| //===- FuzzerTracePC.cpp - PC tracing--------------------------------------===// |
| // |
| // The LLVM Compiler Infrastructure |
| // |
| // This file is distributed under the University of Illinois Open Source |
| // License. See LICENSE.TXT for details. |
| // |
| //===----------------------------------------------------------------------===// |
| // Trace PCs. |
| // This module implements __sanitizer_cov_trace_pc_guard[_init], |
| // the callback required for -fsanitize-coverage=trace-pc-guard instrumentation. |
| // |
| //===----------------------------------------------------------------------===// |
| |
| #include "FuzzerTracePC.h" |
| #include "FuzzerCorpus.h" |
| #include "FuzzerDefs.h" |
| #include "FuzzerDictionary.h" |
| #include "FuzzerExtFunctions.h" |
| #include "FuzzerIO.h" |
| #include "FuzzerUtil.h" |
| #include "FuzzerValueBitMap.h" |
| #include <set> |
| |
| // The coverage counters and PCs. |
| // These are declared as global variables named "__sancov_*" to simplify |
| // experiments with inlined instrumentation. |
| alignas(64) ATTRIBUTE_INTERFACE |
| uint8_t __sancov_trace_pc_guard_8bit_counters[fuzzer::TracePC::kNumPCs]; |
| |
| ATTRIBUTE_INTERFACE |
| uintptr_t __sancov_trace_pc_pcs[fuzzer::TracePC::kNumPCs]; |
| |
| // Used by -fsanitize-coverage=stack-depth to track stack depth |
| ATTRIBUTE_INTERFACE thread_local uintptr_t __sancov_lowest_stack; |
| |
| namespace fuzzer { |
| |
| TracePC TPC; |
| |
| int ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr; |
| |
| uint8_t *TracePC::Counters() const { |
| return __sancov_trace_pc_guard_8bit_counters; |
| } |
| |
| uintptr_t *TracePC::PCs() const { |
| return __sancov_trace_pc_pcs; |
| } |
| |
| size_t TracePC::GetTotalPCCoverage() { |
| if (ObservedPCs.size()) |
| return ObservedPCs.size(); |
| size_t Res = 0; |
| for (size_t i = 1, N = GetNumPCs(); i < N; i++) |
| if (PCs()[i]) |
| Res++; |
| return Res; |
| } |
| |
| |
| void TracePC::HandleInline8bitCountersInit(uint8_t *Start, uint8_t *Stop) { |
| if (Start == Stop) return; |
| if (NumModulesWithInline8bitCounters && |
| ModuleCounters[NumModulesWithInline8bitCounters-1].Start == Start) return; |
| assert(NumModulesWithInline8bitCounters < |
| sizeof(ModuleCounters) / sizeof(ModuleCounters[0])); |
| ModuleCounters[NumModulesWithInline8bitCounters++] = {Start, Stop}; |
| NumInline8bitCounters += Stop - Start; |
| } |
| |
| void TracePC::HandlePCsInit(const uint8_t *Start, const uint8_t *Stop) { |
| const uintptr_t *B = reinterpret_cast<const uintptr_t *>(Start); |
| const uintptr_t *E = reinterpret_cast<const uintptr_t *>(Stop); |
| if (NumPCTables && ModulePCTable[NumPCTables - 1].Start == B) return; |
| assert(NumPCTables < sizeof(ModulePCTable) / sizeof(ModulePCTable[0])); |
| ModulePCTable[NumPCTables++] = {B, E}; |
| NumPCsInPCTables += E - B; |
| } |
| |
| void TracePC::HandleInit(uint32_t *Start, uint32_t *Stop) { |
| if (Start == Stop || *Start) return; |
| assert(NumModules < sizeof(Modules) / sizeof(Modules[0])); |
| for (uint32_t *P = Start; P < Stop; P++) { |
| NumGuards++; |
| if (NumGuards == kNumPCs) { |
| RawPrint( |
| "WARNING: The binary has too many instrumented PCs.\n" |
| " You may want to reduce the size of the binary\n" |
| " for more efficient fuzzing and precise coverage data\n"); |
| } |
| *P = NumGuards % kNumPCs; |
| } |
| Modules[NumModules].Start = Start; |
| Modules[NumModules].Stop = Stop; |
| NumModules++; |
| } |
| |
| void TracePC::PrintModuleInfo() { |
| if (NumGuards) { |
| Printf("INFO: Loaded %zd modules (%zd guards): ", NumModules, NumGuards); |
| for (size_t i = 0; i < NumModules; i++) |
| Printf("%zd [%p, %p), ", Modules[i].Stop - Modules[i].Start, |
| Modules[i].Start, Modules[i].Stop); |
| Printf("\n"); |
| } |
| if (NumModulesWithInline8bitCounters) { |
| Printf("INFO: Loaded %zd modules (%zd inline 8-bit counters): ", |
| NumModulesWithInline8bitCounters, NumInline8bitCounters); |
| for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++) |
| Printf("%zd [%p, %p), ", ModuleCounters[i].Stop - ModuleCounters[i].Start, |
| ModuleCounters[i].Start, ModuleCounters[i].Stop); |
| Printf("\n"); |
| } |
| if (NumPCTables) { |
| Printf("INFO: Loaded %zd PC tables (%zd PCs): ", NumPCTables, |
| NumPCsInPCTables); |
| for (size_t i = 0; i < NumPCTables; i++) { |
| Printf("%zd [%p,%p), ", ModulePCTable[i].Stop - ModulePCTable[i].Start, |
| ModulePCTable[i].Start, ModulePCTable[i].Stop); |
| } |
| Printf("\n"); |
| |
| if ((NumGuards && NumGuards != NumPCsInPCTables) || |
| (NumInline8bitCounters && NumInline8bitCounters != NumPCsInPCTables)) { |
| Printf("ERROR: The size of coverage PC tables does not match the" |
| " number of instrumented PCs. This might be a bug in the compiler," |
| " please contact the libFuzzer developers.\n"); |
| _Exit(1); |
| } |
| } |
| if (size_t NumClangCounters = ClangCountersEnd() - ClangCountersBegin()) |
| Printf("INFO: %zd Clang Coverage Counters\n", NumClangCounters); |
| } |
| |
| ATTRIBUTE_NO_SANITIZE_ALL |
| void TracePC::HandleCallerCallee(uintptr_t Caller, uintptr_t Callee) { |
| const uintptr_t kBits = 12; |
| const uintptr_t kMask = (1 << kBits) - 1; |
| uintptr_t Idx = (Caller & kMask) | ((Callee & kMask) << kBits); |
| ValueProfileMap.AddValueModPrime(Idx); |
| } |
| |
| void TracePC::UpdateObservedPCs() { |
| auto Observe = [&](uintptr_t PC) { |
| bool Inserted = ObservedPCs.insert(PC).second; |
| if (Inserted && DoPrintNewPCs) |
| PrintPC("\tNEW_PC: %p %F %L\n", "\tNEW_PC: %p\n", PC + 1); |
| }; |
| if (NumPCsInPCTables) { |
| if (NumInline8bitCounters == NumPCsInPCTables) { |
| for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++) { |
| uint8_t *Beg = ModuleCounters[i].Start; |
| size_t Size = ModuleCounters[i].Stop - Beg; |
| assert(Size == |
| (size_t)(ModulePCTable[i].Stop - ModulePCTable[i].Start)); |
| for (size_t j = 0; j < Size; j++) |
| if (Beg[j]) |
| Observe(ModulePCTable[i].Start[j]); |
| } |
| } else if (NumGuards == NumPCsInPCTables) { |
| size_t GuardIdx = 1; |
| for (size_t i = 0; i < NumModules; i++) { |
| uint32_t *Beg = Modules[i].Start; |
| size_t Size = Modules[i].Stop - Beg; |
| assert(Size == |
| (size_t)(ModulePCTable[i].Stop - ModulePCTable[i].Start)); |
| for (size_t j = 0; j < Size; j++, GuardIdx++) |
| if (Counters()[GuardIdx]) |
| Observe(ModulePCTable[i].Start[j]); |
| } |
| } |
| } |
| if (size_t NumClangCounters = |
| ClangCountersEnd() - ClangCountersBegin()) { |
| auto P = ClangCountersBegin(); |
| for (size_t Idx = 0; Idx < NumClangCounters; Idx++) |
| if (P[Idx]) |
| Observe((uintptr_t)Idx); |
| } |
| } |
| |
| inline ALWAYS_INLINE uintptr_t GetPreviousInstructionPc(uintptr_t PC) { |
| // TODO: this implementation is x86 only. |
| // see sanitizer_common GetPreviousInstructionPc for full implementation. |
| return PC - 1; |
| } |
| |
| inline ALWAYS_INLINE uintptr_t GetNextInstructionPc(uintptr_t PC) { |
| // TODO: this implementation is x86 only. |
| // see sanitizer_common GetPreviousInstructionPc for full implementation. |
| return PC + 1; |
| } |
| |
| static std::string GetModuleName(uintptr_t PC) { |
| char ModulePathRaw[4096] = ""; // What's PATH_MAX in portable C++? |
| void *OffsetRaw = nullptr; |
| if (!EF->__sanitizer_get_module_and_offset_for_pc( |
| reinterpret_cast<void *>(PC), ModulePathRaw, |
| sizeof(ModulePathRaw), &OffsetRaw)) |
| return ""; |
| return ModulePathRaw; |
| } |
| |
| void TracePC::PrintCoverage() { |
| if (!EF->__sanitizer_symbolize_pc || |
| !EF->__sanitizer_get_module_and_offset_for_pc) { |
| Printf("INFO: __sanitizer_symbolize_pc or " |
| "__sanitizer_get_module_and_offset_for_pc is not available," |
| " not printing coverage\n"); |
| return; |
| } |
| Printf("COVERAGE:\n"); |
| std::string LastFunctionName = ""; |
| std::string LastFileStr = ""; |
| std::set<size_t> UncoveredLines; |
| std::set<size_t> CoveredLines; |
| |
| auto FunctionEndCallback = [&](const std::string &CurrentFunc, |
| const std::string &CurrentFile) { |
| if (LastFunctionName != CurrentFunc) { |
| if (CoveredLines.empty() && !UncoveredLines.empty()) { |
| Printf("UNCOVERED_FUNC: %s\n", LastFunctionName.c_str()); |
| } else { |
| for (auto Line : UncoveredLines) { |
| if (!CoveredLines.count(Line)) |
| Printf("UNCOVERED_LINE: %s %s:%zd\n", LastFunctionName.c_str(), |
| LastFileStr.c_str(), Line); |
| } |
| } |
| |
| UncoveredLines.clear(); |
| CoveredLines.clear(); |
| LastFunctionName = CurrentFunc; |
| LastFileStr = CurrentFile; |
| } |
| }; |
| |
| for (size_t i = 0; i < NumPCTables; i++) { |
| auto &M = ModulePCTable[i]; |
| assert(M.Start < M.Stop); |
| auto ModuleName = GetModuleName(*M.Start); |
| for (auto Ptr = M.Start; Ptr < M.Stop; Ptr++) { |
| auto PC = *Ptr; |
| auto VisualizePC = GetNextInstructionPc(PC); |
| bool IsObserved = ObservedPCs.count(PC); |
| std::string FileStr = DescribePC("%s", VisualizePC); |
| if (!IsInterestingCoverageFile(FileStr)) continue; |
| std::string FunctionStr = DescribePC("%F", VisualizePC); |
| FunctionEndCallback(FunctionStr, FileStr); |
| std::string LineStr = DescribePC("%l", VisualizePC); |
| size_t Line = std::stoul(LineStr); |
| if (IsObserved && CoveredLines.insert(Line).second) |
| Printf("COVERED: %s %s:%zd\n", FunctionStr.c_str(), FileStr.c_str(), |
| Line); |
| else |
| UncoveredLines.insert(Line); |
| } |
| } |
| FunctionEndCallback("", ""); |
| } |
| |
| void TracePC::DumpCoverage() { |
| if (EF->__sanitizer_dump_coverage) { |
| std::vector<uintptr_t> PCsCopy(GetNumPCs()); |
| for (size_t i = 0; i < GetNumPCs(); i++) |
| PCsCopy[i] = PCs()[i] ? GetPreviousInstructionPc(PCs()[i]) : 0; |
| EF->__sanitizer_dump_coverage(PCsCopy.data(), PCsCopy.size()); |
| } |
| } |
| |
| // Value profile. |
| // We keep track of various values that affect control flow. |
| // These values are inserted into a bit-set-based hash map. |
| // Every new bit in the map is treated as a new coverage. |
| // |
| // For memcmp/strcmp/etc the interesting value is the length of the common |
| // prefix of the parameters. |
| // For cmp instructions the interesting value is a XOR of the parameters. |
| // The interesting value is mixed up with the PC and is then added to the map. |
| |
| ATTRIBUTE_NO_SANITIZE_ALL |
| void TracePC::AddValueForMemcmp(void *caller_pc, const void *s1, const void *s2, |
| size_t n, bool StopAtZero) { |
| if (!n) return; |
| size_t Len = std::min(n, Word::GetMaxSize()); |
| const uint8_t *A1 = reinterpret_cast<const uint8_t *>(s1); |
| const uint8_t *A2 = reinterpret_cast<const uint8_t *>(s2); |
| uint8_t B1[Word::kMaxSize]; |
| uint8_t B2[Word::kMaxSize]; |
| // Copy the data into locals in this non-msan-instrumented function |
| // to avoid msan complaining further. |
| size_t Hash = 0; // Compute some simple hash of both strings. |
| for (size_t i = 0; i < Len; i++) { |
| B1[i] = A1[i]; |
| B2[i] = A2[i]; |
| size_t T = B1[i]; |
| Hash ^= (T << 8) | B2[i]; |
| } |
| size_t I = 0; |
| for (; I < Len; I++) |
| if (B1[I] != B2[I] || (StopAtZero && B1[I] == 0)) |
| break; |
| size_t PC = reinterpret_cast<size_t>(caller_pc); |
| size_t Idx = (PC & 4095) | (I << 12); |
| ValueProfileMap.AddValue(Idx); |
| TORCW.Insert(Idx ^ Hash, Word(B1, Len), Word(B2, Len)); |
| } |
| |
| template <class T> |
| ATTRIBUTE_TARGET_POPCNT ALWAYS_INLINE |
| ATTRIBUTE_NO_SANITIZE_ALL |
| void TracePC::HandleCmp(uintptr_t PC, T Arg1, T Arg2) { |
| uint64_t ArgXor = Arg1 ^ Arg2; |
| uint64_t ArgDistance = __builtin_popcountll(ArgXor) + 1; // [1,65] |
| uintptr_t Idx = ((PC & 4095) + 1) * ArgDistance; |
| if (sizeof(T) == 4) |
| TORC4.Insert(ArgXor, Arg1, Arg2); |
| else if (sizeof(T) == 8) |
| TORC8.Insert(ArgXor, Arg1, Arg2); |
| ValueProfileMap.AddValue(Idx); |
| } |
| |
| static size_t InternalStrnlen(const char *S, size_t MaxLen) { |
| size_t Len = 0; |
| for (; Len < MaxLen && S[Len]; Len++) {} |
| return Len; |
| } |
| |
| // Finds min of (strlen(S1), strlen(S2)). |
| // Needed bacause one of these strings may actually be non-zero terminated. |
| static size_t InternalStrnlen2(const char *S1, const char *S2) { |
| size_t Len = 0; |
| for (; S1[Len] && S2[Len]; Len++) {} |
| return Len; |
| } |
| |
| void TracePC::ClearInlineCounters() { |
| for (size_t i = 0; i < NumModulesWithInline8bitCounters; i++) { |
| uint8_t *Beg = ModuleCounters[i].Start; |
| size_t Size = ModuleCounters[i].Stop - Beg; |
| memset(Beg, 0, Size); |
| } |
| } |
| |
| void TracePC::RecordInitialStack() { |
| InitialStack = __sancov_lowest_stack; |
| } |
| |
| uintptr_t TracePC::GetMaxStackOffset() const { |
| return InitialStack - __sancov_lowest_stack; // Stack grows down |
| } |
| |
| } // namespace fuzzer |
| |
| extern "C" { |
| ATTRIBUTE_INTERFACE |
| ATTRIBUTE_NO_SANITIZE_ALL |
| void __sanitizer_cov_trace_pc_guard(uint32_t *Guard) { |
| uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); |
| uint32_t Idx = *Guard; |
| __sancov_trace_pc_pcs[Idx] = PC; |
| __sancov_trace_pc_guard_8bit_counters[Idx]++; |
| } |
| |
| // Best-effort support for -fsanitize-coverage=trace-pc, which is available |
| // in both Clang and GCC. |
| ATTRIBUTE_INTERFACE |
| ATTRIBUTE_NO_SANITIZE_ALL |
| void __sanitizer_cov_trace_pc() { |
| uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); |
| uintptr_t Idx = PC & (((uintptr_t)1 << fuzzer::TracePC::kTracePcBits) - 1); |
| __sancov_trace_pc_pcs[Idx] = PC; |
| __sancov_trace_pc_guard_8bit_counters[Idx]++; |
| } |
| |
| ATTRIBUTE_INTERFACE |
| void __sanitizer_cov_trace_pc_guard_init(uint32_t *Start, uint32_t *Stop) { |
| fuzzer::TPC.HandleInit(Start, Stop); |
| } |
| |
| ATTRIBUTE_INTERFACE |
| void __sanitizer_cov_8bit_counters_init(uint8_t *Start, uint8_t *Stop) { |
| fuzzer::TPC.HandleInline8bitCountersInit(Start, Stop); |
| } |
| |
| ATTRIBUTE_INTERFACE |
| void __sanitizer_cov_pcs_init(const uint8_t *pcs_beg, const uint8_t *pcs_end) { |
| fuzzer::TPC.HandlePCsInit(pcs_beg, pcs_end); |
| } |
| |
| ATTRIBUTE_INTERFACE |
| ATTRIBUTE_NO_SANITIZE_ALL |
| void __sanitizer_cov_trace_pc_indir(uintptr_t Callee) { |
| uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); |
| fuzzer::TPC.HandleCallerCallee(PC, Callee); |
| } |
| |
| ATTRIBUTE_INTERFACE |
| ATTRIBUTE_NO_SANITIZE_ALL |
| ATTRIBUTE_TARGET_POPCNT |
| void __sanitizer_cov_trace_cmp8(uint64_t Arg1, uint64_t Arg2) { |
| uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); |
| fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); |
| } |
| |
| ATTRIBUTE_INTERFACE |
| ATTRIBUTE_NO_SANITIZE_ALL |
| ATTRIBUTE_TARGET_POPCNT |
| // Now the __sanitizer_cov_trace_const_cmp[1248] callbacks just mimic |
| // the behaviour of __sanitizer_cov_trace_cmp[1248] ones. This, however, |
| // should be changed later to make full use of instrumentation. |
| void __sanitizer_cov_trace_const_cmp8(uint64_t Arg1, uint64_t Arg2) { |
| uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); |
| fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); |
| } |
| |
| ATTRIBUTE_INTERFACE |
| ATTRIBUTE_NO_SANITIZE_ALL |
| ATTRIBUTE_TARGET_POPCNT |
| void __sanitizer_cov_trace_cmp4(uint32_t Arg1, uint32_t Arg2) { |
| uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); |
| fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); |
| } |
| |
| ATTRIBUTE_INTERFACE |
| ATTRIBUTE_NO_SANITIZE_ALL |
| ATTRIBUTE_TARGET_POPCNT |
| void __sanitizer_cov_trace_const_cmp4(uint32_t Arg1, uint32_t Arg2) { |
| uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); |
| fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); |
| } |
| |
| ATTRIBUTE_INTERFACE |
| ATTRIBUTE_NO_SANITIZE_ALL |
| ATTRIBUTE_TARGET_POPCNT |
| void __sanitizer_cov_trace_cmp2(uint16_t Arg1, uint16_t Arg2) { |
| uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); |
| fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); |
| } |
| |
| ATTRIBUTE_INTERFACE |
| ATTRIBUTE_NO_SANITIZE_ALL |
| ATTRIBUTE_TARGET_POPCNT |
| void __sanitizer_cov_trace_const_cmp2(uint16_t Arg1, uint16_t Arg2) { |
| uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); |
| fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); |
| } |
| |
| ATTRIBUTE_INTERFACE |
| ATTRIBUTE_NO_SANITIZE_ALL |
| ATTRIBUTE_TARGET_POPCNT |
| void __sanitizer_cov_trace_cmp1(uint8_t Arg1, uint8_t Arg2) { |
| uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); |
| fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); |
| } |
| |
| ATTRIBUTE_INTERFACE |
| ATTRIBUTE_NO_SANITIZE_ALL |
| ATTRIBUTE_TARGET_POPCNT |
| void __sanitizer_cov_trace_const_cmp1(uint8_t Arg1, uint8_t Arg2) { |
| uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); |
| fuzzer::TPC.HandleCmp(PC, Arg1, Arg2); |
| } |
| |
| ATTRIBUTE_INTERFACE |
| ATTRIBUTE_NO_SANITIZE_ALL |
| ATTRIBUTE_TARGET_POPCNT |
| void __sanitizer_cov_trace_switch(uint64_t Val, uint64_t *Cases) { |
| uint64_t N = Cases[0]; |
| uint64_t ValSizeInBits = Cases[1]; |
| uint64_t *Vals = Cases + 2; |
| // Skip the most common and the most boring case. |
| if (Vals[N - 1] < 256 && Val < 256) |
| return; |
| uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); |
| size_t i; |
| uint64_t Token = 0; |
| for (i = 0; i < N; i++) { |
| Token = Val ^ Vals[i]; |
| if (Val < Vals[i]) |
| break; |
| } |
| |
| if (ValSizeInBits == 16) |
| fuzzer::TPC.HandleCmp(PC + i, static_cast<uint16_t>(Token), (uint16_t)(0)); |
| else if (ValSizeInBits == 32) |
| fuzzer::TPC.HandleCmp(PC + i, static_cast<uint32_t>(Token), (uint32_t)(0)); |
| else |
| fuzzer::TPC.HandleCmp(PC + i, Token, (uint64_t)(0)); |
| } |
| |
| ATTRIBUTE_INTERFACE |
| ATTRIBUTE_NO_SANITIZE_ALL |
| ATTRIBUTE_TARGET_POPCNT |
| void __sanitizer_cov_trace_div4(uint32_t Val) { |
| uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); |
| fuzzer::TPC.HandleCmp(PC, Val, (uint32_t)0); |
| } |
| |
| ATTRIBUTE_INTERFACE |
| ATTRIBUTE_NO_SANITIZE_ALL |
| ATTRIBUTE_TARGET_POPCNT |
| void __sanitizer_cov_trace_div8(uint64_t Val) { |
| uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); |
| fuzzer::TPC.HandleCmp(PC, Val, (uint64_t)0); |
| } |
| |
| ATTRIBUTE_INTERFACE |
| ATTRIBUTE_NO_SANITIZE_ALL |
| ATTRIBUTE_TARGET_POPCNT |
| void __sanitizer_cov_trace_gep(uintptr_t Idx) { |
| uintptr_t PC = reinterpret_cast<uintptr_t>(__builtin_return_address(0)); |
| fuzzer::TPC.HandleCmp(PC, Idx, (uintptr_t)0); |
| } |
| |
| ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY |
| void __sanitizer_weak_hook_memcmp(void *caller_pc, const void *s1, |
| const void *s2, size_t n, int result) { |
| if (fuzzer::ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr) return; |
| if (result == 0) return; // No reason to mutate. |
| if (n <= 1) return; // Not interesting. |
| fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, n, /*StopAtZero*/false); |
| } |
| |
| ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY |
| void __sanitizer_weak_hook_strncmp(void *caller_pc, const char *s1, |
| const char *s2, size_t n, int result) { |
| if (fuzzer::ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr) return; |
| if (result == 0) return; // No reason to mutate. |
| size_t Len1 = fuzzer::InternalStrnlen(s1, n); |
| size_t Len2 = fuzzer::InternalStrnlen(s2, n); |
| n = std::min(n, Len1); |
| n = std::min(n, Len2); |
| if (n <= 1) return; // Not interesting. |
| fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, n, /*StopAtZero*/true); |
| } |
| |
| ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY |
| void __sanitizer_weak_hook_strcmp(void *caller_pc, const char *s1, |
| const char *s2, int result) { |
| if (fuzzer::ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr) return; |
| if (result == 0) return; // No reason to mutate. |
| size_t N = fuzzer::InternalStrnlen2(s1, s2); |
| if (N <= 1) return; // Not interesting. |
| fuzzer::TPC.AddValueForMemcmp(caller_pc, s1, s2, N, /*StopAtZero*/true); |
| } |
| |
| ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY |
| void __sanitizer_weak_hook_strncasecmp(void *called_pc, const char *s1, |
| const char *s2, size_t n, int result) { |
| if (fuzzer::ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr) return; |
| return __sanitizer_weak_hook_strncmp(called_pc, s1, s2, n, result); |
| } |
| |
| ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY |
| void __sanitizer_weak_hook_strcasecmp(void *called_pc, const char *s1, |
| const char *s2, int result) { |
| if (fuzzer::ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr) return; |
| return __sanitizer_weak_hook_strcmp(called_pc, s1, s2, result); |
| } |
| |
| ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY |
| void __sanitizer_weak_hook_strstr(void *called_pc, const char *s1, |
| const char *s2, char *result) { |
| if (fuzzer::ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr) return; |
| fuzzer::TPC.MMT.Add(reinterpret_cast<const uint8_t *>(s2), strlen(s2)); |
| } |
| |
| ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY |
| void __sanitizer_weak_hook_strcasestr(void *called_pc, const char *s1, |
| const char *s2, char *result) { |
| if (fuzzer::ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr) return; |
| fuzzer::TPC.MMT.Add(reinterpret_cast<const uint8_t *>(s2), strlen(s2)); |
| } |
| |
| ATTRIBUTE_INTERFACE ATTRIBUTE_NO_SANITIZE_MEMORY |
| void __sanitizer_weak_hook_memmem(void *called_pc, const void *s1, size_t len1, |
| const void *s2, size_t len2, void *result) { |
| if (fuzzer::ScopedDoingMyOwnMemOrStr::DoingMyOwnMemOrStr) return; |
| fuzzer::TPC.MMT.Add(reinterpret_cast<const uint8_t *>(s2), len2); |
| } |
| } // extern "C" |