| /* |
| ** 2001 September 15 |
| ** |
| ** The author disclaims copyright to this source code. In place of |
| ** a legal notice, here is a blessing: |
| ** |
| ** May you do good and not evil. |
| ** May you find forgiveness for yourself and forgive others. |
| ** May you share freely, never taking more than you give. |
| ** |
| ************************************************************************* |
| ** This file contains code for implementations of the r-tree and r*-tree |
| ** algorithms packaged as an SQLite virtual table module. |
| */ |
| |
| /* |
| ** Database Format of R-Tree Tables |
| ** -------------------------------- |
| ** |
| ** The data structure for a single virtual r-tree table is stored in three |
| ** native SQLite tables declared as follows. In each case, the '%' character |
| ** in the table name is replaced with the user-supplied name of the r-tree |
| ** table. |
| ** |
| ** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB) |
| ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) |
| ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER, ...) |
| ** |
| ** The data for each node of the r-tree structure is stored in the %_node |
| ** table. For each node that is not the root node of the r-tree, there is |
| ** an entry in the %_parent table associating the node with its parent. |
| ** And for each row of data in the table, there is an entry in the %_rowid |
| ** table that maps from the entries rowid to the id of the node that it |
| ** is stored on. If the r-tree contains auxiliary columns, those are stored |
| ** on the end of the %_rowid table. |
| ** |
| ** The root node of an r-tree always exists, even if the r-tree table is |
| ** empty. The nodeno of the root node is always 1. All other nodes in the |
| ** table must be the same size as the root node. The content of each node |
| ** is formatted as follows: |
| ** |
| ** 1. If the node is the root node (node 1), then the first 2 bytes |
| ** of the node contain the tree depth as a big-endian integer. |
| ** For non-root nodes, the first 2 bytes are left unused. |
| ** |
| ** 2. The next 2 bytes contain the number of entries currently |
| ** stored in the node. |
| ** |
| ** 3. The remainder of the node contains the node entries. Each entry |
| ** consists of a single 8-byte integer followed by an even number |
| ** of 4-byte coordinates. For leaf nodes the integer is the rowid |
| ** of a record. For internal nodes it is the node number of a |
| ** child page. |
| */ |
| |
| #if !defined(SQLITE_CORE) \ |
| || (defined(SQLITE_ENABLE_RTREE) && !defined(SQLITE_OMIT_VIRTUALTABLE)) |
| |
| #ifndef SQLITE_CORE |
| #include "sqlite3ext.h" |
| SQLITE_EXTENSION_INIT1 |
| #else |
| #include "sqlite3.h" |
| #endif |
| int sqlite3GetToken(const unsigned char*,int*); /* In the SQLite core */ |
| |
| /* |
| ** If building separately, we will need some setup that is normally |
| ** found in sqliteInt.h |
| */ |
| #if !defined(SQLITE_AMALGAMATION) |
| #include "sqlite3rtree.h" |
| typedef sqlite3_int64 i64; |
| typedef sqlite3_uint64 u64; |
| typedef unsigned char u8; |
| typedef unsigned short u16; |
| typedef unsigned int u32; |
| #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) |
| # define NDEBUG 1 |
| #endif |
| #if defined(NDEBUG) && defined(SQLITE_DEBUG) |
| # undef NDEBUG |
| #endif |
| #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_MUTATION_TEST) |
| # define SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS 1 |
| #endif |
| #if defined(SQLITE_OMIT_AUXILIARY_SAFETY_CHECKS) |
| # define ALWAYS(X) (1) |
| # define NEVER(X) (0) |
| #elif !defined(NDEBUG) |
| # define ALWAYS(X) ((X)?1:(assert(0),0)) |
| # define NEVER(X) ((X)?(assert(0),1):0) |
| #else |
| # define ALWAYS(X) (X) |
| # define NEVER(X) (X) |
| #endif |
| #endif /* !defined(SQLITE_AMALGAMATION) */ |
| |
| /* Macro to check for 4-byte alignment. Only used inside of assert() */ |
| #ifdef SQLITE_DEBUG |
| # define FOUR_BYTE_ALIGNED(X) ((((char*)(X) - (char*)0) & 3)==0) |
| #endif |
| |
| #include <string.h> |
| #include <stdio.h> |
| #include <assert.h> |
| #include <stdlib.h> |
| |
| /* The following macro is used to suppress compiler warnings. |
| */ |
| #ifndef UNUSED_PARAMETER |
| # define UNUSED_PARAMETER(x) (void)(x) |
| #endif |
| |
| typedef struct Rtree Rtree; |
| typedef struct RtreeCursor RtreeCursor; |
| typedef struct RtreeNode RtreeNode; |
| typedef struct RtreeCell RtreeCell; |
| typedef struct RtreeConstraint RtreeConstraint; |
| typedef struct RtreeMatchArg RtreeMatchArg; |
| typedef struct RtreeGeomCallback RtreeGeomCallback; |
| typedef union RtreeCoord RtreeCoord; |
| typedef struct RtreeSearchPoint RtreeSearchPoint; |
| |
| /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ |
| #define RTREE_MAX_DIMENSIONS 5 |
| |
| /* Maximum number of auxiliary columns */ |
| #define RTREE_MAX_AUX_COLUMN 100 |
| |
| /* Size of hash table Rtree.aHash. This hash table is not expected to |
| ** ever contain very many entries, so a fixed number of buckets is |
| ** used. |
| */ |
| #define HASHSIZE 97 |
| |
| /* The xBestIndex method of this virtual table requires an estimate of |
| ** the number of rows in the virtual table to calculate the costs of |
| ** various strategies. If possible, this estimate is loaded from the |
| ** sqlite_stat1 table (with RTREE_MIN_ROWEST as a hard-coded minimum). |
| ** Otherwise, if no sqlite_stat1 entry is available, use |
| ** RTREE_DEFAULT_ROWEST. |
| */ |
| #define RTREE_DEFAULT_ROWEST 1048576 |
| #define RTREE_MIN_ROWEST 100 |
| |
| /* |
| ** An rtree virtual-table object. |
| */ |
| struct Rtree { |
| sqlite3_vtab base; /* Base class. Must be first */ |
| sqlite3 *db; /* Host database connection */ |
| int iNodeSize; /* Size in bytes of each node in the node table */ |
| u8 nDim; /* Number of dimensions */ |
| u8 nDim2; /* Twice the number of dimensions */ |
| u8 eCoordType; /* RTREE_COORD_REAL32 or RTREE_COORD_INT32 */ |
| u8 nBytesPerCell; /* Bytes consumed per cell */ |
| u8 inWrTrans; /* True if inside write transaction */ |
| u8 nAux; /* # of auxiliary columns in %_rowid */ |
| #ifdef SQLITE_ENABLE_GEOPOLY |
| u8 nAuxNotNull; /* Number of initial not-null aux columns */ |
| #endif |
| #ifdef SQLITE_DEBUG |
| u8 bCorrupt; /* Shadow table corruption detected */ |
| #endif |
| int iDepth; /* Current depth of the r-tree structure */ |
| char *zDb; /* Name of database containing r-tree table */ |
| char *zName; /* Name of r-tree table */ |
| char *zNodeName; /* Name of the %_node table */ |
| u32 nBusy; /* Current number of users of this structure */ |
| i64 nRowEst; /* Estimated number of rows in this table */ |
| u32 nCursor; /* Number of open cursors */ |
| u32 nNodeRef; /* Number RtreeNodes with positive nRef */ |
| char *zReadAuxSql; /* SQL for statement to read aux data */ |
| |
| /* List of nodes removed during a CondenseTree operation. List is |
| ** linked together via the pointer normally used for hash chains - |
| ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree |
| ** headed by the node (leaf nodes have RtreeNode.iNode==0). |
| */ |
| RtreeNode *pDeleted; |
| |
| /* Blob I/O on xxx_node */ |
| sqlite3_blob *pNodeBlob; |
| |
| /* Statements to read/write/delete a record from xxx_node */ |
| sqlite3_stmt *pWriteNode; |
| sqlite3_stmt *pDeleteNode; |
| |
| /* Statements to read/write/delete a record from xxx_rowid */ |
| sqlite3_stmt *pReadRowid; |
| sqlite3_stmt *pWriteRowid; |
| sqlite3_stmt *pDeleteRowid; |
| |
| /* Statements to read/write/delete a record from xxx_parent */ |
| sqlite3_stmt *pReadParent; |
| sqlite3_stmt *pWriteParent; |
| sqlite3_stmt *pDeleteParent; |
| |
| /* Statement for writing to the "aux:" fields, if there are any */ |
| sqlite3_stmt *pWriteAux; |
| |
| RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ |
| }; |
| |
| /* Possible values for Rtree.eCoordType: */ |
| #define RTREE_COORD_REAL32 0 |
| #define RTREE_COORD_INT32 1 |
| |
| /* |
| ** If SQLITE_RTREE_INT_ONLY is defined, then this virtual table will |
| ** only deal with integer coordinates. No floating point operations |
| ** will be done. |
| */ |
| #ifdef SQLITE_RTREE_INT_ONLY |
| typedef sqlite3_int64 RtreeDValue; /* High accuracy coordinate */ |
| typedef int RtreeValue; /* Low accuracy coordinate */ |
| # define RTREE_ZERO 0 |
| #else |
| typedef double RtreeDValue; /* High accuracy coordinate */ |
| typedef float RtreeValue; /* Low accuracy coordinate */ |
| # define RTREE_ZERO 0.0 |
| #endif |
| |
| /* |
| ** Set the Rtree.bCorrupt flag |
| */ |
| #ifdef SQLITE_DEBUG |
| # define RTREE_IS_CORRUPT(X) ((X)->bCorrupt = 1) |
| #else |
| # define RTREE_IS_CORRUPT(X) |
| #endif |
| |
| /* |
| ** When doing a search of an r-tree, instances of the following structure |
| ** record intermediate results from the tree walk. |
| ** |
| ** The id is always a node-id. For iLevel>=1 the id is the node-id of |
| ** the node that the RtreeSearchPoint represents. When iLevel==0, however, |
| ** the id is of the parent node and the cell that RtreeSearchPoint |
| ** represents is the iCell-th entry in the parent node. |
| */ |
| struct RtreeSearchPoint { |
| RtreeDValue rScore; /* The score for this node. Smallest goes first. */ |
| sqlite3_int64 id; /* Node ID */ |
| u8 iLevel; /* 0=entries. 1=leaf node. 2+ for higher */ |
| u8 eWithin; /* PARTLY_WITHIN or FULLY_WITHIN */ |
| u8 iCell; /* Cell index within the node */ |
| }; |
| |
| /* |
| ** The minimum number of cells allowed for a node is a third of the |
| ** maximum. In Gutman's notation: |
| ** |
| ** m = M/3 |
| ** |
| ** If an R*-tree "Reinsert" operation is required, the same number of |
| ** cells are removed from the overfull node and reinserted into the tree. |
| */ |
| #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) |
| #define RTREE_REINSERT(p) RTREE_MINCELLS(p) |
| #define RTREE_MAXCELLS 51 |
| |
| /* |
| ** The smallest possible node-size is (512-64)==448 bytes. And the largest |
| ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates). |
| ** Therefore all non-root nodes must contain at least 3 entries. Since |
| ** 3^40 is greater than 2^64, an r-tree structure always has a depth of |
| ** 40 or less. |
| */ |
| #define RTREE_MAX_DEPTH 40 |
| |
| |
| /* |
| ** Number of entries in the cursor RtreeNode cache. The first entry is |
| ** used to cache the RtreeNode for RtreeCursor.sPoint. The remaining |
| ** entries cache the RtreeNode for the first elements of the priority queue. |
| */ |
| #define RTREE_CACHE_SZ 5 |
| |
| /* |
| ** An rtree cursor object. |
| */ |
| struct RtreeCursor { |
| sqlite3_vtab_cursor base; /* Base class. Must be first */ |
| u8 atEOF; /* True if at end of search */ |
| u8 bPoint; /* True if sPoint is valid */ |
| u8 bAuxValid; /* True if pReadAux is valid */ |
| int iStrategy; /* Copy of idxNum search parameter */ |
| int nConstraint; /* Number of entries in aConstraint */ |
| RtreeConstraint *aConstraint; /* Search constraints. */ |
| int nPointAlloc; /* Number of slots allocated for aPoint[] */ |
| int nPoint; /* Number of slots used in aPoint[] */ |
| int mxLevel; /* iLevel value for root of the tree */ |
| RtreeSearchPoint *aPoint; /* Priority queue for search points */ |
| sqlite3_stmt *pReadAux; /* Statement to read aux-data */ |
| RtreeSearchPoint sPoint; /* Cached next search point */ |
| RtreeNode *aNode[RTREE_CACHE_SZ]; /* Rtree node cache */ |
| u32 anQueue[RTREE_MAX_DEPTH+1]; /* Number of queued entries by iLevel */ |
| }; |
| |
| /* Return the Rtree of a RtreeCursor */ |
| #define RTREE_OF_CURSOR(X) ((Rtree*)((X)->base.pVtab)) |
| |
| /* |
| ** A coordinate can be either a floating point number or a integer. All |
| ** coordinates within a single R-Tree are always of the same time. |
| */ |
| union RtreeCoord { |
| RtreeValue f; /* Floating point value */ |
| int i; /* Integer value */ |
| u32 u; /* Unsigned for byte-order conversions */ |
| }; |
| |
| /* |
| ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord |
| ** formatted as a RtreeDValue (double or int64). This macro assumes that local |
| ** variable pRtree points to the Rtree structure associated with the |
| ** RtreeCoord. |
| */ |
| #ifdef SQLITE_RTREE_INT_ONLY |
| # define DCOORD(coord) ((RtreeDValue)coord.i) |
| #else |
| # define DCOORD(coord) ( \ |
| (pRtree->eCoordType==RTREE_COORD_REAL32) ? \ |
| ((double)coord.f) : \ |
| ((double)coord.i) \ |
| ) |
| #endif |
| |
| /* |
| ** A search constraint. |
| */ |
| struct RtreeConstraint { |
| int iCoord; /* Index of constrained coordinate */ |
| int op; /* Constraining operation */ |
| union { |
| RtreeDValue rValue; /* Constraint value. */ |
| int (*xGeom)(sqlite3_rtree_geometry*,int,RtreeDValue*,int*); |
| int (*xQueryFunc)(sqlite3_rtree_query_info*); |
| } u; |
| sqlite3_rtree_query_info *pInfo; /* xGeom and xQueryFunc argument */ |
| }; |
| |
| /* Possible values for RtreeConstraint.op */ |
| #define RTREE_EQ 0x41 /* A */ |
| #define RTREE_LE 0x42 /* B */ |
| #define RTREE_LT 0x43 /* C */ |
| #define RTREE_GE 0x44 /* D */ |
| #define RTREE_GT 0x45 /* E */ |
| #define RTREE_MATCH 0x46 /* F: Old-style sqlite3_rtree_geometry_callback() */ |
| #define RTREE_QUERY 0x47 /* G: New-style sqlite3_rtree_query_callback() */ |
| |
| /* Special operators available only on cursors. Needs to be consecutive |
| ** with the normal values above, but must be less than RTREE_MATCH. These |
| ** are used in the cursor for contraints such as x=NULL (RTREE_FALSE) or |
| ** x<'xyz' (RTREE_TRUE) */ |
| #define RTREE_TRUE 0x3f /* ? */ |
| #define RTREE_FALSE 0x40 /* @ */ |
| |
| /* |
| ** An rtree structure node. |
| */ |
| struct RtreeNode { |
| RtreeNode *pParent; /* Parent node */ |
| i64 iNode; /* The node number */ |
| int nRef; /* Number of references to this node */ |
| int isDirty; /* True if the node needs to be written to disk */ |
| u8 *zData; /* Content of the node, as should be on disk */ |
| RtreeNode *pNext; /* Next node in this hash collision chain */ |
| }; |
| |
| /* Return the number of cells in a node */ |
| #define NCELL(pNode) readInt16(&(pNode)->zData[2]) |
| |
| /* |
| ** A single cell from a node, deserialized |
| */ |
| struct RtreeCell { |
| i64 iRowid; /* Node or entry ID */ |
| RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; /* Bounding box coordinates */ |
| }; |
| |
| |
| /* |
| ** This object becomes the sqlite3_user_data() for the SQL functions |
| ** that are created by sqlite3_rtree_geometry_callback() and |
| ** sqlite3_rtree_query_callback() and which appear on the right of MATCH |
| ** operators in order to constrain a search. |
| ** |
| ** xGeom and xQueryFunc are the callback functions. Exactly one of |
| ** xGeom and xQueryFunc fields is non-NULL, depending on whether the |
| ** SQL function was created using sqlite3_rtree_geometry_callback() or |
| ** sqlite3_rtree_query_callback(). |
| ** |
| ** This object is deleted automatically by the destructor mechanism in |
| ** sqlite3_create_function_v2(). |
| */ |
| struct RtreeGeomCallback { |
| int (*xGeom)(sqlite3_rtree_geometry*, int, RtreeDValue*, int*); |
| int (*xQueryFunc)(sqlite3_rtree_query_info*); |
| void (*xDestructor)(void*); |
| void *pContext; |
| }; |
| |
| /* |
| ** An instance of this structure (in the form of a BLOB) is returned by |
| ** the SQL functions that sqlite3_rtree_geometry_callback() and |
| ** sqlite3_rtree_query_callback() create, and is read as the right-hand |
| ** operand to the MATCH operator of an R-Tree. |
| */ |
| struct RtreeMatchArg { |
| u32 iSize; /* Size of this object */ |
| RtreeGeomCallback cb; /* Info about the callback functions */ |
| int nParam; /* Number of parameters to the SQL function */ |
| sqlite3_value **apSqlParam; /* Original SQL parameter values */ |
| RtreeDValue aParam[1]; /* Values for parameters to the SQL function */ |
| }; |
| |
| #ifndef MAX |
| # define MAX(x,y) ((x) < (y) ? (y) : (x)) |
| #endif |
| #ifndef MIN |
| # define MIN(x,y) ((x) > (y) ? (y) : (x)) |
| #endif |
| |
| /* What version of GCC is being used. 0 means GCC is not being used . |
| ** Note that the GCC_VERSION macro will also be set correctly when using |
| ** clang, since clang works hard to be gcc compatible. So the gcc |
| ** optimizations will also work when compiling with clang. |
| */ |
| #ifndef GCC_VERSION |
| #if defined(__GNUC__) && !defined(SQLITE_DISABLE_INTRINSIC) |
| # define GCC_VERSION (__GNUC__*1000000+__GNUC_MINOR__*1000+__GNUC_PATCHLEVEL__) |
| #else |
| # define GCC_VERSION 0 |
| #endif |
| #endif |
| |
| /* The testcase() macro should already be defined in the amalgamation. If |
| ** it is not, make it a no-op. |
| */ |
| #ifndef SQLITE_AMALGAMATION |
| # if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG) |
| unsigned int sqlite3RtreeTestcase = 0; |
| # define testcase(X) if( X ){ sqlite3RtreeTestcase += __LINE__; } |
| # else |
| # define testcase(X) |
| # endif |
| #endif |
| |
| /* |
| ** Make sure that the compiler intrinsics we desire are enabled when |
| ** compiling with an appropriate version of MSVC unless prevented by |
| ** the SQLITE_DISABLE_INTRINSIC define. |
| */ |
| #if !defined(SQLITE_DISABLE_INTRINSIC) |
| # if defined(_MSC_VER) && _MSC_VER>=1400 |
| # if !defined(_WIN32_WCE) |
| # include <intrin.h> |
| # pragma intrinsic(_byteswap_ulong) |
| # pragma intrinsic(_byteswap_uint64) |
| # else |
| # include <cmnintrin.h> |
| # endif |
| # endif |
| #endif |
| |
| /* |
| ** Macros to determine whether the machine is big or little endian, |
| ** and whether or not that determination is run-time or compile-time. |
| ** |
| ** For best performance, an attempt is made to guess at the byte-order |
| ** using C-preprocessor macros. If that is unsuccessful, or if |
| ** -DSQLITE_RUNTIME_BYTEORDER=1 is set, then byte-order is determined |
| ** at run-time. |
| */ |
| #ifndef SQLITE_BYTEORDER /* Replicate changes at tag-20230904a */ |
| # if defined(__BYTE_ORDER__) && __BYTE_ORDER__==__ORDER_BIG_ENDIAN__ |
| # define SQLITE_BYTEORDER 4321 |
| # elif defined(__BYTE_ORDER__) && __BYTE_ORDER__==__ORDER_LITTLE_ENDIAN__ |
| # define SQLITE_BYTEORDER 1234 |
| # elif defined(__BIG_ENDIAN__) && __BIG_ENDIAN__==1 |
| # define SQLITE_BYTEORDER 4321 |
| # elif defined(i386) || defined(__i386__) || defined(_M_IX86) || \ |
| defined(__x86_64) || defined(__x86_64__) || defined(_M_X64) || \ |
| defined(_M_AMD64) || defined(_M_ARM) || defined(__x86) || \ |
| defined(__ARMEL__) || defined(__AARCH64EL__) || defined(_M_ARM64) |
| # define SQLITE_BYTEORDER 1234 |
| # elif defined(sparc) || defined(__ARMEB__) || defined(__AARCH64EB__) |
| # define SQLITE_BYTEORDER 4321 |
| # else |
| # define SQLITE_BYTEORDER 0 |
| # endif |
| #endif |
| |
| |
| /* What version of MSVC is being used. 0 means MSVC is not being used */ |
| #ifndef MSVC_VERSION |
| #if defined(_MSC_VER) && !defined(SQLITE_DISABLE_INTRINSIC) |
| # define MSVC_VERSION _MSC_VER |
| #else |
| # define MSVC_VERSION 0 |
| #endif |
| #endif |
| |
| /* |
| ** Functions to deserialize a 16 bit integer, 32 bit real number and |
| ** 64 bit integer. The deserialized value is returned. |
| */ |
| static int readInt16(u8 *p){ |
| return (p[0]<<8) + p[1]; |
| } |
| static void readCoord(u8 *p, RtreeCoord *pCoord){ |
| assert( FOUR_BYTE_ALIGNED(p) ); |
| #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 |
| pCoord->u = _byteswap_ulong(*(u32*)p); |
| #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 |
| pCoord->u = __builtin_bswap32(*(u32*)p); |
| #elif SQLITE_BYTEORDER==4321 |
| pCoord->u = *(u32*)p; |
| #else |
| pCoord->u = ( |
| (((u32)p[0]) << 24) + |
| (((u32)p[1]) << 16) + |
| (((u32)p[2]) << 8) + |
| (((u32)p[3]) << 0) |
| ); |
| #endif |
| } |
| static i64 readInt64(u8 *p){ |
| #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 |
| u64 x; |
| memcpy(&x, p, 8); |
| return (i64)_byteswap_uint64(x); |
| #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 |
| u64 x; |
| memcpy(&x, p, 8); |
| return (i64)__builtin_bswap64(x); |
| #elif SQLITE_BYTEORDER==4321 |
| i64 x; |
| memcpy(&x, p, 8); |
| return x; |
| #else |
| return (i64)( |
| (((u64)p[0]) << 56) + |
| (((u64)p[1]) << 48) + |
| (((u64)p[2]) << 40) + |
| (((u64)p[3]) << 32) + |
| (((u64)p[4]) << 24) + |
| (((u64)p[5]) << 16) + |
| (((u64)p[6]) << 8) + |
| (((u64)p[7]) << 0) |
| ); |
| #endif |
| } |
| |
| /* |
| ** Functions to serialize a 16 bit integer, 32 bit real number and |
| ** 64 bit integer. The value returned is the number of bytes written |
| ** to the argument buffer (always 2, 4 and 8 respectively). |
| */ |
| static void writeInt16(u8 *p, int i){ |
| p[0] = (i>> 8)&0xFF; |
| p[1] = (i>> 0)&0xFF; |
| } |
| static int writeCoord(u8 *p, RtreeCoord *pCoord){ |
| u32 i; |
| assert( FOUR_BYTE_ALIGNED(p) ); |
| assert( sizeof(RtreeCoord)==4 ); |
| assert( sizeof(u32)==4 ); |
| #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 |
| i = __builtin_bswap32(pCoord->u); |
| memcpy(p, &i, 4); |
| #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 |
| i = _byteswap_ulong(pCoord->u); |
| memcpy(p, &i, 4); |
| #elif SQLITE_BYTEORDER==4321 |
| i = pCoord->u; |
| memcpy(p, &i, 4); |
| #else |
| i = pCoord->u; |
| p[0] = (i>>24)&0xFF; |
| p[1] = (i>>16)&0xFF; |
| p[2] = (i>> 8)&0xFF; |
| p[3] = (i>> 0)&0xFF; |
| #endif |
| return 4; |
| } |
| static int writeInt64(u8 *p, i64 i){ |
| #if SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 |
| i = (i64)__builtin_bswap64((u64)i); |
| memcpy(p, &i, 8); |
| #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 |
| i = (i64)_byteswap_uint64((u64)i); |
| memcpy(p, &i, 8); |
| #elif SQLITE_BYTEORDER==4321 |
| memcpy(p, &i, 8); |
| #else |
| p[0] = (i>>56)&0xFF; |
| p[1] = (i>>48)&0xFF; |
| p[2] = (i>>40)&0xFF; |
| p[3] = (i>>32)&0xFF; |
| p[4] = (i>>24)&0xFF; |
| p[5] = (i>>16)&0xFF; |
| p[6] = (i>> 8)&0xFF; |
| p[7] = (i>> 0)&0xFF; |
| #endif |
| return 8; |
| } |
| |
| /* |
| ** Increment the reference count of node p. |
| */ |
| static void nodeReference(RtreeNode *p){ |
| if( p ){ |
| assert( p->nRef>0 ); |
| p->nRef++; |
| } |
| } |
| |
| /* |
| ** Clear the content of node p (set all bytes to 0x00). |
| */ |
| static void nodeZero(Rtree *pRtree, RtreeNode *p){ |
| memset(&p->zData[2], 0, pRtree->iNodeSize-2); |
| p->isDirty = 1; |
| } |
| |
| /* |
| ** Given a node number iNode, return the corresponding key to use |
| ** in the Rtree.aHash table. |
| */ |
| static unsigned int nodeHash(i64 iNode){ |
| return ((unsigned)iNode) % HASHSIZE; |
| } |
| |
| /* |
| ** Search the node hash table for node iNode. If found, return a pointer |
| ** to it. Otherwise, return 0. |
| */ |
| static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ |
| RtreeNode *p; |
| for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); |
| return p; |
| } |
| |
| /* |
| ** Add node pNode to the node hash table. |
| */ |
| static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){ |
| int iHash; |
| assert( pNode->pNext==0 ); |
| iHash = nodeHash(pNode->iNode); |
| pNode->pNext = pRtree->aHash[iHash]; |
| pRtree->aHash[iHash] = pNode; |
| } |
| |
| /* |
| ** Remove node pNode from the node hash table. |
| */ |
| static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){ |
| RtreeNode **pp; |
| if( pNode->iNode!=0 ){ |
| pp = &pRtree->aHash[nodeHash(pNode->iNode)]; |
| for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); } |
| *pp = pNode->pNext; |
| pNode->pNext = 0; |
| } |
| } |
| |
| /* |
| ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0), |
| ** indicating that node has not yet been assigned a node number. It is |
| ** assigned a node number when nodeWrite() is called to write the |
| ** node contents out to the database. |
| */ |
| static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){ |
| RtreeNode *pNode; |
| pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode) + pRtree->iNodeSize); |
| if( pNode ){ |
| memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize); |
| pNode->zData = (u8 *)&pNode[1]; |
| pNode->nRef = 1; |
| pRtree->nNodeRef++; |
| pNode->pParent = pParent; |
| pNode->isDirty = 1; |
| nodeReference(pParent); |
| } |
| return pNode; |
| } |
| |
| /* |
| ** Clear the Rtree.pNodeBlob object |
| */ |
| static void nodeBlobReset(Rtree *pRtree){ |
| sqlite3_blob *pBlob = pRtree->pNodeBlob; |
| pRtree->pNodeBlob = 0; |
| sqlite3_blob_close(pBlob); |
| } |
| |
| /* |
| ** Obtain a reference to an r-tree node. |
| */ |
| static int nodeAcquire( |
| Rtree *pRtree, /* R-tree structure */ |
| i64 iNode, /* Node number to load */ |
| RtreeNode *pParent, /* Either the parent node or NULL */ |
| RtreeNode **ppNode /* OUT: Acquired node */ |
| ){ |
| int rc = SQLITE_OK; |
| RtreeNode *pNode = 0; |
| |
| /* Check if the requested node is already in the hash table. If so, |
| ** increase its reference count and return it. |
| */ |
| if( (pNode = nodeHashLookup(pRtree, iNode))!=0 ){ |
| if( pParent && ALWAYS(pParent!=pNode->pParent) ){ |
| RTREE_IS_CORRUPT(pRtree); |
| return SQLITE_CORRUPT_VTAB; |
| } |
| pNode->nRef++; |
| *ppNode = pNode; |
| return SQLITE_OK; |
| } |
| |
| if( pRtree->pNodeBlob ){ |
| sqlite3_blob *pBlob = pRtree->pNodeBlob; |
| pRtree->pNodeBlob = 0; |
| rc = sqlite3_blob_reopen(pBlob, iNode); |
| pRtree->pNodeBlob = pBlob; |
| if( rc ){ |
| nodeBlobReset(pRtree); |
| if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; |
| } |
| } |
| if( pRtree->pNodeBlob==0 ){ |
| rc = sqlite3_blob_open(pRtree->db, pRtree->zDb, pRtree->zNodeName, |
| "data", iNode, 0, |
| &pRtree->pNodeBlob); |
| } |
| if( rc ){ |
| *ppNode = 0; |
| /* If unable to open an sqlite3_blob on the desired row, that can only |
| ** be because the shadow tables hold erroneous data. */ |
| if( rc==SQLITE_ERROR ){ |
| rc = SQLITE_CORRUPT_VTAB; |
| RTREE_IS_CORRUPT(pRtree); |
| } |
| }else if( pRtree->iNodeSize==sqlite3_blob_bytes(pRtree->pNodeBlob) ){ |
| pNode = (RtreeNode *)sqlite3_malloc64(sizeof(RtreeNode)+pRtree->iNodeSize); |
| if( !pNode ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| pNode->pParent = pParent; |
| pNode->zData = (u8 *)&pNode[1]; |
| pNode->nRef = 1; |
| pRtree->nNodeRef++; |
| pNode->iNode = iNode; |
| pNode->isDirty = 0; |
| pNode->pNext = 0; |
| rc = sqlite3_blob_read(pRtree->pNodeBlob, pNode->zData, |
| pRtree->iNodeSize, 0); |
| } |
| } |
| |
| /* If the root node was just loaded, set pRtree->iDepth to the height |
| ** of the r-tree structure. A height of zero means all data is stored on |
| ** the root node. A height of one means the children of the root node |
| ** are the leaves, and so on. If the depth as specified on the root node |
| ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt. |
| */ |
| if( rc==SQLITE_OK && pNode && iNode==1 ){ |
| pRtree->iDepth = readInt16(pNode->zData); |
| if( pRtree->iDepth>RTREE_MAX_DEPTH ){ |
| rc = SQLITE_CORRUPT_VTAB; |
| RTREE_IS_CORRUPT(pRtree); |
| } |
| } |
| |
| /* If no error has occurred so far, check if the "number of entries" |
| ** field on the node is too large. If so, set the return code to |
| ** SQLITE_CORRUPT_VTAB. |
| */ |
| if( pNode && rc==SQLITE_OK ){ |
| if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){ |
| rc = SQLITE_CORRUPT_VTAB; |
| RTREE_IS_CORRUPT(pRtree); |
| } |
| } |
| |
| if( rc==SQLITE_OK ){ |
| if( pNode!=0 ){ |
| nodeReference(pParent); |
| nodeHashInsert(pRtree, pNode); |
| }else{ |
| rc = SQLITE_CORRUPT_VTAB; |
| RTREE_IS_CORRUPT(pRtree); |
| } |
| *ppNode = pNode; |
| }else{ |
| nodeBlobReset(pRtree); |
| if( pNode ){ |
| pRtree->nNodeRef--; |
| sqlite3_free(pNode); |
| } |
| *ppNode = 0; |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** Overwrite cell iCell of node pNode with the contents of pCell. |
| */ |
| static void nodeOverwriteCell( |
| Rtree *pRtree, /* The overall R-Tree */ |
| RtreeNode *pNode, /* The node into which the cell is to be written */ |
| RtreeCell *pCell, /* The cell to write */ |
| int iCell /* Index into pNode into which pCell is written */ |
| ){ |
| int ii; |
| u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; |
| p += writeInt64(p, pCell->iRowid); |
| for(ii=0; ii<pRtree->nDim2; ii++){ |
| p += writeCoord(p, &pCell->aCoord[ii]); |
| } |
| pNode->isDirty = 1; |
| } |
| |
| /* |
| ** Remove the cell with index iCell from node pNode. |
| */ |
| static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ |
| u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; |
| u8 *pSrc = &pDst[pRtree->nBytesPerCell]; |
| int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; |
| memmove(pDst, pSrc, nByte); |
| writeInt16(&pNode->zData[2], NCELL(pNode)-1); |
| pNode->isDirty = 1; |
| } |
| |
| /* |
| ** Insert the contents of cell pCell into node pNode. If the insert |
| ** is successful, return SQLITE_OK. |
| ** |
| ** If there is not enough free space in pNode, return SQLITE_FULL. |
| */ |
| static int nodeInsertCell( |
| Rtree *pRtree, /* The overall R-Tree */ |
| RtreeNode *pNode, /* Write new cell into this node */ |
| RtreeCell *pCell /* The cell to be inserted */ |
| ){ |
| int nCell; /* Current number of cells in pNode */ |
| int nMaxCell; /* Maximum number of cells for pNode */ |
| |
| nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; |
| nCell = NCELL(pNode); |
| |
| assert( nCell<=nMaxCell ); |
| if( nCell<nMaxCell ){ |
| nodeOverwriteCell(pRtree, pNode, pCell, nCell); |
| writeInt16(&pNode->zData[2], nCell+1); |
| pNode->isDirty = 1; |
| } |
| |
| return (nCell==nMaxCell); |
| } |
| |
| /* |
| ** If the node is dirty, write it out to the database. |
| */ |
| static int nodeWrite(Rtree *pRtree, RtreeNode *pNode){ |
| int rc = SQLITE_OK; |
| if( pNode->isDirty ){ |
| sqlite3_stmt *p = pRtree->pWriteNode; |
| if( pNode->iNode ){ |
| sqlite3_bind_int64(p, 1, pNode->iNode); |
| }else{ |
| sqlite3_bind_null(p, 1); |
| } |
| sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); |
| sqlite3_step(p); |
| pNode->isDirty = 0; |
| rc = sqlite3_reset(p); |
| sqlite3_bind_null(p, 2); |
| if( pNode->iNode==0 && rc==SQLITE_OK ){ |
| pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); |
| nodeHashInsert(pRtree, pNode); |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Release a reference to a node. If the node is dirty and the reference |
| ** count drops to zero, the node data is written to the database. |
| */ |
| static int nodeRelease(Rtree *pRtree, RtreeNode *pNode){ |
| int rc = SQLITE_OK; |
| if( pNode ){ |
| assert( pNode->nRef>0 ); |
| assert( pRtree->nNodeRef>0 ); |
| pNode->nRef--; |
| if( pNode->nRef==0 ){ |
| pRtree->nNodeRef--; |
| if( pNode->iNode==1 ){ |
| pRtree->iDepth = -1; |
| } |
| if( pNode->pParent ){ |
| rc = nodeRelease(pRtree, pNode->pParent); |
| } |
| if( rc==SQLITE_OK ){ |
| rc = nodeWrite(pRtree, pNode); |
| } |
| nodeHashDelete(pRtree, pNode); |
| sqlite3_free(pNode); |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Return the 64-bit integer value associated with cell iCell of |
| ** node pNode. If pNode is a leaf node, this is a rowid. If it is |
| ** an internal node, then the 64-bit integer is a child page number. |
| */ |
| static i64 nodeGetRowid( |
| Rtree *pRtree, /* The overall R-Tree */ |
| RtreeNode *pNode, /* The node from which to extract the ID */ |
| int iCell /* The cell index from which to extract the ID */ |
| ){ |
| assert( iCell<NCELL(pNode) ); |
| return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]); |
| } |
| |
| /* |
| ** Return coordinate iCoord from cell iCell in node pNode. |
| */ |
| static void nodeGetCoord( |
| Rtree *pRtree, /* The overall R-Tree */ |
| RtreeNode *pNode, /* The node from which to extract a coordinate */ |
| int iCell, /* The index of the cell within the node */ |
| int iCoord, /* Which coordinate to extract */ |
| RtreeCoord *pCoord /* OUT: Space to write result to */ |
| ){ |
| assert( iCell<NCELL(pNode) ); |
| readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord); |
| } |
| |
| /* |
| ** Deserialize cell iCell of node pNode. Populate the structure pointed |
| ** to by pCell with the results. |
| */ |
| static void nodeGetCell( |
| Rtree *pRtree, /* The overall R-Tree */ |
| RtreeNode *pNode, /* The node containing the cell to be read */ |
| int iCell, /* Index of the cell within the node */ |
| RtreeCell *pCell /* OUT: Write the cell contents here */ |
| ){ |
| u8 *pData; |
| RtreeCoord *pCoord; |
| int ii = 0; |
| pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); |
| pData = pNode->zData + (12 + pRtree->nBytesPerCell*iCell); |
| pCoord = pCell->aCoord; |
| do{ |
| readCoord(pData, &pCoord[ii]); |
| readCoord(pData+4, &pCoord[ii+1]); |
| pData += 8; |
| ii += 2; |
| }while( ii<pRtree->nDim2 ); |
| } |
| |
| |
| /* Forward declaration for the function that does the work of |
| ** the virtual table module xCreate() and xConnect() methods. |
| */ |
| static int rtreeInit( |
| sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int |
| ); |
| |
| /* |
| ** Rtree virtual table module xCreate method. |
| */ |
| static int rtreeCreate( |
| sqlite3 *db, |
| void *pAux, |
| int argc, const char *const*argv, |
| sqlite3_vtab **ppVtab, |
| char **pzErr |
| ){ |
| return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1); |
| } |
| |
| /* |
| ** Rtree virtual table module xConnect method. |
| */ |
| static int rtreeConnect( |
| sqlite3 *db, |
| void *pAux, |
| int argc, const char *const*argv, |
| sqlite3_vtab **ppVtab, |
| char **pzErr |
| ){ |
| return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0); |
| } |
| |
| /* |
| ** Increment the r-tree reference count. |
| */ |
| static void rtreeReference(Rtree *pRtree){ |
| pRtree->nBusy++; |
| } |
| |
| /* |
| ** Decrement the r-tree reference count. When the reference count reaches |
| ** zero the structure is deleted. |
| */ |
| static void rtreeRelease(Rtree *pRtree){ |
| pRtree->nBusy--; |
| if( pRtree->nBusy==0 ){ |
| pRtree->inWrTrans = 0; |
| assert( pRtree->nCursor==0 ); |
| nodeBlobReset(pRtree); |
| assert( pRtree->nNodeRef==0 || pRtree->bCorrupt ); |
| sqlite3_finalize(pRtree->pWriteNode); |
| sqlite3_finalize(pRtree->pDeleteNode); |
| sqlite3_finalize(pRtree->pReadRowid); |
| sqlite3_finalize(pRtree->pWriteRowid); |
| sqlite3_finalize(pRtree->pDeleteRowid); |
| sqlite3_finalize(pRtree->pReadParent); |
| sqlite3_finalize(pRtree->pWriteParent); |
| sqlite3_finalize(pRtree->pDeleteParent); |
| sqlite3_finalize(pRtree->pWriteAux); |
| sqlite3_free(pRtree->zReadAuxSql); |
| sqlite3_free(pRtree); |
| } |
| } |
| |
| /* |
| ** Rtree virtual table module xDisconnect method. |
| */ |
| static int rtreeDisconnect(sqlite3_vtab *pVtab){ |
| rtreeRelease((Rtree *)pVtab); |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Rtree virtual table module xDestroy method. |
| */ |
| static int rtreeDestroy(sqlite3_vtab *pVtab){ |
| Rtree *pRtree = (Rtree *)pVtab; |
| int rc; |
| char *zCreate = sqlite3_mprintf( |
| "DROP TABLE '%q'.'%q_node';" |
| "DROP TABLE '%q'.'%q_rowid';" |
| "DROP TABLE '%q'.'%q_parent';", |
| pRtree->zDb, pRtree->zName, |
| pRtree->zDb, pRtree->zName, |
| pRtree->zDb, pRtree->zName |
| ); |
| if( !zCreate ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| nodeBlobReset(pRtree); |
| rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0); |
| sqlite3_free(zCreate); |
| } |
| if( rc==SQLITE_OK ){ |
| rtreeRelease(pRtree); |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** Rtree virtual table module xOpen method. |
| */ |
| static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
| int rc = SQLITE_NOMEM; |
| Rtree *pRtree = (Rtree *)pVTab; |
| RtreeCursor *pCsr; |
| |
| pCsr = (RtreeCursor *)sqlite3_malloc64(sizeof(RtreeCursor)); |
| if( pCsr ){ |
| memset(pCsr, 0, sizeof(RtreeCursor)); |
| pCsr->base.pVtab = pVTab; |
| rc = SQLITE_OK; |
| pRtree->nCursor++; |
| } |
| *ppCursor = (sqlite3_vtab_cursor *)pCsr; |
| |
| return rc; |
| } |
| |
| |
| /* |
| ** Reset a cursor back to its initial state. |
| */ |
| static void resetCursor(RtreeCursor *pCsr){ |
| Rtree *pRtree = (Rtree *)(pCsr->base.pVtab); |
| int ii; |
| sqlite3_stmt *pStmt; |
| if( pCsr->aConstraint ){ |
| int i; /* Used to iterate through constraint array */ |
| for(i=0; i<pCsr->nConstraint; i++){ |
| sqlite3_rtree_query_info *pInfo = pCsr->aConstraint[i].pInfo; |
| if( pInfo ){ |
| if( pInfo->xDelUser ) pInfo->xDelUser(pInfo->pUser); |
| sqlite3_free(pInfo); |
| } |
| } |
| sqlite3_free(pCsr->aConstraint); |
| pCsr->aConstraint = 0; |
| } |
| for(ii=0; ii<RTREE_CACHE_SZ; ii++) nodeRelease(pRtree, pCsr->aNode[ii]); |
| sqlite3_free(pCsr->aPoint); |
| pStmt = pCsr->pReadAux; |
| memset(pCsr, 0, sizeof(RtreeCursor)); |
| pCsr->base.pVtab = (sqlite3_vtab*)pRtree; |
| pCsr->pReadAux = pStmt; |
| |
| } |
| |
| /* |
| ** Rtree virtual table module xClose method. |
| */ |
| static int rtreeClose(sqlite3_vtab_cursor *cur){ |
| Rtree *pRtree = (Rtree *)(cur->pVtab); |
| RtreeCursor *pCsr = (RtreeCursor *)cur; |
| assert( pRtree->nCursor>0 ); |
| resetCursor(pCsr); |
| sqlite3_finalize(pCsr->pReadAux); |
| sqlite3_free(pCsr); |
| pRtree->nCursor--; |
| if( pRtree->nCursor==0 && pRtree->inWrTrans==0 ){ |
| nodeBlobReset(pRtree); |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Rtree virtual table module xEof method. |
| ** |
| ** Return non-zero if the cursor does not currently point to a valid |
| ** record (i.e if the scan has finished), or zero otherwise. |
| */ |
| static int rtreeEof(sqlite3_vtab_cursor *cur){ |
| RtreeCursor *pCsr = (RtreeCursor *)cur; |
| return pCsr->atEOF; |
| } |
| |
| /* |
| ** Convert raw bits from the on-disk RTree record into a coordinate value. |
| ** The on-disk format is big-endian and needs to be converted for little- |
| ** endian platforms. The on-disk record stores integer coordinates if |
| ** eInt is true and it stores 32-bit floating point records if eInt is |
| ** false. a[] is the four bytes of the on-disk record to be decoded. |
| ** Store the results in "r". |
| ** |
| ** There are five versions of this macro. The last one is generic. The |
| ** other four are various architectures-specific optimizations. |
| */ |
| #if SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300 |
| #define RTREE_DECODE_COORD(eInt, a, r) { \ |
| RtreeCoord c; /* Coordinate decoded */ \ |
| c.u = _byteswap_ulong(*(u32*)a); \ |
| r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ |
| } |
| #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000 |
| #define RTREE_DECODE_COORD(eInt, a, r) { \ |
| RtreeCoord c; /* Coordinate decoded */ \ |
| c.u = __builtin_bswap32(*(u32*)a); \ |
| r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ |
| } |
| #elif SQLITE_BYTEORDER==1234 |
| #define RTREE_DECODE_COORD(eInt, a, r) { \ |
| RtreeCoord c; /* Coordinate decoded */ \ |
| memcpy(&c.u,a,4); \ |
| c.u = ((c.u>>24)&0xff)|((c.u>>8)&0xff00)| \ |
| ((c.u&0xff)<<24)|((c.u&0xff00)<<8); \ |
| r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ |
| } |
| #elif SQLITE_BYTEORDER==4321 |
| #define RTREE_DECODE_COORD(eInt, a, r) { \ |
| RtreeCoord c; /* Coordinate decoded */ \ |
| memcpy(&c.u,a,4); \ |
| r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ |
| } |
| #else |
| #define RTREE_DECODE_COORD(eInt, a, r) { \ |
| RtreeCoord c; /* Coordinate decoded */ \ |
| c.u = ((u32)a[0]<<24) + ((u32)a[1]<<16) \ |
| +((u32)a[2]<<8) + a[3]; \ |
| r = eInt ? (sqlite3_rtree_dbl)c.i : (sqlite3_rtree_dbl)c.f; \ |
| } |
| #endif |
| |
| /* |
| ** Check the RTree node or entry given by pCellData and p against the MATCH |
| ** constraint pConstraint. |
| */ |
| static int rtreeCallbackConstraint( |
| RtreeConstraint *pConstraint, /* The constraint to test */ |
| int eInt, /* True if RTree holding integer coordinates */ |
| u8 *pCellData, /* Raw cell content */ |
| RtreeSearchPoint *pSearch, /* Container of this cell */ |
| sqlite3_rtree_dbl *prScore, /* OUT: score for the cell */ |
| int *peWithin /* OUT: visibility of the cell */ |
| ){ |
| sqlite3_rtree_query_info *pInfo = pConstraint->pInfo; /* Callback info */ |
| int nCoord = pInfo->nCoord; /* No. of coordinates */ |
| int rc; /* Callback return code */ |
| RtreeCoord c; /* Translator union */ |
| sqlite3_rtree_dbl aCoord[RTREE_MAX_DIMENSIONS*2]; /* Decoded coordinates */ |
| |
| assert( pConstraint->op==RTREE_MATCH || pConstraint->op==RTREE_QUERY ); |
| assert( nCoord==2 || nCoord==4 || nCoord==6 || nCoord==8 || nCoord==10 ); |
| |
| if( pConstraint->op==RTREE_QUERY && pSearch->iLevel==1 ){ |
| pInfo->iRowid = readInt64(pCellData); |
| } |
| pCellData += 8; |
| #ifndef SQLITE_RTREE_INT_ONLY |
| if( eInt==0 ){ |
| switch( nCoord ){ |
| case 10: readCoord(pCellData+36, &c); aCoord[9] = c.f; |
| readCoord(pCellData+32, &c); aCoord[8] = c.f; |
| case 8: readCoord(pCellData+28, &c); aCoord[7] = c.f; |
| readCoord(pCellData+24, &c); aCoord[6] = c.f; |
| case 6: readCoord(pCellData+20, &c); aCoord[5] = c.f; |
| readCoord(pCellData+16, &c); aCoord[4] = c.f; |
| case 4: readCoord(pCellData+12, &c); aCoord[3] = c.f; |
| readCoord(pCellData+8, &c); aCoord[2] = c.f; |
| default: readCoord(pCellData+4, &c); aCoord[1] = c.f; |
| readCoord(pCellData, &c); aCoord[0] = c.f; |
| } |
| }else |
| #endif |
| { |
| switch( nCoord ){ |
| case 10: readCoord(pCellData+36, &c); aCoord[9] = c.i; |
| readCoord(pCellData+32, &c); aCoord[8] = c.i; |
| case 8: readCoord(pCellData+28, &c); aCoord[7] = c.i; |
| readCoord(pCellData+24, &c); aCoord[6] = c.i; |
| case 6: readCoord(pCellData+20, &c); aCoord[5] = c.i; |
| readCoord(pCellData+16, &c); aCoord[4] = c.i; |
| case 4: readCoord(pCellData+12, &c); aCoord[3] = c.i; |
| readCoord(pCellData+8, &c); aCoord[2] = c.i; |
| default: readCoord(pCellData+4, &c); aCoord[1] = c.i; |
| readCoord(pCellData, &c); aCoord[0] = c.i; |
| } |
| } |
| if( pConstraint->op==RTREE_MATCH ){ |
| int eWithin = 0; |
| rc = pConstraint->u.xGeom((sqlite3_rtree_geometry*)pInfo, |
| nCoord, aCoord, &eWithin); |
| if( eWithin==0 ) *peWithin = NOT_WITHIN; |
| *prScore = RTREE_ZERO; |
| }else{ |
| pInfo->aCoord = aCoord; |
| pInfo->iLevel = pSearch->iLevel - 1; |
| pInfo->rScore = pInfo->rParentScore = pSearch->rScore; |
| pInfo->eWithin = pInfo->eParentWithin = pSearch->eWithin; |
| rc = pConstraint->u.xQueryFunc(pInfo); |
| if( pInfo->eWithin<*peWithin ) *peWithin = pInfo->eWithin; |
| if( pInfo->rScore<*prScore || *prScore<RTREE_ZERO ){ |
| *prScore = pInfo->rScore; |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Check the internal RTree node given by pCellData against constraint p. |
| ** If this constraint cannot be satisfied by any child within the node, |
| ** set *peWithin to NOT_WITHIN. |
| */ |
| static void rtreeNonleafConstraint( |
| RtreeConstraint *p, /* The constraint to test */ |
| int eInt, /* True if RTree holds integer coordinates */ |
| u8 *pCellData, /* Raw cell content as appears on disk */ |
| int *peWithin /* Adjust downward, as appropriate */ |
| ){ |
| sqlite3_rtree_dbl val; /* Coordinate value convert to a double */ |
| |
| /* p->iCoord might point to either a lower or upper bound coordinate |
| ** in a coordinate pair. But make pCellData point to the lower bound. |
| */ |
| pCellData += 8 + 4*(p->iCoord&0xfe); |
| |
| assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE |
| || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE |
| || p->op==RTREE_FALSE ); |
| assert( FOUR_BYTE_ALIGNED(pCellData) ); |
| switch( p->op ){ |
| case RTREE_TRUE: return; /* Always satisfied */ |
| case RTREE_FALSE: break; /* Never satisfied */ |
| case RTREE_EQ: |
| RTREE_DECODE_COORD(eInt, pCellData, val); |
| /* val now holds the lower bound of the coordinate pair */ |
| if( p->u.rValue>=val ){ |
| pCellData += 4; |
| RTREE_DECODE_COORD(eInt, pCellData, val); |
| /* val now holds the upper bound of the coordinate pair */ |
| if( p->u.rValue<=val ) return; |
| } |
| break; |
| case RTREE_LE: |
| case RTREE_LT: |
| RTREE_DECODE_COORD(eInt, pCellData, val); |
| /* val now holds the lower bound of the coordinate pair */ |
| if( p->u.rValue>=val ) return; |
| break; |
| |
| default: |
| pCellData += 4; |
| RTREE_DECODE_COORD(eInt, pCellData, val); |
| /* val now holds the upper bound of the coordinate pair */ |
| if( p->u.rValue<=val ) return; |
| break; |
| } |
| *peWithin = NOT_WITHIN; |
| } |
| |
| /* |
| ** Check the leaf RTree cell given by pCellData against constraint p. |
| ** If this constraint is not satisfied, set *peWithin to NOT_WITHIN. |
| ** If the constraint is satisfied, leave *peWithin unchanged. |
| ** |
| ** The constraint is of the form: xN op $val |
| ** |
| ** The op is given by p->op. The xN is p->iCoord-th coordinate in |
| ** pCellData. $val is given by p->u.rValue. |
| */ |
| static void rtreeLeafConstraint( |
| RtreeConstraint *p, /* The constraint to test */ |
| int eInt, /* True if RTree holds integer coordinates */ |
| u8 *pCellData, /* Raw cell content as appears on disk */ |
| int *peWithin /* Adjust downward, as appropriate */ |
| ){ |
| RtreeDValue xN; /* Coordinate value converted to a double */ |
| |
| assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE |
| || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_TRUE |
| || p->op==RTREE_FALSE ); |
| pCellData += 8 + p->iCoord*4; |
| assert( FOUR_BYTE_ALIGNED(pCellData) ); |
| RTREE_DECODE_COORD(eInt, pCellData, xN); |
| switch( p->op ){ |
| case RTREE_TRUE: return; /* Always satisfied */ |
| case RTREE_FALSE: break; /* Never satisfied */ |
| case RTREE_LE: if( xN <= p->u.rValue ) return; break; |
| case RTREE_LT: if( xN < p->u.rValue ) return; break; |
| case RTREE_GE: if( xN >= p->u.rValue ) return; break; |
| case RTREE_GT: if( xN > p->u.rValue ) return; break; |
| default: if( xN == p->u.rValue ) return; break; |
| } |
| *peWithin = NOT_WITHIN; |
| } |
| |
| /* |
| ** One of the cells in node pNode is guaranteed to have a 64-bit |
| ** integer value equal to iRowid. Return the index of this cell. |
| */ |
| static int nodeRowidIndex( |
| Rtree *pRtree, |
| RtreeNode *pNode, |
| i64 iRowid, |
| int *piIndex |
| ){ |
| int ii; |
| int nCell = NCELL(pNode); |
| assert( nCell<200 ); |
| for(ii=0; ii<nCell; ii++){ |
| if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){ |
| *piIndex = ii; |
| return SQLITE_OK; |
| } |
| } |
| RTREE_IS_CORRUPT(pRtree); |
| return SQLITE_CORRUPT_VTAB; |
| } |
| |
| /* |
| ** Return the index of the cell containing a pointer to node pNode |
| ** in its parent. If pNode is the root node, return -1. |
| */ |
| static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){ |
| RtreeNode *pParent = pNode->pParent; |
| if( ALWAYS(pParent) ){ |
| return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex); |
| }else{ |
| *piIndex = -1; |
| return SQLITE_OK; |
| } |
| } |
| |
| /* |
| ** Compare two search points. Return negative, zero, or positive if the first |
| ** is less than, equal to, or greater than the second. |
| ** |
| ** The rScore is the primary key. Smaller rScore values come first. |
| ** If the rScore is a tie, then use iLevel as the tie breaker with smaller |
| ** iLevel values coming first. In this way, if rScore is the same for all |
| ** SearchPoints, then iLevel becomes the deciding factor and the result |
| ** is a depth-first search, which is the desired default behavior. |
| */ |
| static int rtreeSearchPointCompare( |
| const RtreeSearchPoint *pA, |
| const RtreeSearchPoint *pB |
| ){ |
| if( pA->rScore<pB->rScore ) return -1; |
| if( pA->rScore>pB->rScore ) return +1; |
| if( pA->iLevel<pB->iLevel ) return -1; |
| if( pA->iLevel>pB->iLevel ) return +1; |
| return 0; |
| } |
| |
| /* |
| ** Interchange two search points in a cursor. |
| */ |
| static void rtreeSearchPointSwap(RtreeCursor *p, int i, int j){ |
| RtreeSearchPoint t = p->aPoint[i]; |
| assert( i<j ); |
| p->aPoint[i] = p->aPoint[j]; |
| p->aPoint[j] = t; |
| i++; j++; |
| if( i<RTREE_CACHE_SZ ){ |
| if( j>=RTREE_CACHE_SZ ){ |
| nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); |
| p->aNode[i] = 0; |
| }else{ |
| RtreeNode *pTemp = p->aNode[i]; |
| p->aNode[i] = p->aNode[j]; |
| p->aNode[j] = pTemp; |
| } |
| } |
| } |
| |
| /* |
| ** Return the search point with the lowest current score. |
| */ |
| static RtreeSearchPoint *rtreeSearchPointFirst(RtreeCursor *pCur){ |
| return pCur->bPoint ? &pCur->sPoint : pCur->nPoint ? pCur->aPoint : 0; |
| } |
| |
| /* |
| ** Get the RtreeNode for the search point with the lowest score. |
| */ |
| static RtreeNode *rtreeNodeOfFirstSearchPoint(RtreeCursor *pCur, int *pRC){ |
| sqlite3_int64 id; |
| int ii = 1 - pCur->bPoint; |
| assert( ii==0 || ii==1 ); |
| assert( pCur->bPoint || pCur->nPoint ); |
| if( pCur->aNode[ii]==0 ){ |
| assert( pRC!=0 ); |
| id = ii ? pCur->aPoint[0].id : pCur->sPoint.id; |
| *pRC = nodeAcquire(RTREE_OF_CURSOR(pCur), id, 0, &pCur->aNode[ii]); |
| } |
| return pCur->aNode[ii]; |
| } |
| |
| /* |
| ** Push a new element onto the priority queue |
| */ |
| static RtreeSearchPoint *rtreeEnqueue( |
| RtreeCursor *pCur, /* The cursor */ |
| RtreeDValue rScore, /* Score for the new search point */ |
| u8 iLevel /* Level for the new search point */ |
| ){ |
| int i, j; |
| RtreeSearchPoint *pNew; |
| if( pCur->nPoint>=pCur->nPointAlloc ){ |
| int nNew = pCur->nPointAlloc*2 + 8; |
| pNew = sqlite3_realloc64(pCur->aPoint, nNew*sizeof(pCur->aPoint[0])); |
| if( pNew==0 ) return 0; |
| pCur->aPoint = pNew; |
| pCur->nPointAlloc = nNew; |
| } |
| i = pCur->nPoint++; |
| pNew = pCur->aPoint + i; |
| pNew->rScore = rScore; |
| pNew->iLevel = iLevel; |
| assert( iLevel<=RTREE_MAX_DEPTH ); |
| while( i>0 ){ |
| RtreeSearchPoint *pParent; |
| j = (i-1)/2; |
| pParent = pCur->aPoint + j; |
| if( rtreeSearchPointCompare(pNew, pParent)>=0 ) break; |
| rtreeSearchPointSwap(pCur, j, i); |
| i = j; |
| pNew = pParent; |
| } |
| return pNew; |
| } |
| |
| /* |
| ** Allocate a new RtreeSearchPoint and return a pointer to it. Return |
| ** NULL if malloc fails. |
| */ |
| static RtreeSearchPoint *rtreeSearchPointNew( |
| RtreeCursor *pCur, /* The cursor */ |
| RtreeDValue rScore, /* Score for the new search point */ |
| u8 iLevel /* Level for the new search point */ |
| ){ |
| RtreeSearchPoint *pNew, *pFirst; |
| pFirst = rtreeSearchPointFirst(pCur); |
| pCur->anQueue[iLevel]++; |
| if( pFirst==0 |
| || pFirst->rScore>rScore |
| || (pFirst->rScore==rScore && pFirst->iLevel>iLevel) |
| ){ |
| if( pCur->bPoint ){ |
| int ii; |
| pNew = rtreeEnqueue(pCur, rScore, iLevel); |
| if( pNew==0 ) return 0; |
| ii = (int)(pNew - pCur->aPoint) + 1; |
| assert( ii==1 ); |
| if( ALWAYS(ii<RTREE_CACHE_SZ) ){ |
| assert( pCur->aNode[ii]==0 ); |
| pCur->aNode[ii] = pCur->aNode[0]; |
| }else{ |
| nodeRelease(RTREE_OF_CURSOR(pCur), pCur->aNode[0]); |
| } |
| pCur->aNode[0] = 0; |
| *pNew = pCur->sPoint; |
| } |
| pCur->sPoint.rScore = rScore; |
| pCur->sPoint.iLevel = iLevel; |
| pCur->bPoint = 1; |
| return &pCur->sPoint; |
| }else{ |
| return rtreeEnqueue(pCur, rScore, iLevel); |
| } |
| } |
| |
| #if 0 |
| /* Tracing routines for the RtreeSearchPoint queue */ |
| static void tracePoint(RtreeSearchPoint *p, int idx, RtreeCursor *pCur){ |
| if( idx<0 ){ printf(" s"); }else{ printf("%2d", idx); } |
| printf(" %d.%05lld.%02d %g %d", |
| p->iLevel, p->id, p->iCell, p->rScore, p->eWithin |
| ); |
| idx++; |
| if( idx<RTREE_CACHE_SZ ){ |
| printf(" %p\n", pCur->aNode[idx]); |
| }else{ |
| printf("\n"); |
| } |
| } |
| static void traceQueue(RtreeCursor *pCur, const char *zPrefix){ |
| int ii; |
| printf("=== %9s ", zPrefix); |
| if( pCur->bPoint ){ |
| tracePoint(&pCur->sPoint, -1, pCur); |
| } |
| for(ii=0; ii<pCur->nPoint; ii++){ |
| if( ii>0 || pCur->bPoint ) printf(" "); |
| tracePoint(&pCur->aPoint[ii], ii, pCur); |
| } |
| } |
| # define RTREE_QUEUE_TRACE(A,B) traceQueue(A,B) |
| #else |
| # define RTREE_QUEUE_TRACE(A,B) /* no-op */ |
| #endif |
| |
| /* Remove the search point with the lowest current score. |
| */ |
| static void rtreeSearchPointPop(RtreeCursor *p){ |
| int i, j, k, n; |
| i = 1 - p->bPoint; |
| assert( i==0 || i==1 ); |
| if( p->aNode[i] ){ |
| nodeRelease(RTREE_OF_CURSOR(p), p->aNode[i]); |
| p->aNode[i] = 0; |
| } |
| if( p->bPoint ){ |
| p->anQueue[p->sPoint.iLevel]--; |
| p->bPoint = 0; |
| }else if( ALWAYS(p->nPoint) ){ |
| p->anQueue[p->aPoint[0].iLevel]--; |
| n = --p->nPoint; |
| p->aPoint[0] = p->aPoint[n]; |
| if( n<RTREE_CACHE_SZ-1 ){ |
| p->aNode[1] = p->aNode[n+1]; |
| p->aNode[n+1] = 0; |
| } |
| i = 0; |
| while( (j = i*2+1)<n ){ |
| k = j+1; |
| if( k<n && rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[j])<0 ){ |
| if( rtreeSearchPointCompare(&p->aPoint[k], &p->aPoint[i])<0 ){ |
| rtreeSearchPointSwap(p, i, k); |
| i = k; |
| }else{ |
| break; |
| } |
| }else{ |
| if( rtreeSearchPointCompare(&p->aPoint[j], &p->aPoint[i])<0 ){ |
| rtreeSearchPointSwap(p, i, j); |
| i = j; |
| }else{ |
| break; |
| } |
| } |
| } |
| } |
| } |
| |
| |
| /* |
| ** Continue the search on cursor pCur until the front of the queue |
| ** contains an entry suitable for returning as a result-set row, |
| ** or until the RtreeSearchPoint queue is empty, indicating that the |
| ** query has completed. |
| */ |
| static int rtreeStepToLeaf(RtreeCursor *pCur){ |
| RtreeSearchPoint *p; |
| Rtree *pRtree = RTREE_OF_CURSOR(pCur); |
| RtreeNode *pNode; |
| int eWithin; |
| int rc = SQLITE_OK; |
| int nCell; |
| int nConstraint = pCur->nConstraint; |
| int ii; |
| int eInt; |
| RtreeSearchPoint x; |
| |
| eInt = pRtree->eCoordType==RTREE_COORD_INT32; |
| while( (p = rtreeSearchPointFirst(pCur))!=0 && p->iLevel>0 ){ |
| u8 *pCellData; |
| pNode = rtreeNodeOfFirstSearchPoint(pCur, &rc); |
| if( rc ) return rc; |
| nCell = NCELL(pNode); |
| assert( nCell<200 ); |
| pCellData = pNode->zData + (4+pRtree->nBytesPerCell*p->iCell); |
| while( p->iCell<nCell ){ |
| sqlite3_rtree_dbl rScore = (sqlite3_rtree_dbl)-1; |
| eWithin = FULLY_WITHIN; |
| for(ii=0; ii<nConstraint; ii++){ |
| RtreeConstraint *pConstraint = pCur->aConstraint + ii; |
| if( pConstraint->op>=RTREE_MATCH ){ |
| rc = rtreeCallbackConstraint(pConstraint, eInt, pCellData, p, |
| &rScore, &eWithin); |
| if( rc ) return rc; |
| }else if( p->iLevel==1 ){ |
| rtreeLeafConstraint(pConstraint, eInt, pCellData, &eWithin); |
| }else{ |
| rtreeNonleafConstraint(pConstraint, eInt, pCellData, &eWithin); |
| } |
| if( eWithin==NOT_WITHIN ){ |
| p->iCell++; |
| pCellData += pRtree->nBytesPerCell; |
| break; |
| } |
| } |
| if( eWithin==NOT_WITHIN ) continue; |
| p->iCell++; |
| x.iLevel = p->iLevel - 1; |
| if( x.iLevel ){ |
| x.id = readInt64(pCellData); |
| for(ii=0; ii<pCur->nPoint; ii++){ |
| if( pCur->aPoint[ii].id==x.id ){ |
| RTREE_IS_CORRUPT(pRtree); |
| return SQLITE_CORRUPT_VTAB; |
| } |
| } |
| x.iCell = 0; |
| }else{ |
| x.id = p->id; |
| x.iCell = p->iCell - 1; |
| } |
| if( p->iCell>=nCell ){ |
| RTREE_QUEUE_TRACE(pCur, "POP-S:"); |
| rtreeSearchPointPop(pCur); |
| } |
| if( rScore<RTREE_ZERO ) rScore = RTREE_ZERO; |
| p = rtreeSearchPointNew(pCur, rScore, x.iLevel); |
| if( p==0 ) return SQLITE_NOMEM; |
| p->eWithin = (u8)eWithin; |
| p->id = x.id; |
| p->iCell = x.iCell; |
| RTREE_QUEUE_TRACE(pCur, "PUSH-S:"); |
| break; |
| } |
| if( p->iCell>=nCell ){ |
| RTREE_QUEUE_TRACE(pCur, "POP-Se:"); |
| rtreeSearchPointPop(pCur); |
| } |
| } |
| pCur->atEOF = p==0; |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Rtree virtual table module xNext method. |
| */ |
| static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ |
| RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
| int rc = SQLITE_OK; |
| |
| /* Move to the next entry that matches the configured constraints. */ |
| RTREE_QUEUE_TRACE(pCsr, "POP-Nx:"); |
| if( pCsr->bAuxValid ){ |
| pCsr->bAuxValid = 0; |
| sqlite3_reset(pCsr->pReadAux); |
| } |
| rtreeSearchPointPop(pCsr); |
| rc = rtreeStepToLeaf(pCsr); |
| return rc; |
| } |
| |
| /* |
| ** Rtree virtual table module xRowid method. |
| */ |
| static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ |
| RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
| RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); |
| int rc = SQLITE_OK; |
| RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); |
| if( rc==SQLITE_OK && ALWAYS(p) ){ |
| if( p->iCell>=NCELL(pNode) ){ |
| rc = SQLITE_ABORT; |
| }else{ |
| *pRowid = nodeGetRowid(RTREE_OF_CURSOR(pCsr), pNode, p->iCell); |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Rtree virtual table module xColumn method. |
| */ |
| static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ |
| Rtree *pRtree = (Rtree *)cur->pVtab; |
| RtreeCursor *pCsr = (RtreeCursor *)cur; |
| RtreeSearchPoint *p = rtreeSearchPointFirst(pCsr); |
| RtreeCoord c; |
| int rc = SQLITE_OK; |
| RtreeNode *pNode = rtreeNodeOfFirstSearchPoint(pCsr, &rc); |
| |
| if( rc ) return rc; |
| if( NEVER(p==0) ) return SQLITE_OK; |
| if( p->iCell>=NCELL(pNode) ) return SQLITE_ABORT; |
| if( i==0 ){ |
| sqlite3_result_int64(ctx, nodeGetRowid(pRtree, pNode, p->iCell)); |
| }else if( i<=pRtree->nDim2 ){ |
| nodeGetCoord(pRtree, pNode, p->iCell, i-1, &c); |
| #ifndef SQLITE_RTREE_INT_ONLY |
| if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ |
| sqlite3_result_double(ctx, c.f); |
| }else |
| #endif |
| { |
| assert( pRtree->eCoordType==RTREE_COORD_INT32 ); |
| sqlite3_result_int(ctx, c.i); |
| } |
| }else{ |
| if( !pCsr->bAuxValid ){ |
| if( pCsr->pReadAux==0 ){ |
| rc = sqlite3_prepare_v3(pRtree->db, pRtree->zReadAuxSql, -1, 0, |
| &pCsr->pReadAux, 0); |
| if( rc ) return rc; |
| } |
| sqlite3_bind_int64(pCsr->pReadAux, 1, |
| nodeGetRowid(pRtree, pNode, p->iCell)); |
| rc = sqlite3_step(pCsr->pReadAux); |
| if( rc==SQLITE_ROW ){ |
| pCsr->bAuxValid = 1; |
| }else{ |
| sqlite3_reset(pCsr->pReadAux); |
| if( rc==SQLITE_DONE ) rc = SQLITE_OK; |
| return rc; |
| } |
| } |
| sqlite3_result_value(ctx, |
| sqlite3_column_value(pCsr->pReadAux, i - pRtree->nDim2 + 1)); |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Use nodeAcquire() to obtain the leaf node containing the record with |
| ** rowid iRowid. If successful, set *ppLeaf to point to the node and |
| ** return SQLITE_OK. If there is no such record in the table, set |
| ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf |
| ** to zero and return an SQLite error code. |
| */ |
| static int findLeafNode( |
| Rtree *pRtree, /* RTree to search */ |
| i64 iRowid, /* The rowid searching for */ |
| RtreeNode **ppLeaf, /* Write the node here */ |
| sqlite3_int64 *piNode /* Write the node-id here */ |
| ){ |
| int rc; |
| *ppLeaf = 0; |
| sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); |
| if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ |
| i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); |
| if( piNode ) *piNode = iNode; |
| rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); |
| sqlite3_reset(pRtree->pReadRowid); |
| }else{ |
| rc = sqlite3_reset(pRtree->pReadRowid); |
| } |
| return rc; |
| } |
| |
| /* |
| ** This function is called to configure the RtreeConstraint object passed |
| ** as the second argument for a MATCH constraint. The value passed as the |
| ** first argument to this function is the right-hand operand to the MATCH |
| ** operator. |
| */ |
| static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ |
| RtreeMatchArg *pBlob, *pSrc; /* BLOB returned by geometry function */ |
| sqlite3_rtree_query_info *pInfo; /* Callback information */ |
| |
| pSrc = sqlite3_value_pointer(pValue, "RtreeMatchArg"); |
| if( pSrc==0 ) return SQLITE_ERROR; |
| pInfo = (sqlite3_rtree_query_info*) |
| sqlite3_malloc64( sizeof(*pInfo)+pSrc->iSize ); |
| if( !pInfo ) return SQLITE_NOMEM; |
| memset(pInfo, 0, sizeof(*pInfo)); |
| pBlob = (RtreeMatchArg*)&pInfo[1]; |
| memcpy(pBlob, pSrc, pSrc->iSize); |
| pInfo->pContext = pBlob->cb.pContext; |
| pInfo->nParam = pBlob->nParam; |
| pInfo->aParam = pBlob->aParam; |
| pInfo->apSqlParam = pBlob->apSqlParam; |
| |
| if( pBlob->cb.xGeom ){ |
| pCons->u.xGeom = pBlob->cb.xGeom; |
| }else{ |
| pCons->op = RTREE_QUERY; |
| pCons->u.xQueryFunc = pBlob->cb.xQueryFunc; |
| } |
| pCons->pInfo = pInfo; |
| return SQLITE_OK; |
| } |
| |
| int sqlite3IntFloatCompare(i64,double); |
| |
| /* |
| ** Rtree virtual table module xFilter method. |
| */ |
| static int rtreeFilter( |
| sqlite3_vtab_cursor *pVtabCursor, |
| int idxNum, const char *idxStr, |
| int argc, sqlite3_value **argv |
| ){ |
| Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; |
| RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
| RtreeNode *pRoot = 0; |
| int ii; |
| int rc = SQLITE_OK; |
| int iCell = 0; |
| |
| rtreeReference(pRtree); |
| |
| /* Reset the cursor to the same state as rtreeOpen() leaves it in. */ |
| resetCursor(pCsr); |
| |
| pCsr->iStrategy = idxNum; |
| if( idxNum==1 ){ |
| /* Special case - lookup by rowid. */ |
| RtreeNode *pLeaf; /* Leaf on which the required cell resides */ |
| RtreeSearchPoint *p; /* Search point for the leaf */ |
| i64 iRowid = sqlite3_value_int64(argv[0]); |
| i64 iNode = 0; |
| int eType = sqlite3_value_numeric_type(argv[0]); |
| if( eType==SQLITE_INTEGER |
| || (eType==SQLITE_FLOAT |
| && 0==sqlite3IntFloatCompare(iRowid,sqlite3_value_double(argv[0]))) |
| ){ |
| rc = findLeafNode(pRtree, iRowid, &pLeaf, &iNode); |
| }else{ |
| rc = SQLITE_OK; |
| pLeaf = 0; |
| } |
| if( rc==SQLITE_OK && pLeaf!=0 ){ |
| p = rtreeSearchPointNew(pCsr, RTREE_ZERO, 0); |
| assert( p!=0 ); /* Always returns pCsr->sPoint */ |
| pCsr->aNode[0] = pLeaf; |
| p->id = iNode; |
| p->eWithin = PARTLY_WITHIN; |
| rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &iCell); |
| p->iCell = (u8)iCell; |
| RTREE_QUEUE_TRACE(pCsr, "PUSH-F1:"); |
| }else{ |
| pCsr->atEOF = 1; |
| } |
| }else{ |
| /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array |
| ** with the configured constraints. |
| */ |
| rc = nodeAcquire(pRtree, 1, 0, &pRoot); |
| if( rc==SQLITE_OK && argc>0 ){ |
| pCsr->aConstraint = sqlite3_malloc64(sizeof(RtreeConstraint)*argc); |
| pCsr->nConstraint = argc; |
| if( !pCsr->aConstraint ){ |
| rc = SQLITE_NOMEM; |
| }else{ |
| memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); |
| memset(pCsr->anQueue, 0, sizeof(u32)*(pRtree->iDepth + 1)); |
| assert( (idxStr==0 && argc==0) |
| || (idxStr && (int)strlen(idxStr)==argc*2) ); |
| for(ii=0; ii<argc; ii++){ |
| RtreeConstraint *p = &pCsr->aConstraint[ii]; |
| int eType = sqlite3_value_numeric_type(argv[ii]); |
| p->op = idxStr[ii*2]; |
| p->iCoord = idxStr[ii*2+1]-'0'; |
| if( p->op>=RTREE_MATCH ){ |
| /* A MATCH operator. The right-hand-side must be a blob that |
| ** can be cast into an RtreeMatchArg object. One created using |
| ** an sqlite3_rtree_geometry_callback() SQL user function. |
| */ |
| rc = deserializeGeometry(argv[ii], p); |
| if( rc!=SQLITE_OK ){ |
| break; |
| } |
| p->pInfo->nCoord = pRtree->nDim2; |
| p->pInfo->anQueue = pCsr->anQueue; |
| p->pInfo->mxLevel = pRtree->iDepth + 1; |
| }else if( eType==SQLITE_INTEGER ){ |
| sqlite3_int64 iVal = sqlite3_value_int64(argv[ii]); |
| #ifdef SQLITE_RTREE_INT_ONLY |
| p->u.rValue = iVal; |
| #else |
| p->u.rValue = (double)iVal; |
| if( iVal>=((sqlite3_int64)1)<<48 |
| || iVal<=-(((sqlite3_int64)1)<<48) |
| ){ |
| if( p->op==RTREE_LT ) p->op = RTREE_LE; |
| if( p->op==RTREE_GT ) p->op = RTREE_GE; |
| } |
| #endif |
| }else if( eType==SQLITE_FLOAT ){ |
| #ifdef SQLITE_RTREE_INT_ONLY |
| p->u.rValue = sqlite3_value_int64(argv[ii]); |
| #else |
| p->u.rValue = sqlite3_value_double(argv[ii]); |
| #endif |
| }else{ |
| p->u.rValue = RTREE_ZERO; |
| if( eType==SQLITE_NULL ){ |
| p->op = RTREE_FALSE; |
| }else if( p->op==RTREE_LT || p->op==RTREE_LE ){ |
| p->op = RTREE_TRUE; |
| }else{ |
| p->op = RTREE_FALSE; |
| } |
| } |
| } |
| } |
| } |
| if( rc==SQLITE_OK ){ |
| RtreeSearchPoint *pNew; |
| assert( pCsr->bPoint==0 ); /* Due to the resetCursor() call above */ |
| pNew = rtreeSearchPointNew(pCsr, RTREE_ZERO, (u8)(pRtree->iDepth+1)); |
| if( NEVER(pNew==0) ){ /* Because pCsr->bPoint was FALSE */ |
| return SQLITE_NOMEM; |
| } |
| pNew->id = 1; |
| pNew->iCell = 0; |
| pNew->eWithin = PARTLY_WITHIN; |
| assert( pCsr->bPoint==1 ); |
| pCsr->aNode[0] = pRoot; |
| pRoot = 0; |
| RTREE_QUEUE_TRACE(pCsr, "PUSH-Fm:"); |
| rc = rtreeStepToLeaf(pCsr); |
| } |
| } |
| |
| nodeRelease(pRtree, pRoot); |
| rtreeRelease(pRtree); |
| return rc; |
| } |
| |
| /* |
| ** Rtree virtual table module xBestIndex method. There are three |
| ** table scan strategies to choose from (in order from most to |
| ** least desirable): |
| ** |
| ** idxNum idxStr Strategy |
| ** ------------------------------------------------ |
| ** 1 Unused Direct lookup by rowid. |
| ** 2 See below R-tree query or full-table scan. |
| ** ------------------------------------------------ |
| ** |
| ** If strategy 1 is used, then idxStr is not meaningful. If strategy |
| ** 2 is used, idxStr is formatted to contain 2 bytes for each |
| ** constraint used. The first two bytes of idxStr correspond to |
| ** the constraint in sqlite3_index_info.aConstraintUsage[] with |
| ** (argvIndex==1) etc. |
| ** |
| ** The first of each pair of bytes in idxStr identifies the constraint |
| ** operator as follows: |
| ** |
| ** Operator Byte Value |
| ** ---------------------- |
| ** = 0x41 ('A') |
| ** <= 0x42 ('B') |
| ** < 0x43 ('C') |
| ** >= 0x44 ('D') |
| ** > 0x45 ('E') |
| ** MATCH 0x46 ('F') |
| ** ---------------------- |
| ** |
| ** The second of each pair of bytes identifies the coordinate column |
| ** to which the constraint applies. The leftmost coordinate column |
| ** is 'a', the second from the left 'b' etc. |
| */ |
| static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
| Rtree *pRtree = (Rtree*)tab; |
| int rc = SQLITE_OK; |
| int ii; |
| int bMatch = 0; /* True if there exists a MATCH constraint */ |
| i64 nRow; /* Estimated rows returned by this scan */ |
| |
| int iIdx = 0; |
| char zIdxStr[RTREE_MAX_DIMENSIONS*8+1]; |
| memset(zIdxStr, 0, sizeof(zIdxStr)); |
| |
| /* Check if there exists a MATCH constraint - even an unusable one. If there |
| ** is, do not consider the lookup-by-rowid plan as using such a plan would |
| ** require the VDBE to evaluate the MATCH constraint, which is not currently |
| ** possible. */ |
| for(ii=0; ii<pIdxInfo->nConstraint; ii++){ |
| if( pIdxInfo->aConstraint[ii].op==SQLITE_INDEX_CONSTRAINT_MATCH ){ |
| bMatch = 1; |
| } |
| } |
| |
| assert( pIdxInfo->idxStr==0 ); |
| for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){ |
| struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; |
| |
| if( bMatch==0 && p->usable |
| && p->iColumn<=0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ |
| ){ |
| /* We have an equality constraint on the rowid. Use strategy 1. */ |
| int jj; |
| for(jj=0; jj<ii; jj++){ |
| pIdxInfo->aConstraintUsage[jj].argvIndex = 0; |
| pIdxInfo->aConstraintUsage[jj].omit = 0; |
| } |
| pIdxInfo->idxNum = 1; |
| pIdxInfo->aConstraintUsage[ii].argvIndex = 1; |
| pIdxInfo->aConstraintUsage[jj].omit = 1; |
| |
| /* This strategy involves a two rowid lookups on an B-Tree structures |
| ** and then a linear search of an R-Tree node. This should be |
| ** considered almost as quick as a direct rowid lookup (for which |
| ** sqlite uses an internal cost of 0.0). It is expected to return |
| ** a single row. |
| */ |
| pIdxInfo->estimatedCost = 30.0; |
| pIdxInfo->estimatedRows = 1; |
| pIdxInfo->idxFlags = SQLITE_INDEX_SCAN_UNIQUE; |
| return SQLITE_OK; |
| } |
| |
| if( p->usable |
| && ((p->iColumn>0 && p->iColumn<=pRtree->nDim2) |
| || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) |
| ){ |
| u8 op; |
| u8 doOmit = 1; |
| switch( p->op ){ |
| case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; doOmit = 0; break; |
| case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; doOmit = 0; break; |
| case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; |
| case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; doOmit = 0; break; |
| case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; |
| case SQLITE_INDEX_CONSTRAINT_MATCH: op = RTREE_MATCH; break; |
| default: op = 0; break; |
| } |
| if( op ){ |
| zIdxStr[iIdx++] = op; |
| zIdxStr[iIdx++] = (char)(p->iColumn - 1 + '0'); |
| pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); |
| pIdxInfo->aConstraintUsage[ii].omit = doOmit; |
| } |
| } |
| } |
| |
| pIdxInfo->idxNum = 2; |
| pIdxInfo->needToFreeIdxStr = 1; |
| if( iIdx>0 ){ |
| pIdxInfo->idxStr = sqlite3_malloc( iIdx+1 ); |
| if( pIdxInfo->idxStr==0 ){ |
| return SQLITE_NOMEM; |
| } |
| memcpy(pIdxInfo->idxStr, zIdxStr, iIdx+1); |
| } |
| |
| nRow = pRtree->nRowEst >> (iIdx/2); |
| pIdxInfo->estimatedCost = (double)6.0 * (double)nRow; |
| pIdxInfo->estimatedRows = nRow; |
| |
| return rc; |
| } |
| |
| /* |
| ** Return the N-dimensional volumn of the cell stored in *p. |
| */ |
| static RtreeDValue cellArea(Rtree *pRtree, RtreeCell *p){ |
| RtreeDValue area = (RtreeDValue)1; |
| assert( pRtree->nDim>=1 && pRtree->nDim<=5 ); |
| #ifndef SQLITE_RTREE_INT_ONLY |
| if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ |
| switch( pRtree->nDim ){ |
| case 5: area = p->aCoord[9].f - p->aCoord[8].f; |
| case 4: area *= p->aCoord[7].f - p->aCoord[6].f; |
| case 3: area *= p->aCoord[5].f - p->aCoord[4].f; |
| case 2: area *= p->aCoord[3].f - p->aCoord[2].f; |
| default: area *= p->aCoord[1].f - p->aCoord[0].f; |
| } |
| }else |
| #endif |
| { |
| switch( pRtree->nDim ){ |
| case 5: area = (i64)p->aCoord[9].i - (i64)p->aCoord[8].i; |
| case 4: area *= (i64)p->aCoord[7].i - (i64)p->aCoord[6].i; |
| case 3: area *= (i64)p->aCoord[5].i - (i64)p->aCoord[4].i; |
| case 2: area *= (i64)p->aCoord[3].i - (i64)p->aCoord[2].i; |
| default: area *= (i64)p->aCoord[1].i - (i64)p->aCoord[0].i; |
| } |
| } |
| return area; |
| } |
| |
| /* |
| ** Return the margin length of cell p. The margin length is the sum |
| ** of the objects size in each dimension. |
| */ |
| static RtreeDValue cellMargin(Rtree *pRtree, RtreeCell *p){ |
| RtreeDValue margin = 0; |
| int ii = pRtree->nDim2 - 2; |
| do{ |
| margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); |
| ii -= 2; |
| }while( ii>=0 ); |
| return margin; |
| } |
| |
| /* |
| ** Store the union of cells p1 and p2 in p1. |
| */ |
| static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ |
| int ii = 0; |
| if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ |
| do{ |
| p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f); |
| p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f); |
| ii += 2; |
| }while( ii<pRtree->nDim2 ); |
| }else{ |
| do{ |
| p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i); |
| p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i); |
| ii += 2; |
| }while( ii<pRtree->nDim2 ); |
| } |
| } |
| |
| /* |
| ** Return true if the area covered by p2 is a subset of the area covered |
| ** by p1. False otherwise. |
| */ |
| static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ |
| int ii; |
| if( pRtree->eCoordType==RTREE_COORD_INT32 ){ |
| for(ii=0; ii<pRtree->nDim2; ii+=2){ |
| RtreeCoord *a1 = &p1->aCoord[ii]; |
| RtreeCoord *a2 = &p2->aCoord[ii]; |
| if( a2[0].i<a1[0].i || a2[1].i>a1[1].i ) return 0; |
| } |
| }else{ |
| for(ii=0; ii<pRtree->nDim2; ii+=2){ |
| RtreeCoord *a1 = &p1->aCoord[ii]; |
| RtreeCoord *a2 = &p2->aCoord[ii]; |
| if( a2[0].f<a1[0].f || a2[1].f>a1[1].f ) return 0; |
| } |
| } |
| return 1; |
| } |
| |
| static RtreeDValue cellOverlap( |
| Rtree *pRtree, |
| RtreeCell *p, |
| RtreeCell *aCell, |
| int nCell |
| ){ |
| int ii; |
| RtreeDValue overlap = RTREE_ZERO; |
| for(ii=0; ii<nCell; ii++){ |
| int jj; |
| RtreeDValue o = (RtreeDValue)1; |
| for(jj=0; jj<pRtree->nDim2; jj+=2){ |
| RtreeDValue x1, x2; |
| x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); |
| x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); |
| if( x2<x1 ){ |
| o = (RtreeDValue)0; |
| break; |
| }else{ |
| o = o * (x2-x1); |
| } |
| } |
| overlap += o; |
| } |
| return overlap; |
| } |
| |
| |
| /* |
| ** This function implements the ChooseLeaf algorithm from Gutman[84]. |
| ** ChooseSubTree in r*tree terminology. |
| */ |
| static int ChooseLeaf( |
| Rtree *pRtree, /* Rtree table */ |
| RtreeCell *pCell, /* Cell to insert into rtree */ |
| int iHeight, /* Height of sub-tree rooted at pCell */ |
| RtreeNode **ppLeaf /* OUT: Selected leaf page */ |
| ){ |
| int rc; |
| int ii; |
| RtreeNode *pNode = 0; |
| rc = nodeAcquire(pRtree, 1, 0, &pNode); |
| |
| for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){ |
| int iCell; |
| sqlite3_int64 iBest = 0; |
| int bFound = 0; |
| RtreeDValue fMinGrowth = RTREE_ZERO; |
| RtreeDValue fMinArea = RTREE_ZERO; |
| int nCell = NCELL(pNode); |
| RtreeNode *pChild = 0; |
| |
| /* First check to see if there is are any cells in pNode that completely |
| ** contains pCell. If two or more cells in pNode completely contain pCell |
| ** then pick the smallest. |
| */ |
| for(iCell=0; iCell<nCell; iCell++){ |
| RtreeCell cell; |
| nodeGetCell(pRtree, pNode, iCell, &cell); |
| if( cellContains(pRtree, &cell, pCell) ){ |
| RtreeDValue area = cellArea(pRtree, &cell); |
| if( bFound==0 || area<fMinArea ){ |
| iBest = cell.iRowid; |
| fMinArea = area; |
| bFound = 1; |
| } |
| } |
| } |
| if( !bFound ){ |
| /* No cells of pNode will completely contain pCell. So pick the |
| ** cell of pNode that grows by the least amount when pCell is added. |
| ** Break ties by selecting the smaller cell. |
| */ |
| for(iCell=0; iCell<nCell; iCell++){ |
| RtreeCell cell; |
| RtreeDValue growth; |
| RtreeDValue area; |
| nodeGetCell(pRtree, pNode, iCell, &cell); |
| area = cellArea(pRtree, &cell); |
| cellUnion(pRtree, &cell, pCell); |
| growth = cellArea(pRtree, &cell)-area; |
| if( iCell==0 |
| || growth<fMinGrowth |
| || (growth==fMinGrowth && area<fMinArea) |
| ){ |
| fMinGrowth = growth; |
| fMinArea = area; |
| iBest = cell.iRowid; |
| } |
| } |
| } |
| |
| rc = nodeAcquire(pRtree, iBest, pNode, &pChild); |
| nodeRelease(pRtree, pNode); |
| pNode = pChild; |
| } |
| |
| *ppLeaf = pNode; |
| return rc; |
| } |
| |
| /* |
| ** A cell with the same content as pCell has just been inserted into |
| ** the node pNode. This function updates the bounding box cells in |
| ** all ancestor elements. |
| */ |
| static int AdjustTree( |
| Rtree *pRtree, /* Rtree table */ |
| RtreeNode *pNode, /* Adjust ancestry of this node. */ |
| RtreeCell *pCell /* This cell was just inserted */ |
| ){ |
| RtreeNode *p = pNode; |
| int cnt = 0; |
| int rc; |
| while( p->pParent ){ |
| RtreeNode *pParent = p->pParent; |
| RtreeCell cell; |
| int iCell; |
| |
| cnt++; |
| if( NEVER(cnt>100) ){ |
| RTREE_IS_CORRUPT(pRtree); |
| return SQLITE_CORRUPT_VTAB; |
| } |
| rc = nodeParentIndex(pRtree, p, &iCell); |
| if( NEVER(rc!=SQLITE_OK) ){ |
| RTREE_IS_CORRUPT(pRtree); |
| return SQLITE_CORRUPT_VTAB; |
| } |
| |
| nodeGetCell(pRtree, pParent, iCell, &cell); |
| if( !cellContains(pRtree, &cell, pCell) ){ |
| cellUnion(pRtree, &cell, pCell); |
| nodeOverwriteCell(pRtree, pParent, &cell, iCell); |
| } |
| |
| p = pParent; |
| } |
| return SQLITE_OK; |
| } |
| |
| /* |
| ** Write mapping (iRowid->iNode) to the <rtree>_rowid table. |
| */ |
| static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){ |
| sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid); |
| sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode); |
| sqlite3_step(pRtree->pWriteRowid); |
| return sqlite3_reset(pRtree->pWriteRowid); |
| } |
| |
| /* |
| ** Write mapping (iNode->iPar) to the <rtree>_parent table. |
| */ |
| static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ |
| sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); |
| sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); |
| sqlite3_step(pRtree->pWriteParent); |
| return sqlite3_reset(pRtree->pWriteParent); |
| } |
| |
| static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int); |
| |
| |
| |
| /* |
| ** Arguments aIdx, aCell and aSpare all point to arrays of size |
| ** nIdx. The aIdx array contains the set of integers from 0 to |
| ** (nIdx-1) in no particular order. This function sorts the values |
| ** in aIdx according to dimension iDim of the cells in aCell. The |
| ** minimum value of dimension iDim is considered first, the |
| ** maximum used to break ties. |
| ** |
| ** The aSpare array is used as temporary working space by the |
| ** sorting algorithm. |
| */ |
| static void SortByDimension( |
| Rtree *pRtree, |
| int *aIdx, |
| int nIdx, |
| int iDim, |
| RtreeCell *aCell, |
| int *aSpare |
| ){ |
| if( nIdx>1 ){ |
| |
| int iLeft = 0; |
| int iRight = 0; |
| |
| int nLeft = nIdx/2; |
| int nRight = nIdx-nLeft; |
| int *aLeft = aIdx; |
| int *aRight = &aIdx[nLeft]; |
| |
| SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare); |
| SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare); |
| |
| memcpy(aSpare, aLeft, sizeof(int)*nLeft); |
| aLeft = aSpare; |
| while( iLeft<nLeft || iRight<nRight ){ |
| RtreeDValue xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]); |
| RtreeDValue xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]); |
| RtreeDValue xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]); |
| RtreeDValue xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]); |
| if( (iLeft!=nLeft) && ((iRight==nRight) |
| || (xleft1<xright1) |
| || (xleft1==xright1 && xleft2<xright2) |
| )){ |
| aIdx[iLeft+iRight] = aLeft[iLeft]; |
| iLeft++; |
| }else{ |
| aIdx[iLeft+iRight] = aRight[iRight]; |
| iRight++; |
| } |
| } |
| |
| #if 0 |
| /* Check that the sort worked */ |
| { |
| int jj; |
| for(jj=1; jj<nIdx; jj++){ |
| RtreeDValue xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2]; |
| RtreeDValue xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1]; |
| RtreeDValue xright1 = aCell[aIdx[jj]].aCoord[iDim*2]; |
| RtreeDValue xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1]; |
| assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) ); |
| } |
| } |
| #endif |
| } |
| } |
| |
| /* |
| ** Implementation of the R*-tree variant of SplitNode from Beckman[1990]. |
| */ |
| static int splitNodeStartree( |
| Rtree *pRtree, |
| RtreeCell *aCell, |
| int nCell, |
| RtreeNode *pLeft, |
| RtreeNode *pRight, |
| RtreeCell *pBboxLeft, |
| RtreeCell *pBboxRight |
| ){ |
| int **aaSorted; |
| int *aSpare; |
| int ii; |
| |
| int iBestDim = 0; |
| int iBestSplit = 0; |
| RtreeDValue fBestMargin = RTREE_ZERO; |
| |
| sqlite3_int64 nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int)); |
| |
| aaSorted = (int **)sqlite3_malloc64(nByte); |
| if( !aaSorted ){ |
| return SQLITE_NOMEM; |
| } |
| |
| aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; |
| memset(aaSorted, 0, nByte); |
| for(ii=0; ii<pRtree->nDim; ii++){ |
| int jj; |
| aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; |
| for(jj=0; jj<nCell; jj++){ |
| aaSorted[ii][jj] = jj; |
| } |
| SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare); |
| } |
| |
| for(ii=0; ii<pRtree->nDim; ii++){ |
| RtreeDValue margin = RTREE_ZERO; |
| RtreeDValue fBestOverlap = RTREE_ZERO; |
| RtreeDValue fBestArea = RTREE_ZERO; |
| int iBestLeft = 0; |
| int nLeft; |
| |
| for( |
| nLeft=RTREE_MINCELLS(pRtree); |
| nLeft<=(nCell-RTREE_MINCELLS(pRtree)); |
| nLeft++ |
| ){ |
| RtreeCell left; |
| RtreeCell right; |
| int kk; |
| RtreeDValue overlap; |
| RtreeDValue area; |
| |
| memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); |
| memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); |
| for(kk=1; kk<(nCell-1); kk++){ |
| if( kk<nLeft ){ |
| cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]); |
| }else{ |
| cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]); |
| } |
| } |
| margin += cellMargin(pRtree, &left); |
| margin += cellMargin(pRtree, &right); |
| overlap = cellOverlap(pRtree, &left, &right, 1); |
| area = cellArea(pRtree, &left) + cellArea(pRtree, &right); |
| if( (nLeft==RTREE_MINCELLS(pRtree)) |
| || (overlap<fBestOverlap) |
| || (overlap==fBestOverlap && area<fBestArea) |
| ){ |
| iBestLeft = nLeft; |
| fBestOverlap = overlap; |
| fBestArea = area; |
| } |
| } |
| |
| if( ii==0 || margin<fBestMargin ){ |
| iBestDim = ii; |
| fBestMargin = margin; |
| iBestSplit = iBestLeft; |
| } |
| } |
| |
| memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell)); |
| memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell)); |
| for(ii=0; ii<nCell; ii++){ |
| RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight; |
| RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight; |
| RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]]; |
| nodeInsertCell(pRtree, pTarget, pCell); |
| cellUnion(pRtree, pBbox, pCell); |
| } |
| |
| sqlite3_free(aaSorted); |
| return SQLITE_OK; |
| } |
| |
| |
| static int updateMapping( |
| Rtree *pRtree, |
| i64 iRowid, |
| RtreeNode *pNode, |
| int iHeight |
| ){ |
| int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64); |
| xSetMapping = ((iHeight==0)?rowidWrite:parentWrite); |
| if( iHeight>0 ){ |
| RtreeNode *pChild = nodeHashLookup(pRtree, iRowid); |
| RtreeNode *p; |
| for(p=pNode; p; p=p->pParent){ |
| if( p==pChild ) return SQLITE_CORRUPT_VTAB; |
| } |
| if( pChild ){ |
| nodeRelease(pRtree, pChild->pParent); |
| nodeReference(pNode); |
| pChild->pParent = pNode; |
| } |
| } |
| if( NEVER(pNode==0) ) return SQLITE_ERROR; |
| return xSetMapping(pRtree, iRowid, pNode->iNode); |
| } |
| |
| static int SplitNode( |
| Rtree *pRtree, |
| RtreeNode *pNode, |
| RtreeCell *pCell, |
| int iHeight |
| ){ |
| int i; |
| int newCellIsRight = 0; |
| |
| int rc = SQLITE_OK; |
| int nCell = NCELL(pNode); |
| RtreeCell *aCell; |
| int *aiUsed; |
| |
| RtreeNode *pLeft = 0; |
| RtreeNode *pRight = 0; |
| |
| RtreeCell leftbbox; |
| RtreeCell rightbbox; |
| |
| /* Allocate an array and populate it with a copy of pCell and |
| ** all cells from node pLeft. Then zero the original node. |
| */ |
| aCell = sqlite3_malloc64((sizeof(RtreeCell)+sizeof(int))*(nCell+1)); |
| if( !aCell ){ |
| rc = SQLITE_NOMEM; |
| goto splitnode_out; |
| } |
| aiUsed = (int *)&aCell[nCell+1]; |
| memset(aiUsed, 0, sizeof(int)*(nCell+1)); |
| for(i=0; i<nCell; i++){ |
| nodeGetCell(pRtree, pNode, i, &aCell[i]); |
| } |
| nodeZero(pRtree, pNode); |
| memcpy(&aCell[nCell], pCell, sizeof(RtreeCell)); |
| nCell++; |
| |
| if( pNode->iNode==1 ){ |
| pRight = nodeNew(pRtree, pNode); |
| pLeft = nodeNew(pRtree, pNode); |
| pRtree->iDepth++; |
| pNode->isDirty = 1; |
| writeInt16(pNode->zData, pRtree->iDepth); |
| }else{ |
| pLeft = pNode; |
| pRight = nodeNew(pRtree, pLeft->pParent); |
| pLeft->nRef++; |
| } |
| |
| if( !pLeft || !pRight ){ |
| rc = SQLITE_NOMEM; |
| goto splitnode_out; |
| } |
| |
| memset(pLeft->zData, 0, pRtree->iNodeSize); |
| memset(pRight->zData, 0, pRtree->iNodeSize); |
| |
| rc = splitNodeStartree(pRtree, aCell, nCell, pLeft, pRight, |
| &leftbbox, &rightbbox); |
| if( rc!=SQLITE_OK ){ |
| goto splitnode_out; |
| } |
| |
| /* Ensure both child nodes have node numbers assigned to them by calling |
| ** nodeWrite(). Node pRight always needs a node number, as it was created |
| ** by nodeNew() above. But node pLeft sometimes already has a node number. |
| ** In this case avoid the all to nodeWrite(). |
| */ |
| if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)) |
| || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft))) |
| ){ |
| goto splitnode_out; |
| } |
| |
| rightbbox.iRowid = pRight->iNode; |
| leftbbox.iRowid = pLeft->iNode; |
| |
| if( pNode->iNode==1 ){ |
| rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1); |
| if( rc!=SQLITE_OK ){ |
| goto splitnode_out; |
| } |
| }else{ |
| RtreeNode *pParent = pLeft->pParent; |
| int iCell; |
| rc = nodeParentIndex(pRtree, pLeft, &iCell); |
| if( ALWAYS(rc==SQLITE_OK) ){ |
| nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); |
| rc = AdjustTree(pRtree, pParent, &leftbbox); |
| assert( rc==SQLITE_OK ); |
| } |
| if( NEVER(rc!=SQLITE_OK) ){ |
| goto splitnode_out; |
| } |
| } |
| if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){ |
| goto splitnode_out; |
| } |
| |
| for(i=0; i<NCELL(pRight); i++){ |
| i64 iRowid = nodeGetRowid(pRtree, pRight, i); |
| rc = updateMapping(pRtree, iRowid, pRight, iHeight); |
| if( iRowid==pCell->iRowid ){ |
| newCellIsRight = 1; |
| } |
| if( rc!=SQLITE_OK ){ |
| goto splitnode_out; |
| } |
| } |
| if( pNode->iNode==1 ){ |
| for(i=0; i<NCELL(pLeft); i++){ |
| i64 iRowid = nodeGetRowid(pRtree, pLeft, i); |
| rc = updateMapping(pRtree, iRowid, pLeft, iHeight); |
| if( rc!=SQLITE_OK ){ |
| goto splitnode_out; |
| } |
| } |
| }else if( newCellIsRight==0 ){ |
| rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight); |
| } |
| |
| if( rc==SQLITE_OK ){ |
| rc = nodeRelease(pRtree, pRight); |
| pRight = 0; |
| } |
| if( rc==SQLITE_OK ){ |
| rc = nodeRelease(pRtree, pLeft); |
| pLeft = 0; |
| } |
| |
| splitnode_out: |
| nodeRelease(pRtree, pRight); |
| nodeRelease(pRtree, pLeft); |
| sqlite3_free(aCell); |
| return rc; |
| } |
| |
| /* |
| ** If node pLeaf is not the root of the r-tree and its pParent pointer is |
| ** still NULL, load all ancestor nodes of pLeaf into memory and populate |
| ** the pLeaf->pParent chain all the way up to the root node. |
| ** |
| ** This operation is required when a row is deleted (or updated - an update |
| ** is implemented as a delete followed by an insert). SQLite provides the |
| ** rowid of the row to delete, which can be used to find the leaf on which |
| ** the entry resides (argument pLeaf). Once the leaf is located, this |
| ** function is called to determine its ancestry. |
| */ |
| static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){ |
| int rc = SQLITE_OK; |
| RtreeNode *pChild = pLeaf; |
| while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){ |
| int rc2 = SQLITE_OK; /* sqlite3_reset() return code */ |
| sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode); |
| rc = sqlite3_step(pRtree->pReadParent); |
| if( rc==SQLITE_ROW ){ |
| RtreeNode *pTest; /* Used to test for reference loops */ |
| i64 iNode; /* Node number of parent node */ |
| |
| /* Before setting pChild->pParent, test that we are not creating a |
| ** loop of references (as we would if, say, pChild==pParent). We don't |
| ** want to do this as it leads to a memory leak when trying to delete |
| ** the referenced counted node structures. |
| */ |
| iNode = sqlite3_column_int64(pRtree->pReadParent, 0); |
| for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent); |
| if( pTest==0 ){ |
| rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent); |
| } |
| } |
| rc = sqlite3_reset(pRtree->pReadParent); |
| if( rc==SQLITE_OK ) rc = rc2; |
| if( rc==SQLITE_OK && !pChild->pParent ){ |
| RTREE_IS_CORRUPT(pRtree); |
| rc = SQLITE_CORRUPT_VTAB; |
| } |
| pChild = pChild->pParent; |
| } |
| return rc; |
| } |
| |
| static int deleteCell(Rtree *, RtreeNode *, int, int); |
| |
| static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ |
| int rc; |
| int rc2; |
| RtreeNode *pParent = 0; |
| int iCell; |
| |
| assert( pNode->nRef==1 ); |
| |
| /* Remove the entry in the parent cell. */ |
| rc = nodeParentIndex(pRtree, pNode, &iCell); |
| if( rc==SQLITE_OK ){ |
| pParent = pNode->pParent; |
| pNode->pParent = 0; |
| rc = deleteCell(pRtree, pParent, iCell, iHeight+1); |
| testcase( rc!=SQLITE_OK ); |
| } |
| rc2 = nodeRelease(pRtree, pParent); |
| if( rc==SQLITE_OK ){ |
| rc = rc2; |
| } |
| if( rc!=SQLITE_OK ){ |
| return rc; |
| } |
| |
| /* Remove the xxx_node entry. */ |
| sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode); |
| sqlite3_step(pRtree->pDeleteNode); |
| if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){ |
| return rc; |
| } |
| |
| /* Remove the xxx_parent entry. */ |
| sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode); |
| sqlite3_step(pRtree->pDeleteParent); |
| if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){ |
| return rc; |
| } |
| |
| /* Remove the node from the in-memory hash table and link it into |
| ** the Rtree.pDeleted list. Its contents will be re-inserted later on. |
| */ |
| nodeHashDelete(pRtree, pNode); |
| pNode->iNode = iHeight; |
| pNode->pNext = pRtree->pDeleted; |
| pNode->nRef++; |
| pRtree->pDeleted = pNode; |
| |
| return SQLITE_OK; |
| } |
| |
| static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ |
| RtreeNode *pParent = pNode->pParent; |
| int rc = SQLITE_OK; |
| if( pParent ){ |
| int ii; |
| int nCell = NCELL(pNode); |
| RtreeCell box; /* Bounding box for pNode */ |
| nodeGetCell(pRtree, pNode, 0, &box); |
| for(ii=1; ii<nCell; ii++){ |
| RtreeCell cell; |
| nodeGetCell(pRtree, pNode, ii, &cell); |
| cellUnion(pRtree, &box, &cell); |
| } |
| box.iRowid = pNode->iNode; |
| rc = nodeParentIndex(pRtree, pNode, &ii); |
| if( rc==SQLITE_OK ){ |
| nodeOverwriteCell(pRtree, pParent, &box, ii); |
| rc = fixBoundingBox(pRtree, pParent); |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Delete the cell at index iCell of node pNode. After removing the |
| ** cell, adjust the r-tree data structure if required. |
| */ |
| static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ |
| RtreeNode *pParent; |
| int rc; |
| |
| if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){ |
| return rc; |
| } |
| |
| /* Remove the cell from the node. This call just moves bytes around |
| ** the in-memory node image, so it cannot fail. |
| */ |
| nodeDeleteCell(pRtree, pNode, iCell); |
| |
| /* If the node is not the tree root and now has less than the minimum |
| ** number of cells, remove it from the tree. Otherwise, update the |
| ** cell in the parent node so that it tightly contains the updated |
| ** node. |
| */ |
| pParent = pNode->pParent; |
| assert( pParent || pNode->iNode==1 ); |
| if( pParent ){ |
| if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){ |
| rc = removeNode(pRtree, pNode, iHeight); |
| }else{ |
| rc = fixBoundingBox(pRtree, pNode); |
| } |
| } |
| |
| return rc; |
| } |
| |
| /* |
| ** Insert cell pCell into node pNode. Node pNode is the head of a |
| ** subtree iHeight high (leaf nodes have iHeight==0). |
| */ |
| static int rtreeInsertCell( |
| Rtree *pRtree, |
| RtreeNode *pNode, |
| RtreeCell *pCell, |
| int iHeight |
| ){ |
| int rc = SQLITE_OK; |
| if( iHeight>0 ){ |
| RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); |
| if( pChild ){ |
| nodeRelease(pRtree, pChild->pParent); |
| nodeReference(pNode); |
| pChild->pParent = pNode; |
| } |
| } |
| if( nodeInsertCell(pRtree, pNode, pCell) ){ |
| rc = SplitNode(pRtree, pNode, pCell, iHeight); |
| }else{ |
| rc = AdjustTree(pRtree, pNode, pCell); |
| if( ALWAYS(rc==SQLITE_OK) ){ |
| if( iHeight==0 ){ |
| rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); |
| }else{ |
| rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); |
| } |
| } |
| } |
| return rc; |
| } |
| |
| static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ |
| int ii; |
| int rc = SQLITE_OK; |
| int nCell = NCELL(pNode); |
| |
| for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){ |
| RtreeNode *pInsert; |
| RtreeCell cell; |
| nodeGetCell(pRtree, pNode, ii, &cell); |
| |
| /* Find a node to store this cell in. pNode->iNode currently contains |
| ** the height of the sub-tree headed by the cell. |
| */ |
| rc = ChooseLeaf(pRtree, &cell, (int)pNode->iNode, &pInsert); |
| if( rc==SQLITE_OK ){ |
| int rc2; |
| rc = rtreeInsertCell(pRtree, pInsert, &cell, (int)pNode->iNode); |
| rc2 = nodeRelease(pRtree, pInsert); |
| if( rc==SQLITE_OK ){ |
| rc = rc2; |
| } |
| } |
| } |
| return rc; |
| } |
| |
| /* |
| ** Select a currently unused rowid for a new r-tree record. |
| */ |
| static int rtreeNewRowid(Rtree *pRtree, i64 *piRowid){ |
| int rc; |
| sqlite3_bind_null(pRtree->pWriteRowid, 1); |
| sqlite3_bind_null(pRtree->pWriteRowid, 2); |
| sqlite3_step(pRtree->pWriteRowid); |
| |