blob: 5247ee65bb4da24ac2af273f9e4905e2410d4cfb [file] [log] [blame]
/* -------------------------------------------------------------------------
* Special user directives
* ------------------------------------------------------------------------- */
/* ------------------------------------------------------------------------- */
/* shadow code */
#define %shadow %insert("shadow")
#define %pythoncode %insert("python")
/* ------------------------------------------------------------------------- */
/*
Use the "nondynamic" feature to make a wrapped class behave as a "nondynamic"
one, ie, a python class that doesn't dynamically add new attributes.
For example, for the class
%pythonnondynamic A;
struct A
{
int a;
int b;
};
you will get:
aa = A()
aa.a = 1 # Ok
aa.b = 1 # Ok
aa.c = 3 # error
Since nondynamic is a feature, if you use it like
%pythonnondynamic;
it will make all the wrapped classes nondynamic ones.
The implementation is based on this recipe:
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/252158
and works for modern (-modern) and plain python. We do not use __slots__,
so, it works with old python versions.
*/
#define %pythonnondynamic %feature("python:nondynamic", "1")
#define %nopythonnondynamic %feature("python:nondynamic", "0")
#define %clearpythonnondynamic %feature("python:nondynamic", "")
#define %pythondynamic %nopythonnondynamic
/* ------------------------------------------------------------------------- */
/*
Use %pythonmaybecall to flag a method like __add__ or __radd__. These
don't produce an error when called, they just return NotImplemented.
These methods "may be called" if needed.
*/
#define %pythonmaybecall %feature("python:maybecall", "1")
#define %nopythonmaybecall %feature("python:maybecall", "0")
#define %clearpythonmaybecall %feature("python:maybecall", "")
/* ------------------------------------------------------------------------- */
/*
The %pythoncallback feature produce a more natural callback wrapper
than the %callback mechanism, ie, it uses the original name for
the callback and callable objects.
Just use it as
%pythoncallback(1) foo;
int foo(int a);
%pythoncallback(1) A::foo;
struct A {
static int foo(int a);
};
int bar(int, int (*pf)(int));
then, you can use it as:
a = foo(1)
b = bar(2, foo)
c = A.foo(3)
d = bar(4, A.foo)
If you use it with a member method
%pythoncallback(1) A::foom;
struct A {
int foom(int a);
};
then you can use it as
r = a.foom(3) # eval the method
mptr = A.foom_cb_ptr # returns the callback pointer
where the '_cb_ptr' suffix is added for the callback pointer.
*/
#define %pythoncallback %feature("python:callback")
#define %nopythoncallback %feature("python:callback","0")
#define %clearpythoncallback %feature("python:callback","")
/* ------------------------------------------------------------------------- */
/*
Support for the old %callback directive name
*/
#ifdef %callback
#undef %callback
#endif
#ifdef %nocallback
#undef %nocallback
#endif
#ifdef %clearcallback
#undef %clearcallback
#endif
#define %callback(x) %feature("python:callback",`x`)
#define %nocallback %nopythoncallback
#define %clearcallback %clearpythoncallback
/* ------------------------------------------------------------------------- */
/*
Thread support - Advance control
*/
#define %nothread %feature("nothread")
#define %thread %feature("nothread","0")
#define %clearnothread %feature("nothread","")
#define %nothreadblock %feature("nothreadblock")
#define %threadblock %feature("nothreadblock","0")
#define %clearnothreadblock %feature("nothreadblock","")
#define %nothreadallow %feature("nothreadallow")
#define %threadallow %feature("nothreadallow","0")
#define %clearnothreadallow %feature("nothreadallow","")
/* ------------------------------------------------------------------------- */
/*
Implicit Conversion using the C++ constructor mechanism
*/
#define %implicitconv %feature("implicitconv")
#define %noimplicitconv %feature("implicitconv", "0")
#define %clearimplicitconv %feature("implicitconv", "")
/* ------------------------------------------------------------------------- */
/*
Enable keywords paramaters
*/
#define %kwargs %feature("kwargs")
#define %nokwargs %feature("kwargs", "0")
#define %clearkwargs %feature("kwargs", "")
/* ------------------------------------------------------------------------- */
/*
Add python code to the proxy/shadow code
%pythonprepend - Add code before the C++ function is called
%pythonappend - Add code after the C++ function is called
*/
#define %pythonprepend %feature("pythonprepend")
#define %clearpythonprepend %feature("pythonprepend","")
#define %pythonappend %feature("pythonappend")
#define %clearpythonappend %feature("pythonappend","")
/* ------------------------------------------------------------------------- */
/*
%extend_smart_pointer extend the smart pointer support.
For example, if you have a smart pointer as:
template <class Type> class RCPtr {
public:
...
RCPtr(Type *p);
Type * operator->() const;
...
};
you use the %extend_smart_pointer directive as:
%extend_smart_pointer(RCPtr<A>);
%template(RCPtr_A) RCPtr<A>;
then, if you have something like:
RCPtr<A> make_ptr();
int foo(A *);
you can do the following:
a = make_ptr();
b = foo(a);
ie, swig will accept a RCPtr<A> object where a 'A *' is
expected.
Also, when using vectors
%extend_smart_pointer(RCPtr<A>);
%template(RCPtr_A) RCPtr<A>;
%template(vector_A) std::vector<RCPtr<A> >;
you can type
a = A();
v = vector_A(2)
v[0] = a
ie, an 'A *' object is accepted, via implicit conversion,
where a RCPtr<A> object is expected. Additionally
x = v[0]
returns (and sets 'x' as) a copy of v[0], making reference
counting possible and consistent.
*/
%define %extend_smart_pointer(Type...)
%implicitconv Type;
%apply const SWIGTYPE& SMARTPOINTER { const Type& };
%apply SWIGTYPE SMARTPOINTER { Type };
%enddef