| /* |
| ** 2015-04-06 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** |
| ** This is a utility program that computes the differences in content |
| ** between two SQLite databases. |
| ** |
| ** To compile, simply link against SQLite. |
| ** |
| ** See the showHelp() routine below for a brief description of how to |
| ** run the utility. |
| */ |
| #include <stdio.h> |
| #include <stdlib.h> |
| #include <stdarg.h> |
| #include <ctype.h> |
| #include <string.h> |
| #include <assert.h> |
| #include "sqlite3.h" |
| |
| /* |
| ** All global variables are gathered into the "g" singleton. |
| */ |
| struct GlobalVars { |
| const char *zArgv0; /* Name of program */ |
| int bSchemaOnly; /* Only show schema differences */ |
| int bSchemaPK; /* Use the schema-defined PK, not the true PK */ |
| int bHandleVtab; /* Handle fts3, fts4, fts5 and rtree vtabs */ |
| unsigned fDebug; /* Debug flags */ |
| sqlite3 *db; /* The database connection */ |
| } g; |
| |
| /* |
| ** Allowed values for g.fDebug |
| */ |
| #define DEBUG_COLUMN_NAMES 0x000001 |
| #define DEBUG_DIFF_SQL 0x000002 |
| |
| /* |
| ** Dynamic string object |
| */ |
| typedef struct Str Str; |
| struct Str { |
| char *z; /* Text of the string */ |
| int nAlloc; /* Bytes allocated in z[] */ |
| int nUsed; /* Bytes actually used in z[] */ |
| }; |
| |
| /* |
| ** Initialize a Str object |
| */ |
| static void strInit(Str *p){ |
| p->z = 0; |
| p->nAlloc = 0; |
| p->nUsed = 0; |
| } |
| |
| /* |
| ** Print an error resulting from faulting command-line arguments and |
| ** abort the program. |
| */ |
| static void cmdlineError(const char *zFormat, ...){ |
| va_list ap; |
| fprintf(stderr, "%s: ", g.zArgv0); |
| va_start(ap, zFormat); |
| vfprintf(stderr, zFormat, ap); |
| va_end(ap); |
| fprintf(stderr, "\n\"%s --help\" for more help\n", g.zArgv0); |
| exit(1); |
| } |
| |
| /* |
| ** Print an error message for an error that occurs at runtime, then |
| ** abort the program. |
| */ |
| static void runtimeError(const char *zFormat, ...){ |
| va_list ap; |
| fprintf(stderr, "%s: ", g.zArgv0); |
| va_start(ap, zFormat); |
| vfprintf(stderr, zFormat, ap); |
| va_end(ap); |
| fprintf(stderr, "\n"); |
| exit(1); |
| } |
| |
| /* |
| ** Free all memory held by a Str object |
| */ |
| static void strFree(Str *p){ |
| sqlite3_free(p->z); |
| strInit(p); |
| } |
| |
| /* |
| ** Add formatted text to the end of a Str object |
| */ |
| static void strPrintf(Str *p, const char *zFormat, ...){ |
| int nNew; |
| for(;;){ |
| if( p->z ){ |
| va_list ap; |
| va_start(ap, zFormat); |
| sqlite3_vsnprintf(p->nAlloc-p->nUsed, p->z+p->nUsed, zFormat, ap); |
| va_end(ap); |
| nNew = (int)strlen(p->z + p->nUsed); |
| }else{ |
| nNew = p->nAlloc; |
| } |
| if( p->nUsed+nNew < p->nAlloc-1 ){ |
| p->nUsed += nNew; |
| break; |
| } |
| p->nAlloc = p->nAlloc*2 + 1000; |
| p->z = sqlite3_realloc(p->z, p->nAlloc); |
| if( p->z==0 ) runtimeError("out of memory"); |
| } |
| } |
| |
| |
| |
| /* Safely quote an SQL identifier. Use the minimum amount of transformation |
| ** necessary to allow the string to be used with %s. |
| ** |
| ** Space to hold the returned string is obtained from sqlite3_malloc(). The |
| ** caller is responsible for ensuring this space is freed when no longer |
| ** needed. |
| */ |
| static char *safeId(const char *zId){ |
| int i, x; |
| char c; |
| if( zId[0]==0 ) return sqlite3_mprintf("\"\""); |
| for(i=x=0; (c = zId[i])!=0; i++){ |
| if( !isalpha(c) && c!='_' ){ |
| if( i>0 && isdigit(c) ){ |
| x++; |
| }else{ |
| return sqlite3_mprintf("\"%w\"", zId); |
| } |
| } |
| } |
| if( x || !sqlite3_keyword_check(zId,i) ){ |
| return sqlite3_mprintf("%s", zId); |
| } |
| return sqlite3_mprintf("\"%w\"", zId); |
| } |
| |
| /* |
| ** Prepare a new SQL statement. Print an error and abort if anything |
| ** goes wrong. |
| */ |
| static sqlite3_stmt *db_vprepare(const char *zFormat, va_list ap){ |
| char *zSql; |
| int rc; |
| sqlite3_stmt *pStmt; |
| |
| zSql = sqlite3_vmprintf(zFormat, ap); |
| if( zSql==0 ) runtimeError("out of memory"); |
| rc = sqlite3_prepare_v2(g.db, zSql, -1, &pStmt, 0); |
| if( rc ){ |
| runtimeError("SQL statement error: %s\n\"%s\"", sqlite3_errmsg(g.db), |
| zSql); |
| } |
| sqlite3_free(zSql); |
| return pStmt; |
| } |
| static sqlite3_stmt *db_prepare(const char *zFormat, ...){ |
| va_list ap; |
| sqlite3_stmt *pStmt; |
| va_start(ap, zFormat); |
| pStmt = db_vprepare(zFormat, ap); |
| va_end(ap); |
| return pStmt; |
| } |
| |
| /* |
| ** Free a list of strings |
| */ |
| static void namelistFree(char **az){ |
| if( az ){ |
| int i; |
| for(i=0; az[i]; i++) sqlite3_free(az[i]); |
| sqlite3_free(az); |
| } |
| } |
| |
| /* |
| ** Return a list of column names for the table zDb.zTab. Space to |
| ** hold the list is obtained from sqlite3_malloc() and should released |
| ** using namelistFree() when no longer needed. |
| ** |
| ** Primary key columns are listed first, followed by data columns. |
| ** The number of columns in the primary key is returned in *pnPkey. |
| ** |
| ** Normally, the "primary key" in the previous sentence is the true |
| ** primary key - the rowid or INTEGER PRIMARY KEY for ordinary tables |
| ** or the declared PRIMARY KEY for WITHOUT ROWID tables. However, if |
| ** the g.bSchemaPK flag is set, then the schema-defined PRIMARY KEY is |
| ** used in all cases. In that case, entries that have NULL values in |
| ** any of their primary key fields will be excluded from the analysis. |
| ** |
| ** If the primary key for a table is the rowid but rowid is inaccessible, |
| ** then this routine returns a NULL pointer. |
| ** |
| ** Examples: |
| ** CREATE TABLE t1(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(c)); |
| ** *pnPKey = 1; |
| ** az = { "rowid", "a", "b", "c", 0 } // Normal case |
| ** az = { "c", "a", "b", 0 } // g.bSchemaPK==1 |
| ** |
| ** CREATE TABLE t2(a INT UNIQUE, b INTEGER, c TEXT, PRIMARY KEY(b)); |
| ** *pnPKey = 1; |
| ** az = { "b", "a", "c", 0 } |
| ** |
| ** CREATE TABLE t3(x,y,z,PRIMARY KEY(y,z)); |
| ** *pnPKey = 1 // Normal case |
| ** az = { "rowid", "x", "y", "z", 0 } // Normal case |
| ** *pnPKey = 2 // g.bSchemaPK==1 |
| ** az = { "y", "x", "z", 0 } // g.bSchemaPK==1 |
| ** |
| ** CREATE TABLE t4(x,y,z,PRIMARY KEY(y,z)) WITHOUT ROWID; |
| ** *pnPKey = 2 |
| ** az = { "y", "z", "x", 0 } |
| ** |
| ** CREATE TABLE t5(rowid,_rowid_,oid); |
| ** az = 0 // The rowid is not accessible |
| */ |
| static char **columnNames( |
| const char *zDb, /* Database ("main" or "aux") to query */ |
| const char *zTab, /* Name of table to return details of */ |
| int *pnPKey, /* OUT: Number of PK columns */ |
| int *pbRowid /* OUT: True if PK is an implicit rowid */ |
| ){ |
| char **az = 0; /* List of column names to be returned */ |
| int naz = 0; /* Number of entries in az[] */ |
| sqlite3_stmt *pStmt; /* SQL statement being run */ |
| char *zPkIdxName = 0; /* Name of the PRIMARY KEY index */ |
| int truePk = 0; /* PRAGMA table_info indentifies the PK to use */ |
| int nPK = 0; /* Number of PRIMARY KEY columns */ |
| int i, j; /* Loop counters */ |
| |
| if( g.bSchemaPK==0 ){ |
| /* Normal case: Figure out what the true primary key is for the table. |
| ** * For WITHOUT ROWID tables, the true primary key is the same as |
| ** the schema PRIMARY KEY, which is guaranteed to be present. |
| ** * For rowid tables with an INTEGER PRIMARY KEY, the true primary |
| ** key is the INTEGER PRIMARY KEY. |
| ** * For all other rowid tables, the rowid is the true primary key. |
| */ |
| pStmt = db_prepare("PRAGMA %s.index_list=%Q", zDb, zTab); |
| while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| if( sqlite3_stricmp((const char*)sqlite3_column_text(pStmt,3),"pk")==0 ){ |
| zPkIdxName = sqlite3_mprintf("%s", sqlite3_column_text(pStmt, 1)); |
| break; |
| } |
| } |
| sqlite3_finalize(pStmt); |
| if( zPkIdxName ){ |
| int nKey = 0; |
| int nCol = 0; |
| truePk = 0; |
| pStmt = db_prepare("PRAGMA %s.index_xinfo=%Q", zDb, zPkIdxName); |
| while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| nCol++; |
| if( sqlite3_column_int(pStmt,5) ){ nKey++; continue; } |
| if( sqlite3_column_int(pStmt,1)>=0 ) truePk = 1; |
| } |
| if( nCol==nKey ) truePk = 1; |
| if( truePk ){ |
| nPK = nKey; |
| }else{ |
| nPK = 1; |
| } |
| sqlite3_finalize(pStmt); |
| sqlite3_free(zPkIdxName); |
| }else{ |
| truePk = 1; |
| nPK = 1; |
| } |
| pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab); |
| }else{ |
| /* The g.bSchemaPK==1 case: Use whatever primary key is declared |
| ** in the schema. The "rowid" will still be used as the primary key |
| ** if the table definition does not contain a PRIMARY KEY. |
| */ |
| nPK = 0; |
| pStmt = db_prepare("PRAGMA %s.table_info=%Q", zDb, zTab); |
| while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| if( sqlite3_column_int(pStmt,5)>0 ) nPK++; |
| } |
| sqlite3_reset(pStmt); |
| if( nPK==0 ) nPK = 1; |
| truePk = 1; |
| } |
| *pnPKey = nPK; |
| naz = nPK; |
| az = sqlite3_malloc( sizeof(char*)*(nPK+1) ); |
| if( az==0 ) runtimeError("out of memory"); |
| memset(az, 0, sizeof(char*)*(nPK+1)); |
| while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| int iPKey; |
| if( truePk && (iPKey = sqlite3_column_int(pStmt,5))>0 ){ |
| az[iPKey-1] = safeId((char*)sqlite3_column_text(pStmt,1)); |
| }else{ |
| az = sqlite3_realloc(az, sizeof(char*)*(naz+2) ); |
| if( az==0 ) runtimeError("out of memory"); |
| az[naz++] = safeId((char*)sqlite3_column_text(pStmt,1)); |
| } |
| } |
| sqlite3_finalize(pStmt); |
| if( az ) az[naz] = 0; |
| |
| /* If it is non-NULL, set *pbRowid to indicate whether or not the PK of |
| ** this table is an implicit rowid (*pbRowid==1) or not (*pbRowid==0). */ |
| if( pbRowid ) *pbRowid = (az[0]==0); |
| |
| /* If this table has an implicit rowid for a PK, figure out how to refer |
| ** to it. There are three options - "rowid", "_rowid_" and "oid". Any |
| ** of these will work, unless the table has an explicit column of the |
| ** same name. */ |
| if( az[0]==0 ){ |
| const char *azRowid[] = { "rowid", "_rowid_", "oid" }; |
| for(i=0; i<sizeof(azRowid)/sizeof(azRowid[0]); i++){ |
| for(j=1; j<naz; j++){ |
| if( sqlite3_stricmp(az[j], azRowid[i])==0 ) break; |
| } |
| if( j>=naz ){ |
| az[0] = sqlite3_mprintf("%s", azRowid[i]); |
| break; |
| } |
| } |
| if( az[0]==0 ){ |
| for(i=1; i<naz; i++) sqlite3_free(az[i]); |
| sqlite3_free(az); |
| az = 0; |
| } |
| } |
| return az; |
| } |
| |
| /* |
| ** Print the sqlite3_value X as an SQL literal. |
| */ |
| static void printQuoted(FILE *out, sqlite3_value *X){ |
| switch( sqlite3_value_type(X) ){ |
| case SQLITE_FLOAT: { |
| double r1; |
| char zBuf[50]; |
| r1 = sqlite3_value_double(X); |
| sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1); |
| fprintf(out, "%s", zBuf); |
| break; |
| } |
| case SQLITE_INTEGER: { |
| fprintf(out, "%lld", sqlite3_value_int64(X)); |
| break; |
| } |
| case SQLITE_BLOB: { |
| const unsigned char *zBlob = sqlite3_value_blob(X); |
| int nBlob = sqlite3_value_bytes(X); |
| if( zBlob ){ |
| int i; |
| fprintf(out, "x'"); |
| for(i=0; i<nBlob; i++){ |
| fprintf(out, "%02x", zBlob[i]); |
| } |
| fprintf(out, "'"); |
| }else{ |
| /* Could be an OOM, could be a zero-byte blob */ |
| fprintf(out, "X''"); |
| } |
| break; |
| } |
| case SQLITE_TEXT: { |
| const unsigned char *zArg = sqlite3_value_text(X); |
| int i, j; |
| |
| if( zArg==0 ){ |
| fprintf(out, "NULL"); |
| }else{ |
| fprintf(out, "'"); |
| for(i=j=0; zArg[i]; i++){ |
| if( zArg[i]=='\'' ){ |
| fprintf(out, "%.*s'", i-j+1, &zArg[j]); |
| j = i+1; |
| } |
| } |
| fprintf(out, "%s'", &zArg[j]); |
| } |
| break; |
| } |
| case SQLITE_NULL: { |
| fprintf(out, "NULL"); |
| break; |
| } |
| } |
| } |
| |
| /* |
| ** Output SQL that will recreate the aux.zTab table. |
| */ |
| static void dump_table(const char *zTab, FILE *out){ |
| char *zId = safeId(zTab); /* Name of the table */ |
| char **az = 0; /* List of columns */ |
| int nPk; /* Number of true primary key columns */ |
| int nCol; /* Number of data columns */ |
| int i; /* Loop counter */ |
| sqlite3_stmt *pStmt; /* SQL statement */ |
| const char *zSep; /* Separator string */ |
| Str ins; /* Beginning of the INSERT statement */ |
| |
| pStmt = db_prepare("SELECT sql FROM aux.sqlite_master WHERE name=%Q", zTab); |
| if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0)); |
| } |
| sqlite3_finalize(pStmt); |
| if( !g.bSchemaOnly ){ |
| az = columnNames("aux", zTab, &nPk, 0); |
| strInit(&ins); |
| if( az==0 ){ |
| pStmt = db_prepare("SELECT * FROM aux.%s", zId); |
| strPrintf(&ins,"INSERT INTO %s VALUES", zId); |
| }else{ |
| Str sql; |
| strInit(&sql); |
| zSep = "SELECT"; |
| for(i=0; az[i]; i++){ |
| strPrintf(&sql, "%s %s", zSep, az[i]); |
| zSep = ","; |
| } |
| strPrintf(&sql," FROM aux.%s", zId); |
| zSep = " ORDER BY"; |
| for(i=1; i<=nPk; i++){ |
| strPrintf(&sql, "%s %d", zSep, i); |
| zSep = ","; |
| } |
| pStmt = db_prepare("%s", sql.z); |
| strFree(&sql); |
| strPrintf(&ins, "INSERT INTO %s", zId); |
| zSep = "("; |
| for(i=0; az[i]; i++){ |
| strPrintf(&ins, "%s%s", zSep, az[i]); |
| zSep = ","; |
| } |
| strPrintf(&ins,") VALUES"); |
| namelistFree(az); |
| } |
| nCol = sqlite3_column_count(pStmt); |
| while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| fprintf(out, "%s",ins.z); |
| zSep = "("; |
| for(i=0; i<nCol; i++){ |
| fprintf(out, "%s",zSep); |
| printQuoted(out, sqlite3_column_value(pStmt,i)); |
| zSep = ","; |
| } |
| fprintf(out, ");\n"); |
| } |
| sqlite3_finalize(pStmt); |
| strFree(&ins); |
| } /* endif !g.bSchemaOnly */ |
| pStmt = db_prepare("SELECT sql FROM aux.sqlite_master" |
| " WHERE type='index' AND tbl_name=%Q AND sql IS NOT NULL", |
| zTab); |
| while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0)); |
| } |
| sqlite3_finalize(pStmt); |
| } |
| |
| |
| /* |
| ** Compute all differences for a single table. |
| */ |
| static void diff_one_table(const char *zTab, FILE *out){ |
| char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */ |
| char **az = 0; /* Columns in main */ |
| char **az2 = 0; /* Columns in aux */ |
| int nPk; /* Primary key columns in main */ |
| int nPk2; /* Primary key columns in aux */ |
| int n = 0; /* Number of columns in main */ |
| int n2; /* Number of columns in aux */ |
| int nQ; /* Number of output columns in the diff query */ |
| int i; /* Loop counter */ |
| const char *zSep; /* Separator string */ |
| Str sql; /* Comparison query */ |
| sqlite3_stmt *pStmt; /* Query statement to do the diff */ |
| |
| strInit(&sql); |
| if( g.fDebug==DEBUG_COLUMN_NAMES ){ |
| /* Simply run columnNames() on all tables of the origin |
| ** database and show the results. This is used for testing |
| ** and debugging of the columnNames() function. |
| */ |
| az = columnNames("aux",zTab, &nPk, 0); |
| if( az==0 ){ |
| printf("Rowid not accessible for %s\n", zId); |
| }else{ |
| printf("%s:", zId); |
| for(i=0; az[i]; i++){ |
| printf(" %s", az[i]); |
| if( i+1==nPk ) printf(" *"); |
| } |
| printf("\n"); |
| } |
| goto end_diff_one_table; |
| } |
| |
| |
| if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){ |
| if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){ |
| /* Table missing from second database. */ |
| fprintf(out, "DROP TABLE %s;\n", zId); |
| } |
| goto end_diff_one_table; |
| } |
| |
| if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){ |
| /* Table missing from source */ |
| dump_table(zTab, out); |
| goto end_diff_one_table; |
| } |
| |
| az = columnNames("main", zTab, &nPk, 0); |
| az2 = columnNames("aux", zTab, &nPk2, 0); |
| if( az && az2 ){ |
| for(n=0; az[n] && az2[n]; n++){ |
| if( sqlite3_stricmp(az[n],az2[n])!=0 ) break; |
| } |
| } |
| if( az==0 |
| || az2==0 |
| || nPk!=nPk2 |
| || az[n] |
| ){ |
| /* Schema mismatch */ |
| fprintf(out, "DROP TABLE %s; -- due to schema mismatch\n", zId); |
| dump_table(zTab, out); |
| goto end_diff_one_table; |
| } |
| |
| /* Build the comparison query */ |
| for(n2=n; az2[n2]; n2++){ |
| fprintf(out, "ALTER TABLE %s ADD COLUMN %s;\n", zId, safeId(az2[n2])); |
| } |
| nQ = nPk2+1+2*(n2-nPk2); |
| if( n2>nPk2 ){ |
| zSep = "SELECT "; |
| for(i=0; i<nPk; i++){ |
| strPrintf(&sql, "%sB.%s", zSep, az[i]); |
| zSep = ", "; |
| } |
| strPrintf(&sql, ", 1%s -- changed row\n", nPk==n ? "" : ","); |
| while( az[i] ){ |
| strPrintf(&sql, " A.%s IS NOT B.%s, B.%s%s\n", |
| az[i], az2[i], az2[i], az2[i+1]==0 ? "" : ","); |
| i++; |
| } |
| while( az2[i] ){ |
| strPrintf(&sql, " B.%s IS NOT NULL, B.%s%s\n", |
| az2[i], az2[i], az2[i+1]==0 ? "" : ","); |
| i++; |
| } |
| strPrintf(&sql, " FROM main.%s A, aux.%s B\n", zId, zId); |
| zSep = " WHERE"; |
| for(i=0; i<nPk; i++){ |
| strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| zSep = " AND"; |
| } |
| zSep = "\n AND ("; |
| while( az[i] ){ |
| strPrintf(&sql, "%sA.%s IS NOT B.%s%s\n", |
| zSep, az[i], az2[i], az2[i+1]==0 ? ")" : ""); |
| zSep = " OR "; |
| i++; |
| } |
| while( az2[i] ){ |
| strPrintf(&sql, "%sB.%s IS NOT NULL%s\n", |
| zSep, az2[i], az2[i+1]==0 ? ")" : ""); |
| zSep = " OR "; |
| i++; |
| } |
| strPrintf(&sql, " UNION ALL\n"); |
| } |
| zSep = "SELECT "; |
| for(i=0; i<nPk; i++){ |
| strPrintf(&sql, "%sA.%s", zSep, az[i]); |
| zSep = ", "; |
| } |
| strPrintf(&sql, ", 2%s -- deleted row\n", nPk==n ? "" : ","); |
| while( az2[i] ){ |
| strPrintf(&sql, " NULL, NULL%s\n", i==n2-1 ? "" : ","); |
| i++; |
| } |
| strPrintf(&sql, " FROM main.%s A\n", zId); |
| strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId); |
| zSep = " WHERE"; |
| for(i=0; i<nPk; i++){ |
| strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| zSep = " AND"; |
| } |
| strPrintf(&sql, ")\n"); |
| zSep = " UNION ALL\nSELECT "; |
| for(i=0; i<nPk; i++){ |
| strPrintf(&sql, "%sB.%s", zSep, az[i]); |
| zSep = ", "; |
| } |
| strPrintf(&sql, ", 3%s -- inserted row\n", nPk==n ? "" : ","); |
| while( az2[i] ){ |
| strPrintf(&sql, " 1, B.%s%s\n", az2[i], az2[i+1]==0 ? "" : ","); |
| i++; |
| } |
| strPrintf(&sql, " FROM aux.%s B\n", zId); |
| strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId); |
| zSep = " WHERE"; |
| for(i=0; i<nPk; i++){ |
| strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| zSep = " AND"; |
| } |
| strPrintf(&sql, ")\n ORDER BY"); |
| zSep = " "; |
| for(i=1; i<=nPk; i++){ |
| strPrintf(&sql, "%s%d", zSep, i); |
| zSep = ", "; |
| } |
| strPrintf(&sql, ";\n"); |
| |
| if( g.fDebug & DEBUG_DIFF_SQL ){ |
| printf("SQL for %s:\n%s\n", zId, sql.z); |
| goto end_diff_one_table; |
| } |
| |
| /* Drop indexes that are missing in the destination */ |
| pStmt = db_prepare( |
| "SELECT name FROM main.sqlite_master" |
| " WHERE type='index' AND tbl_name=%Q" |
| " AND sql IS NOT NULL" |
| " AND sql NOT IN (SELECT sql FROM aux.sqlite_master" |
| " WHERE type='index' AND tbl_name=%Q" |
| " AND sql IS NOT NULL)", |
| zTab, zTab); |
| while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| char *z = safeId((const char*)sqlite3_column_text(pStmt,0)); |
| fprintf(out, "DROP INDEX %s;\n", z); |
| sqlite3_free(z); |
| } |
| sqlite3_finalize(pStmt); |
| |
| /* Run the query and output differences */ |
| if( !g.bSchemaOnly ){ |
| pStmt = db_prepare("%s", sql.z); |
| while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| int iType = sqlite3_column_int(pStmt, nPk); |
| if( iType==1 || iType==2 ){ |
| if( iType==1 ){ /* Change the content of a row */ |
| fprintf(out, "UPDATE %s", zId); |
| zSep = " SET"; |
| for(i=nPk+1; i<nQ; i+=2){ |
| if( sqlite3_column_int(pStmt,i)==0 ) continue; |
| fprintf(out, "%s %s=", zSep, az2[(i+nPk-1)/2]); |
| zSep = ","; |
| printQuoted(out, sqlite3_column_value(pStmt,i+1)); |
| } |
| }else{ /* Delete a row */ |
| fprintf(out, "DELETE FROM %s", zId); |
| } |
| zSep = " WHERE"; |
| for(i=0; i<nPk; i++){ |
| fprintf(out, "%s %s=", zSep, az2[i]); |
| printQuoted(out, sqlite3_column_value(pStmt,i)); |
| zSep = " AND"; |
| } |
| fprintf(out, ";\n"); |
| }else{ /* Insert a row */ |
| fprintf(out, "INSERT INTO %s(%s", zId, az2[0]); |
| for(i=1; az2[i]; i++) fprintf(out, ",%s", az2[i]); |
| fprintf(out, ") VALUES"); |
| zSep = "("; |
| for(i=0; i<nPk2; i++){ |
| fprintf(out, "%s", zSep); |
| zSep = ","; |
| printQuoted(out, sqlite3_column_value(pStmt,i)); |
| } |
| for(i=nPk2+2; i<nQ; i+=2){ |
| fprintf(out, ","); |
| printQuoted(out, sqlite3_column_value(pStmt,i)); |
| } |
| fprintf(out, ");\n"); |
| } |
| } |
| sqlite3_finalize(pStmt); |
| } /* endif !g.bSchemaOnly */ |
| |
| /* Create indexes that are missing in the source */ |
| pStmt = db_prepare( |
| "SELECT sql FROM aux.sqlite_master" |
| " WHERE type='index' AND tbl_name=%Q" |
| " AND sql IS NOT NULL" |
| " AND sql NOT IN (SELECT sql FROM main.sqlite_master" |
| " WHERE type='index' AND tbl_name=%Q" |
| " AND sql IS NOT NULL)", |
| zTab, zTab); |
| while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| fprintf(out, "%s;\n", sqlite3_column_text(pStmt,0)); |
| } |
| sqlite3_finalize(pStmt); |
| |
| end_diff_one_table: |
| strFree(&sql); |
| sqlite3_free(zId); |
| namelistFree(az); |
| namelistFree(az2); |
| return; |
| } |
| |
| /* |
| ** Check that table zTab exists and has the same schema in both the "main" |
| ** and "aux" databases currently opened by the global db handle. If they |
| ** do not, output an error message on stderr and exit(1). Otherwise, if |
| ** the schemas do match, return control to the caller. |
| */ |
| static void checkSchemasMatch(const char *zTab){ |
| sqlite3_stmt *pStmt = db_prepare( |
| "SELECT A.sql=B.sql FROM main.sqlite_master A, aux.sqlite_master B" |
| " WHERE A.name=%Q AND B.name=%Q", zTab, zTab |
| ); |
| if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| if( sqlite3_column_int(pStmt,0)==0 ){ |
| runtimeError("schema changes for table %s", safeId(zTab)); |
| } |
| }else{ |
| runtimeError("table %s missing from one or both databases", safeId(zTab)); |
| } |
| sqlite3_finalize(pStmt); |
| } |
| |
| /************************************************************************** |
| ** The following code is copied from fossil. It is used to generate the |
| ** fossil delta blobs sometimes used in RBU update records. |
| */ |
| |
| typedef unsigned short u16; |
| typedef unsigned int u32; |
| typedef unsigned char u8; |
| |
| /* |
| ** The width of a hash window in bytes. The algorithm only works if this |
| ** is a power of 2. |
| */ |
| #define NHASH 16 |
| |
| /* |
| ** The current state of the rolling hash. |
| ** |
| ** z[] holds the values that have been hashed. z[] is a circular buffer. |
| ** z[i] is the first entry and z[(i+NHASH-1)%NHASH] is the last entry of |
| ** the window. |
| ** |
| ** Hash.a is the sum of all elements of hash.z[]. Hash.b is a weighted |
| ** sum. Hash.b is z[i]*NHASH + z[i+1]*(NHASH-1) + ... + z[i+NHASH-1]*1. |
| ** (Each index for z[] should be module NHASH, of course. The %NHASH operator |
| ** is omitted in the prior expression for brevity.) |
| */ |
| typedef struct hash hash; |
| struct hash { |
| u16 a, b; /* Hash values */ |
| u16 i; /* Start of the hash window */ |
| char z[NHASH]; /* The values that have been hashed */ |
| }; |
| |
| /* |
| ** Initialize the rolling hash using the first NHASH characters of z[] |
| */ |
| static void hash_init(hash *pHash, const char *z){ |
| u16 a, b, i; |
| a = b = 0; |
| for(i=0; i<NHASH; i++){ |
| a += z[i]; |
| b += (NHASH-i)*z[i]; |
| pHash->z[i] = z[i]; |
| } |
| pHash->a = a & 0xffff; |
| pHash->b = b & 0xffff; |
| pHash->i = 0; |
| } |
| |
| /* |
| ** Advance the rolling hash by a single character "c" |
| */ |
| static void hash_next(hash *pHash, int c){ |
| u16 old = pHash->z[pHash->i]; |
| pHash->z[pHash->i] = (char)c; |
| pHash->i = (pHash->i+1)&(NHASH-1); |
| pHash->a = pHash->a - old + (char)c; |
| pHash->b = pHash->b - NHASH*old + pHash->a; |
| } |
| |
| /* |
| ** Return a 32-bit hash value |
| */ |
| static u32 hash_32bit(hash *pHash){ |
| return (pHash->a & 0xffff) | (((u32)(pHash->b & 0xffff))<<16); |
| } |
| |
| /* |
| ** Write an base-64 integer into the given buffer. |
| */ |
| static void putInt(unsigned int v, char **pz){ |
| static const char zDigits[] = |
| "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ_abcdefghijklmnopqrstuvwxyz~"; |
| /* 123456789 123456789 123456789 123456789 123456789 123456789 123 */ |
| int i, j; |
| char zBuf[20]; |
| if( v==0 ){ |
| *(*pz)++ = '0'; |
| return; |
| } |
| for(i=0; v>0; i++, v>>=6){ |
| zBuf[i] = zDigits[v&0x3f]; |
| } |
| for(j=i-1; j>=0; j--){ |
| *(*pz)++ = zBuf[j]; |
| } |
| } |
| |
| /* |
| ** Return the number digits in the base-64 representation of a positive integer |
| */ |
| static int digit_count(int v){ |
| unsigned int i, x; |
| for(i=1, x=64; (unsigned int)v>=x; i++, x <<= 6){} |
| return i; |
| } |
| |
| /* |
| ** Compute a 32-bit checksum on the N-byte buffer. Return the result. |
| */ |
| static unsigned int checksum(const char *zIn, size_t N){ |
| const unsigned char *z = (const unsigned char *)zIn; |
| unsigned sum0 = 0; |
| unsigned sum1 = 0; |
| unsigned sum2 = 0; |
| unsigned sum3 = 0; |
| while(N >= 16){ |
| sum0 += ((unsigned)z[0] + z[4] + z[8] + z[12]); |
| sum1 += ((unsigned)z[1] + z[5] + z[9] + z[13]); |
| sum2 += ((unsigned)z[2] + z[6] + z[10]+ z[14]); |
| sum3 += ((unsigned)z[3] + z[7] + z[11]+ z[15]); |
| z += 16; |
| N -= 16; |
| } |
| while(N >= 4){ |
| sum0 += z[0]; |
| sum1 += z[1]; |
| sum2 += z[2]; |
| sum3 += z[3]; |
| z += 4; |
| N -= 4; |
| } |
| sum3 += (sum2 << 8) + (sum1 << 16) + (sum0 << 24); |
| switch(N){ |
| case 3: sum3 += (z[2] << 8); |
| case 2: sum3 += (z[1] << 16); |
| case 1: sum3 += (z[0] << 24); |
| default: ; |
| } |
| return sum3; |
| } |
| |
| /* |
| ** Create a new delta. |
| ** |
| ** The delta is written into a preallocated buffer, zDelta, which |
| ** should be at least 60 bytes longer than the target file, zOut. |
| ** The delta string will be NUL-terminated, but it might also contain |
| ** embedded NUL characters if either the zSrc or zOut files are |
| ** binary. This function returns the length of the delta string |
| ** in bytes, excluding the final NUL terminator character. |
| ** |
| ** Output Format: |
| ** |
| ** The delta begins with a base64 number followed by a newline. This |
| ** number is the number of bytes in the TARGET file. Thus, given a |
| ** delta file z, a program can compute the size of the output file |
| ** simply by reading the first line and decoding the base-64 number |
| ** found there. The delta_output_size() routine does exactly this. |
| ** |
| ** After the initial size number, the delta consists of a series of |
| ** literal text segments and commands to copy from the SOURCE file. |
| ** A copy command looks like this: |
| ** |
| ** NNN@MMM, |
| ** |
| ** where NNN is the number of bytes to be copied and MMM is the offset |
| ** into the source file of the first byte (both base-64). If NNN is 0 |
| ** it means copy the rest of the input file. Literal text is like this: |
| ** |
| ** NNN:TTTTT |
| ** |
| ** where NNN is the number of bytes of text (base-64) and TTTTT is the text. |
| ** |
| ** The last term is of the form |
| ** |
| ** NNN; |
| ** |
| ** In this case, NNN is a 32-bit bigendian checksum of the output file |
| ** that can be used to verify that the delta applied correctly. All |
| ** numbers are in base-64. |
| ** |
| ** Pure text files generate a pure text delta. Binary files generate a |
| ** delta that may contain some binary data. |
| ** |
| ** Algorithm: |
| ** |
| ** The encoder first builds a hash table to help it find matching |
| ** patterns in the source file. 16-byte chunks of the source file |
| ** sampled at evenly spaced intervals are used to populate the hash |
| ** table. |
| ** |
| ** Next we begin scanning the target file using a sliding 16-byte |
| ** window. The hash of the 16-byte window in the target is used to |
| ** search for a matching section in the source file. When a match |
| ** is found, a copy command is added to the delta. An effort is |
| ** made to extend the matching section to regions that come before |
| ** and after the 16-byte hash window. A copy command is only issued |
| ** if the result would use less space that just quoting the text |
| ** literally. Literal text is added to the delta for sections that |
| ** do not match or which can not be encoded efficiently using copy |
| ** commands. |
| */ |
| static int rbuDeltaCreate( |
| const char *zSrc, /* The source or pattern file */ |
| unsigned int lenSrc, /* Length of the source file */ |
| const char *zOut, /* The target file */ |
| unsigned int lenOut, /* Length of the target file */ |
| char *zDelta /* Write the delta into this buffer */ |
| ){ |
| unsigned int i, base; |
| char *zOrigDelta = zDelta; |
| hash h; |
| int nHash; /* Number of hash table entries */ |
| int *landmark; /* Primary hash table */ |
| int *collide; /* Collision chain */ |
| int lastRead = -1; /* Last byte of zSrc read by a COPY command */ |
| |
| /* Add the target file size to the beginning of the delta |
| */ |
| putInt(lenOut, &zDelta); |
| *(zDelta++) = '\n'; |
| |
| /* If the source file is very small, it means that we have no |
| ** chance of ever doing a copy command. Just output a single |
| ** literal segment for the entire target and exit. |
| */ |
| if( lenSrc<=NHASH ){ |
| putInt(lenOut, &zDelta); |
| *(zDelta++) = ':'; |
| memcpy(zDelta, zOut, lenOut); |
| zDelta += lenOut; |
| putInt(checksum(zOut, lenOut), &zDelta); |
| *(zDelta++) = ';'; |
| return (int)(zDelta - zOrigDelta); |
| } |
| |
| /* Compute the hash table used to locate matching sections in the |
| ** source file. |
| */ |
| nHash = lenSrc/NHASH; |
| collide = sqlite3_malloc( nHash*2*sizeof(int) ); |
| landmark = &collide[nHash]; |
| memset(landmark, -1, nHash*sizeof(int)); |
| memset(collide, -1, nHash*sizeof(int)); |
| for(i=0; i<lenSrc-NHASH; i+=NHASH){ |
| int hv; |
| hash_init(&h, &zSrc[i]); |
| hv = hash_32bit(&h) % nHash; |
| collide[i/NHASH] = landmark[hv]; |
| landmark[hv] = i/NHASH; |
| } |
| |
| /* Begin scanning the target file and generating copy commands and |
| ** literal sections of the delta. |
| */ |
| base = 0; /* We have already generated everything before zOut[base] */ |
| while( base+NHASH<lenOut ){ |
| int iSrc, iBlock; |
| int bestCnt, bestOfst=0, bestLitsz=0; |
| hash_init(&h, &zOut[base]); |
| i = 0; /* Trying to match a landmark against zOut[base+i] */ |
| bestCnt = 0; |
| while( 1 ){ |
| int hv; |
| int limit = 250; |
| |
| hv = hash_32bit(&h) % nHash; |
| iBlock = landmark[hv]; |
| while( iBlock>=0 && (limit--)>0 ){ |
| /* |
| ** The hash window has identified a potential match against |
| ** landmark block iBlock. But we need to investigate further. |
| ** |
| ** Look for a region in zOut that matches zSrc. Anchor the search |
| ** at zSrc[iSrc] and zOut[base+i]. Do not include anything prior to |
| ** zOut[base] or after zOut[outLen] nor anything after zSrc[srcLen]. |
| ** |
| ** Set cnt equal to the length of the match and set ofst so that |
| ** zSrc[ofst] is the first element of the match. litsz is the number |
| ** of characters between zOut[base] and the beginning of the match. |
| ** sz will be the overhead (in bytes) needed to encode the copy |
| ** command. Only generate copy command if the overhead of the |
| ** copy command is less than the amount of literal text to be copied. |
| */ |
| int cnt, ofst, litsz; |
| int j, k, x, y; |
| int sz; |
| |
| /* Beginning at iSrc, match forwards as far as we can. j counts |
| ** the number of characters that match */ |
| iSrc = iBlock*NHASH; |
| for( |
| j=0, x=iSrc, y=base+i; |
| (unsigned int)x<lenSrc && (unsigned int)y<lenOut; |
| j++, x++, y++ |
| ){ |
| if( zSrc[x]!=zOut[y] ) break; |
| } |
| j--; |
| |
| /* Beginning at iSrc-1, match backwards as far as we can. k counts |
| ** the number of characters that match */ |
| for(k=1; k<iSrc && (unsigned int)k<=i; k++){ |
| if( zSrc[iSrc-k]!=zOut[base+i-k] ) break; |
| } |
| k--; |
| |
| /* Compute the offset and size of the matching region */ |
| ofst = iSrc-k; |
| cnt = j+k+1; |
| litsz = i-k; /* Number of bytes of literal text before the copy */ |
| /* sz will hold the number of bytes needed to encode the "insert" |
| ** command and the copy command, not counting the "insert" text */ |
| sz = digit_count(i-k)+digit_count(cnt)+digit_count(ofst)+3; |
| if( cnt>=sz && cnt>bestCnt ){ |
| /* Remember this match only if it is the best so far and it |
| ** does not increase the file size */ |
| bestCnt = cnt; |
| bestOfst = iSrc-k; |
| bestLitsz = litsz; |
| } |
| |
| /* Check the next matching block */ |
| iBlock = collide[iBlock]; |
| } |
| |
| /* We have a copy command that does not cause the delta to be larger |
| ** than a literal insert. So add the copy command to the delta. |
| */ |
| if( bestCnt>0 ){ |
| if( bestLitsz>0 ){ |
| /* Add an insert command before the copy */ |
| putInt(bestLitsz,&zDelta); |
| *(zDelta++) = ':'; |
| memcpy(zDelta, &zOut[base], bestLitsz); |
| zDelta += bestLitsz; |
| base += bestLitsz; |
| } |
| base += bestCnt; |
| putInt(bestCnt, &zDelta); |
| *(zDelta++) = '@'; |
| putInt(bestOfst, &zDelta); |
| *(zDelta++) = ','; |
| if( bestOfst + bestCnt -1 > lastRead ){ |
| lastRead = bestOfst + bestCnt - 1; |
| } |
| bestCnt = 0; |
| break; |
| } |
| |
| /* If we reach this point, it means no match is found so far */ |
| if( base+i+NHASH>=lenOut ){ |
| /* We have reached the end of the file and have not found any |
| ** matches. Do an "insert" for everything that does not match */ |
| putInt(lenOut-base, &zDelta); |
| *(zDelta++) = ':'; |
| memcpy(zDelta, &zOut[base], lenOut-base); |
| zDelta += lenOut-base; |
| base = lenOut; |
| break; |
| } |
| |
| /* Advance the hash by one character. Keep looking for a match */ |
| hash_next(&h, zOut[base+i+NHASH]); |
| i++; |
| } |
| } |
| /* Output a final "insert" record to get all the text at the end of |
| ** the file that does not match anything in the source file. |
| */ |
| if( base<lenOut ){ |
| putInt(lenOut-base, &zDelta); |
| *(zDelta++) = ':'; |
| memcpy(zDelta, &zOut[base], lenOut-base); |
| zDelta += lenOut-base; |
| } |
| /* Output the final checksum record. */ |
| putInt(checksum(zOut, lenOut), &zDelta); |
| *(zDelta++) = ';'; |
| sqlite3_free(collide); |
| return (int)(zDelta - zOrigDelta); |
| } |
| |
| /* |
| ** End of code copied from fossil. |
| **************************************************************************/ |
| |
| static void strPrintfArray( |
| Str *pStr, /* String object to append to */ |
| const char *zSep, /* Separator string */ |
| const char *zFmt, /* Format for each entry */ |
| char **az, int n /* Array of strings & its size (or -1) */ |
| ){ |
| int i; |
| for(i=0; az[i] && (i<n || n<0); i++){ |
| if( i!=0 ) strPrintf(pStr, "%s", zSep); |
| strPrintf(pStr, zFmt, az[i], az[i], az[i]); |
| } |
| } |
| |
| static void getRbudiffQuery( |
| const char *zTab, |
| char **azCol, |
| int nPK, |
| int bOtaRowid, |
| Str *pSql |
| ){ |
| int i; |
| |
| /* First the newly inserted rows: **/ |
| strPrintf(pSql, "SELECT "); |
| strPrintfArray(pSql, ", ", "%s", azCol, -1); |
| strPrintf(pSql, ", 0, "); /* Set ota_control to 0 for an insert */ |
| strPrintfArray(pSql, ", ", "NULL", azCol, -1); |
| strPrintf(pSql, " FROM aux.%Q AS n WHERE NOT EXISTS (\n", zTab); |
| strPrintf(pSql, " SELECT 1 FROM ", zTab); |
| strPrintf(pSql, " main.%Q AS o WHERE ", zTab); |
| strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK); |
| strPrintf(pSql, "\n) AND "); |
| strPrintfArray(pSql, " AND ", "(n.%Q IS NOT NULL)", azCol, nPK); |
| |
| /* Deleted rows: */ |
| strPrintf(pSql, "\nUNION ALL\nSELECT "); |
| strPrintfArray(pSql, ", ", "%s", azCol, nPK); |
| if( azCol[nPK] ){ |
| strPrintf(pSql, ", "); |
| strPrintfArray(pSql, ", ", "NULL", &azCol[nPK], -1); |
| } |
| strPrintf(pSql, ", 1, "); /* Set ota_control to 1 for a delete */ |
| strPrintfArray(pSql, ", ", "NULL", azCol, -1); |
| strPrintf(pSql, " FROM main.%Q AS n WHERE NOT EXISTS (\n", zTab); |
| strPrintf(pSql, " SELECT 1 FROM ", zTab); |
| strPrintf(pSql, " aux.%Q AS o WHERE ", zTab); |
| strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK); |
| strPrintf(pSql, "\n) AND "); |
| strPrintfArray(pSql, " AND ", "(n.%Q IS NOT NULL)", azCol, nPK); |
| |
| /* Updated rows. If all table columns are part of the primary key, there |
| ** can be no updates. In this case this part of the compound SELECT can |
| ** be omitted altogether. */ |
| if( azCol[nPK] ){ |
| strPrintf(pSql, "\nUNION ALL\nSELECT "); |
| strPrintfArray(pSql, ", ", "n.%s", azCol, nPK); |
| strPrintf(pSql, ",\n"); |
| strPrintfArray(pSql, " ,\n", |
| " CASE WHEN n.%s IS o.%s THEN NULL ELSE n.%s END", &azCol[nPK], -1 |
| ); |
| |
| if( bOtaRowid==0 ){ |
| strPrintf(pSql, ", '"); |
| strPrintfArray(pSql, "", ".", azCol, nPK); |
| strPrintf(pSql, "' ||\n"); |
| }else{ |
| strPrintf(pSql, ",\n"); |
| } |
| strPrintfArray(pSql, " ||\n", |
| " CASE WHEN n.%s IS o.%s THEN '.' ELSE 'x' END", &azCol[nPK], -1 |
| ); |
| strPrintf(pSql, "\nAS ota_control, "); |
| strPrintfArray(pSql, ", ", "NULL", azCol, nPK); |
| strPrintf(pSql, ",\n"); |
| strPrintfArray(pSql, " ,\n", |
| " CASE WHEN n.%s IS o.%s THEN NULL ELSE o.%s END", &azCol[nPK], -1 |
| ); |
| |
| strPrintf(pSql, "\nFROM main.%Q AS o, aux.%Q AS n\nWHERE ", zTab, zTab); |
| strPrintfArray(pSql, " AND ", "(n.%Q = o.%Q)", azCol, nPK); |
| strPrintf(pSql, " AND ota_control LIKE '%%x%%'"); |
| } |
| |
| /* Now add an ORDER BY clause to sort everything by PK. */ |
| strPrintf(pSql, "\nORDER BY "); |
| for(i=1; i<=nPK; i++) strPrintf(pSql, "%s%d", ((i>1)?", ":""), i); |
| } |
| |
| static void rbudiff_one_table(const char *zTab, FILE *out){ |
| int bOtaRowid; /* True to use an ota_rowid column */ |
| int nPK; /* Number of primary key columns in table */ |
| char **azCol; /* NULL terminated array of col names */ |
| int i; |
| int nCol; |
| Str ct = {0, 0, 0}; /* The "CREATE TABLE data_xxx" statement */ |
| Str sql = {0, 0, 0}; /* Query to find differences */ |
| Str insert = {0, 0, 0}; /* First part of output INSERT statement */ |
| sqlite3_stmt *pStmt = 0; |
| int nRow = 0; /* Total rows in data_xxx table */ |
| |
| /* --rbu mode must use real primary keys. */ |
| g.bSchemaPK = 1; |
| |
| /* Check that the schemas of the two tables match. Exit early otherwise. */ |
| checkSchemasMatch(zTab); |
| |
| /* Grab the column names and PK details for the table(s). If no usable PK |
| ** columns are found, bail out early. */ |
| azCol = columnNames("main", zTab, &nPK, &bOtaRowid); |
| if( azCol==0 ){ |
| runtimeError("table %s has no usable PK columns", zTab); |
| } |
| for(nCol=0; azCol[nCol]; nCol++); |
| |
| /* Build and output the CREATE TABLE statement for the data_xxx table */ |
| strPrintf(&ct, "CREATE TABLE IF NOT EXISTS 'data_%q'(", zTab); |
| if( bOtaRowid ) strPrintf(&ct, "rbu_rowid, "); |
| strPrintfArray(&ct, ", ", "%s", &azCol[bOtaRowid], -1); |
| strPrintf(&ct, ", rbu_control);"); |
| |
| /* Get the SQL for the query to retrieve data from the two databases */ |
| getRbudiffQuery(zTab, azCol, nPK, bOtaRowid, &sql); |
| |
| /* Build the first part of the INSERT statement output for each row |
| ** in the data_xxx table. */ |
| strPrintf(&insert, "INSERT INTO 'data_%q' (", zTab); |
| if( bOtaRowid ) strPrintf(&insert, "rbu_rowid, "); |
| strPrintfArray(&insert, ", ", "%s", &azCol[bOtaRowid], -1); |
| strPrintf(&insert, ", rbu_control) VALUES("); |
| |
| pStmt = db_prepare("%s", sql.z); |
| |
| while( sqlite3_step(pStmt)==SQLITE_ROW ){ |
| |
| /* If this is the first row output, print out the CREATE TABLE |
| ** statement first. And then set ct.z to NULL so that it is not |
| ** printed again. */ |
| if( ct.z ){ |
| fprintf(out, "%s\n", ct.z); |
| strFree(&ct); |
| } |
| |
| /* Output the first part of the INSERT statement */ |
| fprintf(out, "%s", insert.z); |
| nRow++; |
| |
| if( sqlite3_column_type(pStmt, nCol)==SQLITE_INTEGER ){ |
| for(i=0; i<=nCol; i++){ |
| if( i>0 ) fprintf(out, ", "); |
| printQuoted(out, sqlite3_column_value(pStmt, i)); |
| } |
| }else{ |
| char *zOtaControl; |
| int nOtaControl = sqlite3_column_bytes(pStmt, nCol); |
| |
| zOtaControl = (char*)sqlite3_malloc(nOtaControl+1); |
| memcpy(zOtaControl, sqlite3_column_text(pStmt, nCol), nOtaControl+1); |
| |
| for(i=0; i<nCol; i++){ |
| int bDone = 0; |
| if( i>=nPK |
| && sqlite3_column_type(pStmt, i)==SQLITE_BLOB |
| && sqlite3_column_type(pStmt, nCol+1+i)==SQLITE_BLOB |
| ){ |
| const char *aSrc = sqlite3_column_blob(pStmt, nCol+1+i); |
| int nSrc = sqlite3_column_bytes(pStmt, nCol+1+i); |
| const char *aFinal = sqlite3_column_blob(pStmt, i); |
| int nFinal = sqlite3_column_bytes(pStmt, i); |
| char *aDelta; |
| int nDelta; |
| |
| aDelta = sqlite3_malloc(nFinal + 60); |
| nDelta = rbuDeltaCreate(aSrc, nSrc, aFinal, nFinal, aDelta); |
| if( nDelta<nFinal ){ |
| int j; |
| fprintf(out, "x'"); |
| for(j=0; j<nDelta; j++) fprintf(out, "%02x", (u8)aDelta[j]); |
| fprintf(out, "'"); |
| zOtaControl[i-bOtaRowid] = 'f'; |
| bDone = 1; |
| } |
| sqlite3_free(aDelta); |
| } |
| |
| if( bDone==0 ){ |
| printQuoted(out, sqlite3_column_value(pStmt, i)); |
| } |
| fprintf(out, ", "); |
| } |
| fprintf(out, "'%s'", zOtaControl); |
| sqlite3_free(zOtaControl); |
| } |
| |
| /* And the closing bracket of the insert statement */ |
| fprintf(out, ");\n"); |
| } |
| |
| sqlite3_finalize(pStmt); |
| if( nRow>0 ){ |
| Str cnt = {0, 0, 0}; |
| strPrintf(&cnt, "INSERT INTO rbu_count VALUES('data_%q', %d);", zTab, nRow); |
| fprintf(out, "%s\n", cnt.z); |
| strFree(&cnt); |
| } |
| |
| strFree(&ct); |
| strFree(&sql); |
| strFree(&insert); |
| } |
| |
| /* |
| ** Display a summary of differences between two versions of the same |
| ** table table. |
| ** |
| ** * Number of rows changed |
| ** * Number of rows added |
| ** * Number of rows deleted |
| ** * Number of identical rows |
| */ |
| static void summarize_one_table(const char *zTab, FILE *out){ |
| char *zId = safeId(zTab); /* Name of table (translated for us in SQL) */ |
| char **az = 0; /* Columns in main */ |
| char **az2 = 0; /* Columns in aux */ |
| int nPk; /* Primary key columns in main */ |
| int nPk2; /* Primary key columns in aux */ |
| int n = 0; /* Number of columns in main */ |
| int n2; /* Number of columns in aux */ |
| int i; /* Loop counter */ |
| const char *zSep; /* Separator string */ |
| Str sql; /* Comparison query */ |
| sqlite3_stmt *pStmt; /* Query statement to do the diff */ |
| sqlite3_int64 nUpdate; /* Number of updated rows */ |
| sqlite3_int64 nUnchanged; /* Number of unmodified rows */ |
| sqlite3_int64 nDelete; /* Number of deleted rows */ |
| sqlite3_int64 nInsert; /* Number of inserted rows */ |
| |
| strInit(&sql); |
| if( sqlite3_table_column_metadata(g.db,"aux",zTab,0,0,0,0,0,0) ){ |
| if( !sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){ |
| /* Table missing from second database. */ |
| fprintf(out, "%s: missing from second database\n", zTab); |
| } |
| goto end_summarize_one_table; |
| } |
| |
| if( sqlite3_table_column_metadata(g.db,"main",zTab,0,0,0,0,0,0) ){ |
| /* Table missing from source */ |
| fprintf(out, "%s: missing from first database\n", zTab); |
| goto end_summarize_one_table; |
| } |
| |
| az = columnNames("main", zTab, &nPk, 0); |
| az2 = columnNames("aux", zTab, &nPk2, 0); |
| if( az && az2 ){ |
| for(n=0; az[n]; n++){ |
| if( sqlite3_stricmp(az[n],az2[n])!=0 ) break; |
| } |
| } |
| if( az==0 |
| || az2==0 |
| || nPk!=nPk2 |
| || az[n] |
| ){ |
| /* Schema mismatch */ |
| fprintf(out, "%s: incompatible schema\n", zTab); |
| goto end_summarize_one_table; |
| } |
| |
| /* Build the comparison query */ |
| for(n2=n; az[n2]; n2++){} |
| strPrintf(&sql, "SELECT 1, count(*)"); |
| if( n2==nPk2 ){ |
| strPrintf(&sql, ", 0\n"); |
| }else{ |
| zSep = ", sum("; |
| for(i=nPk; az[i]; i++){ |
| strPrintf(&sql, "%sA.%s IS NOT B.%s", zSep, az[i], az[i]); |
| zSep = " OR "; |
| } |
| strPrintf(&sql, ")\n"); |
| } |
| strPrintf(&sql, " FROM main.%s A, aux.%s B\n", zId, zId); |
| zSep = " WHERE"; |
| for(i=0; i<nPk; i++){ |
| strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| zSep = " AND"; |
| } |
| strPrintf(&sql, " UNION ALL\n"); |
| strPrintf(&sql, "SELECT 2, count(*), 0\n"); |
| strPrintf(&sql, " FROM main.%s A\n", zId); |
| strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B ", zId); |
| zSep = "WHERE"; |
| for(i=0; i<nPk; i++){ |
| strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| zSep = " AND"; |
| } |
| strPrintf(&sql, ")\n"); |
| strPrintf(&sql, " UNION ALL\n"); |
| strPrintf(&sql, "SELECT 3, count(*), 0\n"); |
| strPrintf(&sql, " FROM aux.%s B\n", zId); |
| strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A ", zId); |
| zSep = "WHERE"; |
| for(i=0; i<nPk; i++){ |
| strPrintf(&sql, "%s A.%s=B.%s", zSep, az[i], az[i]); |
| zSep = " AND"; |
| } |
| strPrintf(&sql, ")\n ORDER BY 1;\n"); |
| |
| if( (g.fDebug & DEBUG_DIFF_SQL)!=0 ){ |
| printf("SQL for %s:\n%s\n", zId, sql.z); |
| goto end_summarize_one_table; |
| } |
| |
| /* Run the query and output difference summary */ |
| pStmt = db_prepare("%s", sql.z); |
| nUpdate = 0; |
| nInsert = 0; |
| nDelete = 0; |
| nUnchanged = 0; |
| while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| switch( sqlite3_column_int(pStmt,0) ){ |
| case 1: |
| nUpdate = sqlite3_column_int64(pStmt,2); |
| nUnchanged = sqlite3_column_int64(pStmt,1) - nUpdate; |
| break; |
| case 2: |
| nDelete = sqlite3_column_int64(pStmt,1); |
| break; |
| case 3: |
| nInsert = sqlite3_column_int64(pStmt,1); |
| break; |
| } |
| } |
| sqlite3_finalize(pStmt); |
| fprintf(out, "%s: %lld changes, %lld inserts, %lld deletes, %lld unchanged\n", |
| zTab, nUpdate, nInsert, nDelete, nUnchanged); |
| |
| end_summarize_one_table: |
| strFree(&sql); |
| sqlite3_free(zId); |
| namelistFree(az); |
| namelistFree(az2); |
| return; |
| } |
| |
| /* |
| ** Write a 64-bit signed integer as a varint onto out |
| */ |
| static void putsVarint(FILE *out, sqlite3_uint64 v){ |
| int i, n; |
| unsigned char p[12]; |
| if( v & (((sqlite3_uint64)0xff000000)<<32) ){ |
| p[8] = (unsigned char)v; |
| v >>= 8; |
| for(i=7; i>=0; i--){ |
| p[i] = (unsigned char)((v & 0x7f) | 0x80); |
| v >>= 7; |
| } |
| fwrite(p, 8, 1, out); |
| }else{ |
| n = 9; |
| do{ |
| p[n--] = (unsigned char)((v & 0x7f) | 0x80); |
| v >>= 7; |
| }while( v!=0 ); |
| p[9] &= 0x7f; |
| fwrite(p+n+1, 9-n, 1, out); |
| } |
| } |
| |
| /* |
| ** Write an SQLite value onto out. |
| */ |
| static void putValue(FILE *out, sqlite3_stmt *pStmt, int k){ |
| int iDType = sqlite3_column_type(pStmt, k); |
| sqlite3_int64 iX; |
| double rX; |
| sqlite3_uint64 uX; |
| int j; |
| |
| putc(iDType, out); |
| switch( iDType ){ |
| case SQLITE_INTEGER: |
| iX = sqlite3_column_int64(pStmt, k); |
| memcpy(&uX, &iX, 8); |
| for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out); |
| break; |
| case SQLITE_FLOAT: |
| rX = sqlite3_column_double(pStmt, k); |
| memcpy(&uX, &rX, 8); |
| for(j=56; j>=0; j-=8) putc((uX>>j)&0xff, out); |
| break; |
| case SQLITE_TEXT: |
| iX = sqlite3_column_bytes(pStmt, k); |
| putsVarint(out, (sqlite3_uint64)iX); |
| fwrite(sqlite3_column_text(pStmt, k),1,(size_t)iX,out); |
| break; |
| case SQLITE_BLOB: |
| iX = sqlite3_column_bytes(pStmt, k); |
| putsVarint(out, (sqlite3_uint64)iX); |
| fwrite(sqlite3_column_blob(pStmt, k),1,(size_t)iX,out); |
| break; |
| case SQLITE_NULL: |
| break; |
| } |
| } |
| |
| /* |
| ** Generate a CHANGESET for all differences from main.zTab to aux.zTab. |
| */ |
| static void changeset_one_table(const char *zTab, FILE *out){ |
| sqlite3_stmt *pStmt; /* SQL statment */ |
| char *zId = safeId(zTab); /* Escaped name of the table */ |
| char **azCol = 0; /* List of escaped column names */ |
| int nCol = 0; /* Number of columns */ |
| int *aiFlg = 0; /* 0 if column is not part of PK */ |
| int *aiPk = 0; /* Column numbers for each PK column */ |
| int nPk = 0; /* Number of PRIMARY KEY columns */ |
| Str sql; /* SQL for the diff query */ |
| int i, k; /* Loop counters */ |
| const char *zSep; /* List separator */ |
| |
| /* Check that the schemas of the two tables match. Exit early otherwise. */ |
| checkSchemasMatch(zTab); |
| |
| pStmt = db_prepare("PRAGMA main.table_info=%Q", zTab); |
| while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| nCol++; |
| azCol = sqlite3_realloc(azCol, sizeof(char*)*nCol); |
| if( azCol==0 ) runtimeError("out of memory"); |
| aiFlg = sqlite3_realloc(aiFlg, sizeof(int)*nCol); |
| if( aiFlg==0 ) runtimeError("out of memory"); |
| azCol[nCol-1] = safeId((const char*)sqlite3_column_text(pStmt,1)); |
| aiFlg[nCol-1] = i = sqlite3_column_int(pStmt,5); |
| if( i>0 ){ |
| if( i>nPk ){ |
| nPk = i; |
| aiPk = sqlite3_realloc(aiPk, sizeof(int)*nPk); |
| if( aiPk==0 ) runtimeError("out of memory"); |
| } |
| aiPk[i-1] = nCol-1; |
| } |
| } |
| sqlite3_finalize(pStmt); |
| if( nPk==0 ) goto end_changeset_one_table; |
| strInit(&sql); |
| if( nCol>nPk ){ |
| strPrintf(&sql, "SELECT %d", SQLITE_UPDATE); |
| for(i=0; i<nCol; i++){ |
| if( aiFlg[i] ){ |
| strPrintf(&sql, ",\n A.%s", azCol[i]); |
| }else{ |
| strPrintf(&sql, ",\n A.%s IS NOT B.%s, A.%s, B.%s", |
| azCol[i], azCol[i], azCol[i], azCol[i]); |
| } |
| } |
| strPrintf(&sql,"\n FROM main.%s A, aux.%s B\n", zId, zId); |
| zSep = " WHERE"; |
| for(i=0; i<nPk; i++){ |
| strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]); |
| zSep = " AND"; |
| } |
| zSep = "\n AND ("; |
| for(i=0; i<nCol; i++){ |
| if( aiFlg[i] ) continue; |
| strPrintf(&sql, "%sA.%s IS NOT B.%s", zSep, azCol[i], azCol[i]); |
| zSep = " OR\n "; |
| } |
| strPrintf(&sql,")\n UNION ALL\n"); |
| } |
| strPrintf(&sql, "SELECT %d", SQLITE_DELETE); |
| for(i=0; i<nCol; i++){ |
| if( aiFlg[i] ){ |
| strPrintf(&sql, ",\n A.%s", azCol[i]); |
| }else{ |
| strPrintf(&sql, ",\n 1, A.%s, NULL", azCol[i]); |
| } |
| } |
| strPrintf(&sql, "\n FROM main.%s A\n", zId); |
| strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM aux.%s B\n", zId); |
| zSep = " WHERE"; |
| for(i=0; i<nPk; i++){ |
| strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]); |
| zSep = " AND"; |
| } |
| strPrintf(&sql, ")\n UNION ALL\n"); |
| strPrintf(&sql, "SELECT %d", SQLITE_INSERT); |
| for(i=0; i<nCol; i++){ |
| if( aiFlg[i] ){ |
| strPrintf(&sql, ",\n B.%s", azCol[i]); |
| }else{ |
| strPrintf(&sql, ",\n 1, NULL, B.%s", azCol[i]); |
| } |
| } |
| strPrintf(&sql, "\n FROM aux.%s B\n", zId); |
| strPrintf(&sql, " WHERE NOT EXISTS(SELECT 1 FROM main.%s A\n", zId); |
| zSep = " WHERE"; |
| for(i=0; i<nPk; i++){ |
| strPrintf(&sql, "%s A.%s=B.%s", zSep, azCol[aiPk[i]], azCol[aiPk[i]]); |
| zSep = " AND"; |
| } |
| strPrintf(&sql, ")\n"); |
| strPrintf(&sql, " ORDER BY"); |
| zSep = " "; |
| for(i=0; i<nPk; i++){ |
| strPrintf(&sql, "%s %d", zSep, aiPk[i]+2); |
| zSep = ","; |
| } |
| strPrintf(&sql, ";\n"); |
| |
| if( g.fDebug & DEBUG_DIFF_SQL ){ |
| printf("SQL for %s:\n%s\n", zId, sql.z); |
| goto end_changeset_one_table; |
| } |
| |
| putc('T', out); |
| putsVarint(out, (sqlite3_uint64)nCol); |
| for(i=0; i<nCol; i++) putc(aiFlg[i], out); |
| fwrite(zTab, 1, strlen(zTab), out); |
| putc(0, out); |
| |
| pStmt = db_prepare("%s", sql.z); |
| while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| int iType = sqlite3_column_int(pStmt,0); |
| putc(iType, out); |
| putc(0, out); |
| switch( sqlite3_column_int(pStmt,0) ){ |
| case SQLITE_UPDATE: { |
| for(k=1, i=0; i<nCol; i++){ |
| if( aiFlg[i] ){ |
| putValue(out, pStmt, k); |
| k++; |
| }else if( sqlite3_column_int(pStmt,k) ){ |
| putValue(out, pStmt, k+1); |
| k += 3; |
| }else{ |
| putc(0, out); |
| k += 3; |
| } |
| } |
| for(k=1, i=0; i<nCol; i++){ |
| if( aiFlg[i] ){ |
| putc(0, out); |
| k++; |
| }else if( sqlite3_column_int(pStmt,k) ){ |
| putValue(out, pStmt, k+2); |
| k += 3; |
| }else{ |
| putc(0, out); |
| k += 3; |
| } |
| } |
| break; |
| } |
| case SQLITE_INSERT: { |
| for(k=1, i=0; i<nCol; i++){ |
| if( aiFlg[i] ){ |
| putValue(out, pStmt, k); |
| k++; |
| }else{ |
| putValue(out, pStmt, k+2); |
| k += 3; |
| } |
| } |
| break; |
| } |
| case SQLITE_DELETE: { |
| for(k=1, i=0; i<nCol; i++){ |
| if( aiFlg[i] ){ |
| putValue(out, pStmt, k); |
| k++; |
| }else{ |
| putValue(out, pStmt, k+1); |
| k += 3; |
| } |
| } |
| break; |
| } |
| } |
| } |
| sqlite3_finalize(pStmt); |
| |
| end_changeset_one_table: |
| while( nCol>0 ) sqlite3_free(azCol[--nCol]); |
| sqlite3_free(azCol); |
| sqlite3_free(aiPk); |
| sqlite3_free(zId); |
| } |
| |
| /* |
| ** Extract the next SQL keyword or quoted string from buffer zIn and copy it |
| ** (or a prefix of it if it will not fit) into buffer zBuf, size nBuf bytes. |
| ** Return a pointer to the character within zIn immediately following |
| ** the token or quoted string just extracted. |
| */ |
| const char *gobble_token(const char *zIn, char *zBuf, int nBuf){ |
| const char *p = zIn; |
| char *pOut = zBuf; |
| char *pEnd = &pOut[nBuf-1]; |
| char q = 0; /* quote character, if any */ |
| |
| if( p==0 ) return 0; |
| while( *p==' ' ) p++; |
| switch( *p ){ |
| case '"': q = '"'; break; |
| case '\'': q = '\''; break; |
| case '`': q = '`'; break; |
| case '[': q = ']'; break; |
| } |
| |
| if( q ){ |
| p++; |
| while( *p && pOut<pEnd ){ |
| if( *p==q ){ |
| p++; |
| if( *p!=q ) break; |
| } |
| if( pOut<pEnd ) *pOut++ = *p; |
| p++; |
| } |
| }else{ |
| while( *p && *p!=' ' && *p!='(' ){ |
| if( pOut<pEnd ) *pOut++ = *p; |
| p++; |
| } |
| } |
| |
| *pOut = '\0'; |
| return p; |
| } |
| |
| /* |
| ** This function is the implementation of SQL scalar function "module_name": |
| ** |
| ** module_name(SQL) |
| ** |
| ** The only argument should be an SQL statement of the type that may appear |
| ** in the sqlite_master table. If the statement is a "CREATE VIRTUAL TABLE" |
| ** statement, then the value returned is the name of the module that it |
| ** uses. Otherwise, if the statement is not a CVT, NULL is returned. |
| */ |
| static void module_name_func( |
| sqlite3_context *pCtx, |
| int nVal, sqlite3_value **apVal |
| ){ |
| const char *zSql; |
| char zToken[32]; |
| |
| assert( nVal==1 ); |
| zSql = (const char*)sqlite3_value_text(apVal[0]); |
| |
| zSql = gobble_token(zSql, zToken, sizeof(zToken)); |
| if( zSql==0 || sqlite3_stricmp(zToken, "create") ) return; |
| zSql = gobble_token(zSql, zToken, sizeof(zToken)); |
| if( zSql==0 || sqlite3_stricmp(zToken, "virtual") ) return; |
| zSql = gobble_token(zSql, zToken, sizeof(zToken)); |
| if( zSql==0 || sqlite3_stricmp(zToken, "table") ) return; |
| zSql = gobble_token(zSql, zToken, sizeof(zToken)); |
| if( zSql==0 ) return; |
| zSql = gobble_token(zSql, zToken, sizeof(zToken)); |
| if( zSql==0 || sqlite3_stricmp(zToken, "using") ) return; |
| zSql = gobble_token(zSql, zToken, sizeof(zToken)); |
| |
| sqlite3_result_text(pCtx, zToken, -1, SQLITE_TRANSIENT); |
| } |
| |
| /* |
| ** Return the text of an SQL statement that itself returns the list of |
| ** tables to process within the database. |
| */ |
| const char *all_tables_sql(){ |
| if( g.bHandleVtab ){ |
| int rc; |
| |
| rc = sqlite3_exec(g.db, |
| "CREATE TEMP TABLE tblmap(module COLLATE nocase, postfix);" |
| "INSERT INTO temp.tblmap VALUES" |
| "('fts3', '_content'), ('fts3', '_segments'), ('fts3', '_segdir')," |
| |
| "('fts4', '_content'), ('fts4', '_segments'), ('fts4', '_segdir')," |
| "('fts4', '_docsize'), ('fts4', '_stat')," |
| |
| "('fts5', '_data'), ('fts5', '_idx'), ('fts5', '_content')," |
| "('fts5', '_docsize'), ('fts5', '_config')," |
| |
| "('rtree', '_node'), ('rtree', '_rowid'), ('rtree', '_parent');" |
| , 0, 0, 0 |
| ); |
| assert( rc==SQLITE_OK ); |
| |
| rc = sqlite3_create_function( |
| g.db, "module_name", 1, SQLITE_UTF8, 0, module_name_func, 0, 0 |
| ); |
| assert( rc==SQLITE_OK ); |
| |
| return |
| "SELECT name FROM main.sqlite_master\n" |
| " WHERE type='table' AND (\n" |
| " module_name(sql) IS NULL OR \n" |
| " module_name(sql) IN (SELECT module FROM temp.tblmap)\n" |
| " ) AND name NOT IN (\n" |
| " SELECT a.name || b.postfix \n" |
| "FROM main.sqlite_master AS a, temp.tblmap AS b \n" |
| "WHERE module_name(a.sql) = b.module\n" |
| " )\n" |
| "UNION \n" |
| "SELECT name FROM aux.sqlite_master\n" |
| " WHERE type='table' AND (\n" |
| " module_name(sql) IS NULL OR \n" |
| " module_name(sql) IN (SELECT module FROM temp.tblmap)\n" |
| " ) AND name NOT IN (\n" |
| " SELECT a.name || b.postfix \n" |
| "FROM aux.sqlite_master AS a, temp.tblmap AS b \n" |
| "WHERE module_name(a.sql) = b.module\n" |
| " )\n" |
| " ORDER BY name"; |
| }else{ |
| return |
| "SELECT name FROM main.sqlite_master\n" |
| " WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n" |
| " UNION\n" |
| "SELECT name FROM aux.sqlite_master\n" |
| " WHERE type='table' AND sql NOT LIKE 'CREATE VIRTUAL%%'\n" |
| " ORDER BY name"; |
| } |
| } |
| |
| /* |
| ** Print sketchy documentation for this utility program |
| */ |
| static void showHelp(void){ |
| printf("Usage: %s [options] DB1 DB2\n", g.zArgv0); |
| printf( |
| "Output SQL text that would transform DB1 into DB2.\n" |
| "Options:\n" |
| " --changeset FILE Write a CHANGESET into FILE\n" |
| " -L|--lib LIBRARY Load an SQLite extension library\n" |
| " --primarykey Use schema-defined PRIMARY KEYs\n" |
| " --rbu Output SQL to create/populate RBU table(s)\n" |
| " --schema Show only differences in the schema\n" |
| " --summary Show only a summary of the differences\n" |
| " --table TAB Show only differences in table TAB\n" |
| " --transaction Show SQL output inside a transaction\n" |
| " --vtab Handle fts3, fts4, fts5 and rtree tables\n" |
| ); |
| } |
| |
| int main(int argc, char **argv){ |
| const char *zDb1 = 0; |
| const char *zDb2 = 0; |
| int i; |
| int rc; |
| char *zErrMsg = 0; |
| char *zSql; |
| sqlite3_stmt *pStmt; |
| char *zTab = 0; |
| FILE *out = stdout; |
| void (*xDiff)(const char*,FILE*) = diff_one_table; |
| #ifndef SQLITE_OMIT_LOAD_EXTENSION |
| int nExt = 0; |
| char **azExt = 0; |
| #endif |
| int useTransaction = 0; |
| int neverUseTransaction = 0; |
| |
| g.zArgv0 = argv[0]; |
| sqlite3_config(SQLITE_CONFIG_SINGLETHREAD); |
| for(i=1; i<argc; i++){ |
| const char *z = argv[i]; |
| if( z[0]=='-' ){ |
| z++; |
| if( z[0]=='-' ) z++; |
| if( strcmp(z,"changeset")==0 ){ |
| if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]); |
| out = fopen(argv[++i], "wb"); |
| if( out==0 ) cmdlineError("cannot open: %s", argv[i]); |
| xDiff = changeset_one_table; |
| neverUseTransaction = 1; |
| }else |
| if( strcmp(z,"debug")==0 ){ |
| if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]); |
| g.fDebug = strtol(argv[++i], 0, 0); |
| }else |
| if( strcmp(z,"help")==0 ){ |
| showHelp(); |
| return 0; |
| }else |
| #ifndef SQLITE_OMIT_LOAD_EXTENSION |
| if( strcmp(z,"lib")==0 || strcmp(z,"L")==0 ){ |
| if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]); |
| azExt = realloc(azExt, sizeof(azExt[0])*(nExt+1)); |
| if( azExt==0 ) cmdlineError("out of memory"); |
| azExt[nExt++] = argv[++i]; |
| }else |
| #endif |
| if( strcmp(z,"primarykey")==0 ){ |
| g.bSchemaPK = 1; |
| }else |
| if( strcmp(z,"rbu")==0 ){ |
| xDiff = rbudiff_one_table; |
| }else |
| if( strcmp(z,"schema")==0 ){ |
| g.bSchemaOnly = 1; |
| }else |
| if( strcmp(z,"summary")==0 ){ |
| xDiff = summarize_one_table; |
| }else |
| if( strcmp(z,"table")==0 ){ |
| if( i==argc-1 ) cmdlineError("missing argument to %s", argv[i]); |
| zTab = argv[++i]; |
| }else |
| if( strcmp(z,"transaction")==0 ){ |
| useTransaction = 1; |
| }else |
| if( strcmp(z,"vtab")==0 ){ |
| g.bHandleVtab = 1; |
| }else |
| { |
| cmdlineError("unknown option: %s", argv[i]); |
| } |
| }else if( zDb1==0 ){ |
| zDb1 = argv[i]; |
| }else if( zDb2==0 ){ |
| zDb2 = argv[i]; |
| }else{ |
| cmdlineError("unknown argument: %s", argv[i]); |
| } |
| } |
| if( zDb2==0 ){ |
| cmdlineError("two database arguments required"); |
| } |
| rc = sqlite3_open(zDb1, &g.db); |
| if( rc ){ |
| cmdlineError("cannot open database file \"%s\"", zDb1); |
| } |
| rc = sqlite3_exec(g.db, "SELECT * FROM sqlite_master", 0, 0, &zErrMsg); |
| if( rc || zErrMsg ){ |
| cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb1); |
| } |
| #ifndef SQLITE_OMIT_LOAD_EXTENSION |
| sqlite3_enable_load_extension(g.db, 1); |
| for(i=0; i<nExt; i++){ |
| rc = sqlite3_load_extension(g.db, azExt[i], 0, &zErrMsg); |
| if( rc || zErrMsg ){ |
| cmdlineError("error loading %s: %s", azExt[i], zErrMsg); |
| } |
| } |
| free(azExt); |
| #endif |
| zSql = sqlite3_mprintf("ATTACH %Q as aux;", zDb2); |
| rc = sqlite3_exec(g.db, zSql, 0, 0, &zErrMsg); |
| if( rc || zErrMsg ){ |
| cmdlineError("cannot attach database \"%s\"", zDb2); |
| } |
| rc = sqlite3_exec(g.db, "SELECT * FROM aux.sqlite_master", 0, 0, &zErrMsg); |
| if( rc || zErrMsg ){ |
| cmdlineError("\"%s\" does not appear to be a valid SQLite database", zDb2); |
| } |
| |
| if( neverUseTransaction ) useTransaction = 0; |
| if( useTransaction ) fprintf(out, "BEGIN TRANSACTION;\n"); |
| if( xDiff==rbudiff_one_table ){ |
| fprintf(out, "CREATE TABLE IF NOT EXISTS rbu_count" |
| "(tbl TEXT PRIMARY KEY COLLATE NOCASE, cnt INTEGER) " |
| "WITHOUT ROWID;\n" |
| ); |
| } |
| if( zTab ){ |
| xDiff(zTab, out); |
| }else{ |
| /* Handle tables one by one */ |
| pStmt = db_prepare("%s", all_tables_sql() ); |
| while( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| xDiff((const char*)sqlite3_column_text(pStmt,0), out); |
| } |
| sqlite3_finalize(pStmt); |
| } |
| if( useTransaction ) printf("COMMIT;\n"); |
| |
| /* TBD: Handle trigger differences */ |
| /* TBD: Handle view differences */ |
| sqlite3_close(g.db); |
| return 0; |
| } |