[i].zOrigName); |
| } |
| printf(" *pType = aKWCode[i];\n"); |
| printf(" break;\n"); |
| printf(" }\n"); |
| printf(" }\n"); |
| printf(" return n;\n"); |
| printf("}\n"); |
| printf("int sqlite3KeywordCode(const unsigned char *z, int n){\n"); |
| printf(" int id = TK_ID;\n"); |
| printf(" keywordCode((char*)z, n, &id);\n"); |
| printf(" return id;\n"); |
| printf("}\n"); |
| printf("#define SQLITE_N_KEYWORD %d\n", nKeyword); |
| printf("int sqlite3_keyword_name(int i,const char **pzName,int *pnName){\n"); |
| printf(" if( i<0 || i>=SQLITE_N_KEYWORD ) return SQLITE_ERROR;\n"); |
| printf(" *pzName = zKWText + aKWOffset[i];\n"); |
| printf(" *pnName = aKWLen[i];\n"); |
| printf(" return SQLITE_OK;\n"); |
| printf("}\n"); |
| printf("int sqlite3_keyword_count(void){ return SQLITE_N_KEYWORD; }\n"); |
| printf("int sqlite3_keyword_check(const char *zName, int nName){\n"); |
| printf(" return TK_ID!=sqlite3KeywordCode((const u8*)zName, nName);\n"); |
| printf("}\n"); |
| |
| return 0; |
| } |