| // Copyright 2017 The Chromium Authors |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #ifndef MINI_CHROMIUM_BASE_CONTAINERS_SPAN_H_ |
| #define MINI_CHROMIUM_BASE_CONTAINERS_SPAN_H_ |
| |
| #include <stddef.h> |
| #include <stdint.h> |
| |
| #include <algorithm> |
| #include <array> |
| #include <concepts> |
| #include <iterator> |
| #include <limits> |
| #include <memory> |
| #include <span> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "base/check.h" |
| #include "base/compiler_specific.h" |
| #include "base/containers/checked_iterators.h" |
| #include "base/containers/dynamic_extent.h" |
| #include "base/numerics/safe_conversions.h" |
| #include "base/template_util.h" |
| #include "base/types/to_address.h" |
| |
| // No absl in mini_chromium. |
| #if !defined(ABSL_ATTRIBUTE_LIFETIME_BOUND) |
| #define ABSL_ATTRIBUTE_LIFETIME_BOUND |
| #endif |
| |
| namespace base { |
| |
| template <size_t N> |
| using fixed_extent = std::integral_constant<size_t, N>; |
| |
| template <typename T, |
| size_t Extent = dynamic_extent, |
| typename InternalPtrType = T*> |
| class span; |
| |
| namespace internal { |
| |
| template <typename T> |
| concept IntegralConstantLike = |
| std::is_integral_v<decltype(T::value)> && |
| !std::is_same_v<bool, std::remove_const_t<decltype(T::value)>> && |
| std::convertible_to<T, decltype(T::value)> && |
| std::equality_comparable_with<T, decltype(T::value)> && |
| std::bool_constant<T() == T::value>::value && |
| std::bool_constant<static_cast<decltype(T::value)>(T()) == T::value>::value; |
| |
| template <typename T> |
| inline constexpr size_t MaybeStaticExt = dynamic_extent; |
| template <typename T> |
| requires IntegralConstantLike<T> |
| inline constexpr size_t MaybeStaticExt<T> = {T::value}; |
| |
| template <typename From, typename To> |
| concept LegalDataConversion = |
| std::convertible_to<std::remove_reference_t<From> (*)[], |
| std::remove_reference_t<To> (*)[]>; |
| |
| template <typename T, typename It> |
| concept CompatibleIter = std::contiguous_iterator<It> && |
| LegalDataConversion<std::iter_reference_t<It>, T>; |
| |
| template <typename T, typename R> |
| concept CompatibleRange = |
| std::ranges::contiguous_range<R> && std::ranges::sized_range<R> && |
| LegalDataConversion<std::ranges::range_reference_t<R>, T> && |
| (std::ranges::borrowed_range<R> || std::is_const_v<T>); |
| |
| // NOTE: Ideally we'd just use `CompatibleRange`, however this currently breaks |
| // code that was written prior to C++20 being standardized and assumes providing |
| // .data() and .size() is sufficient. |
| // TODO: https://crbug.com/1504998 - Remove in favor of CompatibleRange and fix |
| // callsites. |
| template <typename T, typename R> |
| concept LegacyCompatibleRange = requires(R& r) { |
| { *std::ranges::data(r) } -> LegalDataConversion<T>; |
| std::ranges::size(r); |
| }; |
| |
| template <size_t I> |
| using size_constant = std::integral_constant<size_t, I>; |
| |
| template <typename T> |
| struct ExtentImpl : size_constant<dynamic_extent> {}; |
| |
| template <typename T, size_t N> |
| struct ExtentImpl<T[N]> : size_constant<N> {}; |
| |
| template <typename T, size_t N> |
| struct ExtentImpl<std::array<T, N>> : size_constant<N> {}; |
| |
| template <typename T, size_t N> |
| struct ExtentImpl<base::span<T, N>> : size_constant<N> {}; |
| |
| template <typename T> |
| using Extent = ExtentImpl<std::remove_cvref_t<T>>; |
| |
| template <typename T> |
| inline constexpr size_t ExtentV = Extent<T>::value; |
| |
| // must_not_be_dynamic_extent prevents |dynamic_extent| from being returned in a |
| // constexpr context. |
| template <size_t kExtent> |
| constexpr size_t must_not_be_dynamic_extent() { |
| static_assert( |
| kExtent != dynamic_extent, |
| "EXTENT should only be used for containers with a static extent."); |
| return kExtent; |
| } |
| |
| template <class T, class U, size_t N, size_t M> |
| requires((N == M || N == dynamic_extent || M == dynamic_extent) && |
| std::equality_comparable_with<T, U>) |
| constexpr bool span_cmp(span<T, N> l, span<U, M> r); |
| |
| } // namespace internal |
| |
| // A span is a value type that represents an array of elements of type T. Since |
| // it only consists of a pointer to memory with an associated size, it is very |
| // light-weight. It is cheap to construct, copy, move and use spans, so that |
| // users are encouraged to use it as a pass-by-value parameter. A span does not |
| // own the underlying memory, so care must be taken to ensure that a span does |
| // not outlive the backing store. |
| // |
| // span is somewhat analogous to std::string_view, but with arbitrary element |
| // types, allowing mutation if T is non-const. |
| // |
| // span is implicitly convertible from C++ arrays, as well as most [1] |
| // container-like types that provide a data() and size() method (such as |
| // std::vector<T>). A mutable span<T> can also be implicitly converted to an |
| // immutable span<const T>. |
| // |
| // Consider using a span for functions that take a data pointer and size |
| // parameter: it allows the function to still act on an array-like type, while |
| // allowing the caller code to be a bit more concise. |
| // |
| // For read-only data access pass a span<const T>: the caller can supply either |
| // a span<const T> or a span<T>, while the callee will have a read-only view. |
| // For read-write access a mutable span<T> is required. |
| // |
| // Without span: |
| // Read-Only: |
| // // std::string HexEncode(const uint8_t* data, size_t size); |
| // std::vector<uint8_t> data_buffer = GenerateData(); |
| // std::string r = HexEncode(data_buffer.data(), data_buffer.size()); |
| // |
| // Mutable: |
| // // ssize_t SafeSNPrintf(char* buf, size_t N, const char* fmt, Args...); |
| // char str_buffer[100]; |
| // SafeSNPrintf(str_buffer, sizeof(str_buffer), "Pi ~= %lf", 3.14); |
| // |
| // With span: |
| // Read-Only: |
| // // std::string HexEncode(base::span<const uint8_t> data); |
| // std::vector<uint8_t> data_buffer = GenerateData(); |
| // std::string r = HexEncode(data_buffer); |
| // |
| // Mutable: |
| // // ssize_t SafeSNPrintf(base::span<char>, const char* fmt, Args...); |
| // char str_buffer[100]; |
| // SafeSNPrintf(str_buffer, "Pi ~= %lf", 3.14); |
| // |
| // Dynamic vs Fixed size spans |
| // --------------------------- |
| // |
| // Normally spans have a dynamic size, which is represented as a type as |
| // `span<T>`. However it is possible to encode the size of the span into the |
| // type as a second parameter such as `span<T, N>`. When working with fixed-size |
| // spans, the compiler will check the size of operations and prevent compilation |
| // when an invalid size is used for an operation such as assignment or |
| // `copy_from()`. However operations that produce a new span will make a |
| // dynamic-sized span by default. See below for how to prevent that. |
| // |
| // Fixed-size spans implicitly convert to a dynamic-size span, throwing away the |
| // compile-time size information from the type signature. So most code should |
| // work with dynamic-sized `span<T>` types and not worry about the existence of |
| // fixed-size spans. |
| // |
| // It is possible to convert from a dynamic-size to a fixed-size span (or to |
| // move from a fixed-size span to another fixed-size span) but it requires |
| // writing an the size explicitly in the code. Methods like `first` can be |
| // passed a size as a template argument, such as `first<N>()` to generate a |
| // fixed-size span. And the `make_span` function can be given a compile-time |
| // size in a similar way with `make_span<N>()`. |
| // |
| // Spans with "const" and pointers |
| // ------------------------------- |
| // |
| // Const and pointers can get confusing. Here are vectors of pointers and their |
| // corresponding spans: |
| // |
| // const std::vector<int*> => base::span<int* const> |
| // std::vector<const int*> => base::span<const int*> |
| // const std::vector<const int*> => base::span<const int* const> |
| // |
| // Differences from the C++ standard |
| // --------------------------------- |
| // |
| // http://eel.is/c++draft/views.span contains the latest C++ draft of std::span. |
| // Chromium tries to follow the draft as close as possible. Differences between |
| // the draft and the implementation are documented in subsections below. |
| // |
| // Differences from [span.overview]: |
| // - Dynamic spans are implemented as a partial specialization of the regular |
| // class template. This leads to significantly simpler checks involving the |
| // extent, at the expense of some duplicated code. The same strategy is used |
| // by libc++. |
| // |
| // Differences from [span.objectrep]: |
| // - as_bytes() and as_writable_bytes() return spans of uint8_t instead of |
| // std::byte. |
| // |
| // Differences from [span.cons]: |
| // - The constructors from a contiguous range apart from a C array are folded |
| // into a single one, using a construct similarly to the one proposed |
| // (but not standardized) in https://wg21.link/P1419. |
| // The C array constructor is kept so that a span can be constructed from |
| // an init list like {{1, 2, 3}}. |
| // TODO: https://crbug.com/828324 - Consider adding C++26's constructor from |
| // a std::initializer_list instead. |
| // - The conversion constructors from a contiguous range into a dynamic span |
| // don't check for the range concept, but rather whether std::ranges::data |
| // and std::ranges::size are well formed. This is due to legacy reasons and |
| // should be fixed. |
| // |
| // Differences from [span.deduct]: |
| // - The deduction guides from a contiguous range are folded into a single one, |
| // and treat borrowed ranges correctly. |
| // - Add deduction guide from rvalue array. |
| // |
| // Other differences: |
| // - Using StrictNumeric<size_t> instead of size_t where possible. |
| // |
| // Additions beyond the C++ standard draft |
| // - as_chars() function. |
| // - as_writable_chars() function. |
| // - as_byte_span() function. |
| // - as_writable_byte_span() function. |
| // - copy_from() method. |
| // - span_from_ref() function. |
| // - byte_span_from_ref() function. |
| // - span_from_cstring() function. |
| // - byte_span_from_cstring() function. |
| // - split_at() method. |
| // - operator==() comparator function. |
| // |
| // Furthermore, all constructors and methods are marked noexcept due to the lack |
| // of exceptions in Chromium. |
| // |
| // Due to the lack of class template argument deduction guides in C++14 |
| // appropriate make_span() utility functions are provided for historic reasons. |
| |
| // [span], class template span |
| template <typename T, size_t N, typename InternalPtrType> |
| class GSL_POINTER span { |
| public: |
| using element_type = T; |
| using value_type = std::remove_cv_t<T>; |
| using size_type = size_t; |
| using difference_type = ptrdiff_t; |
| using pointer = T*; |
| using const_pointer = const T*; |
| using reference = T&; |
| using const_reference = const T&; |
| using iterator = CheckedContiguousIterator<T>; |
| using reverse_iterator = std::reverse_iterator<iterator>; |
| static constexpr size_t extent = N; |
| |
| // [span.cons], span constructors, copy, assignment, and destructor |
| constexpr span() noexcept |
| requires(N == 0) |
| = default; |
| |
| template <typename It, size_t N> |
| requires(internal::CompatibleIter<T, It>) |
| UNSAFE_BUFFER_USAGE explicit constexpr span( |
| It first, |
| std::integral_constant<size_t, N> count) noexcept |
| : span(first, N) {} |
| |
| // Constructs a span from a contiguous iterator and a size. |
| // |
| // # Checks |
| // The function CHECKs that `count` matches the template parameter `N` and |
| // will terminate otherwise. |
| // |
| // # Safety |
| // The iterator must point to the first of at least `count` many elements, or |
| // Undefined Behaviour can result as the span will allow access beyond the |
| // valid range of the collection pointed to by the iterator. |
| template <typename It> |
| requires(internal::CompatibleIter<T, It>) |
| UNSAFE_BUFFER_USAGE explicit constexpr span( |
| It first, |
| StrictNumeric<size_t> count) noexcept |
| : // The use of to_address() here is to handle the case where the |
| // iterator `first` is pointing to the container's `end()`. In that |
| // case we can not use the address returned from the iterator, or |
| // dereference it through the iterator's `operator*`, but we can store |
| // it. We must assume in this case that `count` is 0, since the |
| // iterator does not point to valid data. Future hardening of iterators |
| // may disallow pulling the address from `end()`, as demonstrated by |
| // asserts() in libstdc++: |
| // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93960. |
| // |
| // The span API dictates that the `data()` is accessible when size is |
| // 0, since the pointer may be valid, so we cannot prevent storing and |
| // giving out an invalid pointer here without breaking API |
| // compatibility and our unit tests. Thus protecting against this can |
| // likely only be successful from inside iterators themselves, where |
| // the context about the pointer is known. |
| // |
| // We can not protect here generally against an invalid iterator/count |
| // being passed in, since we have no context to determine if the |
| // iterator or count are valid. |
| data_(base::to_address(first)) { |
| // Guarantees that the N in the type signature is correct. |
| CHECK(N == count); |
| } |
| |
| // Constructs a span from a contiguous iterator and a size. |
| // |
| // # Checks |
| // The function CHECKs that `it <= end` and will terminate otherwise. |
| // |
| // # Safety |
| // The begin and end iterators must be for the same allocation or Undefined |
| // Behaviour can result as the span will allow access beyond the valid range |
| // of the collection pointed to by `begin`. |
| template <typename It, typename End> |
| requires(internal::CompatibleIter<T, It> && |
| std::sized_sentinel_for<End, It> && |
| !std::convertible_to<End, size_t>) |
| UNSAFE_BUFFER_USAGE explicit constexpr span(It begin, End end) noexcept |
| // SAFETY: The caller must guarantee that the iterator and end sentinel |
| // are part of the same allocation, in which case it is the number of |
| // elements between the iterators and thus a valid size for the pointer to |
| // the element at `begin`. |
| // |
| // We CHECK that `end - begin` did not underflow below. Normally checking |
| // correctness afterward is flawed, however underflow is not UB and the |
| // size is not converted to an invalid pointer (which would be UB) before |
| // we CHECK for underflow. |
| : UNSAFE_BUFFERS(span(begin, static_cast<size_t>(end - begin))) { |
| // Verify `end - begin` did not underflow. |
| CHECK(begin <= end); |
| } |
| |
| // NOLINTNEXTLINE(google-explicit-constructor) |
| constexpr span(T (&arr)[N]) noexcept |
| // SAFETY: The std::ranges::size() function gives the number of elements |
| // pointed to by the std::ranges::data() function, which meets the |
| // requirement of span. |
| : UNSAFE_BUFFERS(span(std::ranges::data(arr), std::ranges::size(arr))) {} |
| |
| template <typename R, size_t X = internal::ExtentV<R>> |
| requires(internal::CompatibleRange<T, R> && (X == N || X == dynamic_extent)) |
| // NOLINTNEXTLINE(google-explicit-constructor) |
| explicit(X == dynamic_extent) constexpr span(R&& range) noexcept |
| // SAFETY: The std::ranges::size() function gives the number of elements |
| // pointed to by the std::ranges::data() function, which meets the |
| // requirement of span. |
| : UNSAFE_BUFFERS( |
| span(std::ranges::data(range), std::ranges::size(range))) {} |
| |
| // [span.sub], span subviews |
| template <size_t Count> |
| constexpr span<T, Count> first() const noexcept |
| requires(Count <= N) |
| { |
| // SAFETY: span provides that data() points to at least `N` many elements. |
| // `Count` is non-negative by its type and `Count <= N` from the requires |
| // condition. So `Count` is a valid new size for `data()`. |
| return UNSAFE_BUFFERS(span<T, Count>(data(), Count)); |
| } |
| |
| template <size_t Count> |
| constexpr span<T, Count> last() const noexcept |
| requires(Count <= N) |
| { |
| // SAFETY: span provides that data() points to at least `N` many elements. |
| // `Count` is non-negative by its type and `Count <= N` from the requires |
| // condition. So `0 <= N - Count <= N`, meaning `N - Count` is a valid new |
| // size for `data()` and it will point to `Count` many elements.` |
| return UNSAFE_BUFFERS(span<T, Count>(data() + (N - Count), Count)); |
| } |
| |
| // Returns a span over the first `count` elements. |
| // |
| // # Checks |
| // The function CHECKs that the span contains at least `count` elements and |
| // will terminate otherwise. |
| constexpr span<T> first(StrictNumeric<size_t> count) const noexcept { |
| CHECK_LE(size_t{count}, size()); |
| // SAFETY: span provides that data() points to at least `N` many elements. |
| // `count` is non-negative by its type and `count <= N` from the CHECK |
| // above. So `count` is a valid new size for `data()`. |
| return UNSAFE_BUFFERS({data(), count}); |
| } |
| |
| // Returns a span over the last `count` elements. |
| // |
| // # Checks |
| // The function CHECKs that the span contains at least `count` elements and |
| // will terminate otherwise. |
| constexpr span<T> last(StrictNumeric<size_t> count) const noexcept { |
| CHECK_LE(size_t{count}, N); |
| // SAFETY: span provides that data() points to at least `N` many elements. |
| // `count` is non-negative by its type and `count <= N` from the CHECK |
| // above. So `0 <= N - count <= N`, meaning `N - count` is a valid new size |
| // for `data()` and it will point to `count` many elements. |
| return UNSAFE_BUFFERS({data() + (N - size_t{count}), count}); |
| } |
| |
| template <size_t Offset, size_t Count = dynamic_extent> |
| constexpr auto subspan() const noexcept |
| requires(Offset <= N && (Count == dynamic_extent || Count <= N - Offset)) |
| { |
| constexpr size_t kExtent = Count != dynamic_extent ? Count : N - Offset; |
| // SAFETY: span provides that data() points to at least `N` many elements. |
| // |
| // If Count is dynamic_extent, kExtent becomes `N - Offset`. Since `Offset |
| // <= N` from the requires condition, then `Offset` is a valid offset for |
| // data(), and `Offset + kExtent = Offset + N - Offset = N >= Offset` is |
| // also a valid offset that is not before `Offset`. This makes a span at |
| // `Offset` with size `kExtent` valid. |
| // |
| // Otherwise `Count <= N - Offset` and `0 <= Offset <= N` by the requires |
| // condition, so `Offset <= N - Count` and `N - Count` can not underflow. |
| // Then `Offset` is a valid offset for data() and `kExtent` is `Count <= N - |
| // Offset`, so `Offset + kExtent <= Offset + N - Offset = N` which makes |
| // both `Offset` and `Offset + kExtent` valid offsets for data(), and since |
| // `kExtent` is non-negative, `Offset + kExtent` is not before `Offset` so |
| // `kExtent` is a valid size for the span at `data() + Offset`. |
| return UNSAFE_BUFFERS(span<T, kExtent>(data() + Offset, kExtent)); |
| } |
| |
| // Returns a span over the first `count` elements starting at the given |
| // `offset` from the start of the span. |
| // |
| // # Checks |
| // The function CHECKs that the span contains at least `offset + count` |
| // elements, or at least `offset` elements if `count` is not specified, and |
| // will terminate otherwise. |
| constexpr span<T> subspan(size_t offset, |
| size_t count = dynamic_extent) const noexcept { |
| CHECK_LE(offset, N); |
| CHECK(count == dynamic_extent || count <= N - offset); |
| const size_t new_extent = count != dynamic_extent ? count : N - offset; |
| // SAFETY: span provides that data() points to at least `N` many elements. |
| // |
| // If Count is dynamic_extent, `new_extent` becomes `N - offset`. Since |
| // `offset <= N` from the requires condition, then `offset` is a valid |
| // offset for data(), and `offset + new_extent = offset + N - offset = N >= |
| // offset` is also a valid offset that is not before `offset`. This makes a |
| // span at `offset` with size `new_extent` valid. |
| // |
| // Otherwise `count <= N - offset` and `0 <= offset <= N` by the requires |
| // condition, so `offset <= N - count` and `N - count` can not underflow. |
| // Then `offset` is a valid offset for data() and `new_extent` is `count <= |
| // N - offset`, so `offset + new_extent <= offset + N - offset = N` which |
| // makes both `offset` and `offset + new_extent` valid offsets for data(), |
| // and since `new_extent` is non-negative, `offset + new_extent` is not |
| // before `offset` so `new_extent` is a valid size for the span at `data() + |
| // offset`. |
| return UNSAFE_BUFFERS({data() + offset, new_extent}); |
| } |
| |
| // Splits a span into two at the given `offset`, returning two spans that |
| // cover the full range of the original span. |
| // |
| // Similar to calling subspan() with the `offset` as the length on the first |
| // call, and then the `offset` as the offset in the second. |
| // |
| // The split_at<N>() overload allows construction of a fixed-size span from a |
| // compile-time constant. If the input span is fixed-size, both output output |
| // spans will be. Otherwise, the first will be fixed-size and the second will |
| // be dynamic-size. |
| // |
| // This is a non-std extension that is inspired by the Rust slice::split_at() |
| // and split_at_mut() methods. |
| // |
| // # Checks |
| // The function CHECKs that the span contains at least `offset` elements and |
| // will terminate otherwise. |
| constexpr std::pair<span<T>, span<T>> split_at(size_t offset) const noexcept { |
| return {first(offset), subspan(offset)}; |
| } |
| |
| template <size_t Offset> |
| requires(Offset <= N) |
| constexpr std::pair<span<T, Offset>, span<T, N - Offset>> split_at() |
| const noexcept { |
| return {first<Offset>(), subspan<Offset, N - Offset>()}; |
| } |
| |
| // [span.obs], span observers |
| constexpr size_t size() const noexcept { return N; } |
| constexpr size_t size_bytes() const noexcept { return size() * sizeof(T); } |
| [[nodiscard]] constexpr bool empty() const noexcept { return size() == 0; } |
| |
| // [span.elem], span element access |
| // |
| // # Checks |
| // The function CHECKs that the `idx` is inside the span and will terminate |
| // otherwise. |
| constexpr T& operator[](size_t idx) const noexcept { |
| CHECK_LT(idx, size()); |
| // SAFETY: Since data() always points to at least `N` elements, the check |
| // above ensures `idx < N` and is thus in range for data(). |
| return UNSAFE_BUFFERS(data()[idx]); |
| } |
| |
| constexpr T& front() const noexcept |
| requires(N > 0) |
| { |
| // SAFETY: Since data() always points to at least `N` elements, the requires |
| // constraint above ensures `0 < N` and is thus in range for data(). |
| return UNSAFE_BUFFERS(data()[0]); |
| } |
| |
| constexpr T& back() const noexcept |
| requires(N > 0) |
| { |
| // SAFETY: Since data() always points to at least `N` elements, the requires |
| // constraint above ensures `N > 0` and thus `N - 1` does not underflow and |
| // is in range for data(). |
| return UNSAFE_BUFFERS(data()[N - 1]); |
| } |
| |
| // Returns a pointer to the first element in the span. If the span is empty |
| // (`size()` is 0), the returned pointer may or may not be null, and it must |
| // not be dereferenced. |
| // |
| // It is always valid to add `size()` to the the pointer in C++ code, though |
| // it may be invalid in C code when the span is empty. |
| constexpr T* data() const noexcept { return data_; } |
| |
| // [span.iter], span iterator support |
| constexpr iterator begin() const noexcept { |
| // SAFETY: span provides that data() points to at least `size()` many |
| // elements, and size() is non-negative. So data() + size() is a valid |
| // pointer for the data() allocation. |
| return UNSAFE_BUFFERS(iterator(data(), data() + size())); |
| } |
| |
| constexpr iterator end() const noexcept { |
| // SAFETY: span provides that data() points to at least `size()` many |
| // elements, and size() is non-negative. So data() + size() is a valid |
| // pointer for the data() allocation. |
| return UNSAFE_BUFFERS(iterator(data(), data() + size(), data() + size())); |
| } |
| |
| constexpr reverse_iterator rbegin() const noexcept { |
| return reverse_iterator(end()); |
| } |
| |
| constexpr reverse_iterator rend() const noexcept { |
| return reverse_iterator(begin()); |
| } |
| |
| // Bounds-checked copy from a non-overlapping span. The spans must be the |
| // exact same size or a hard CHECK() occurs. If the two spans overlap, |
| // Undefined Behaviour occurs. |
| // |
| // This is a non-std extension that is inspired by the Rust |
| // slice::copy_from_slice() method. |
| // |
| // # Checks |
| // The function CHECKs that the `other` span has the same size as itself and |
| // will terminate otherwise. |
| constexpr void copy_from(span<const T, N> other) |
| requires(!std::is_const_v<T>) |
| { |
| CHECK_EQ(size_bytes(), other.size_bytes()); |
| // Verify non-overlapping in developer builds. |
| // |
| // SAFETY: span provides that data() points to at least size() many |
| // elements, so adding size() to the data() pointer is well-defined. |
| DCHECK(UNSAFE_BUFFERS(data() + size()) <= other.data() || |
| data() >= UNSAFE_BUFFERS(other.data() + other.size())); |
| // When compiling with -Oz, std::ranges::copy() does not get inlined, which |
| // makes copy_from() very expensive compared to memcpy for small sizes (up |
| // to around 4x slower). We observe that this is because ranges::copy() uses |
| // begin()/end() and span's iterators are checked iterators, not just |
| // pointers. This additional complexity prevents inlining and breaks the |
| // ability for the compiler to eliminate code. |
| // |
| // See also https://crbug.com/1396134. |
| // |
| // We also see std::copy() (with pointer arguments! not iterators) optimize |
| // and inline better than memcpy() since memcpy() needs to rely on |
| // size_bytes(), which while computable at compile time when `other` has a |
| // fixed size, the optimizer stumbles on with -Oz. |
| // |
| // SAFETY: The copy() here does not check bounds, but we have verified that |
| // `this` and `other` have the same bounds above (and are pointers of the |
| // same type), so `data()` and `other.data()` both have at least |
| // `other.size()` elements. |
| UNSAFE_BUFFERS( |
| std::copy(other.data(), other.data() + other.size(), data())); |
| } |
| |
| // Implicit conversion from std::span<T, N> to base::span<T, N>. |
| // |
| // We get other conversions for free from std::span's constructors, but it |
| // does not deduce N on its range constructor. |
| span(std::span<std::remove_const_t<T>, N> other) |
| : // SAFETY: std::span contains a valid data pointer and size such |
| // that pointer+size remains valid. |
| UNSAFE_BUFFERS( |
| span(std::ranges::data(other), std::ranges::size(other))) {} |
| span(std::span<T, N> other) |
| requires(std::is_const_v<T>) |
| : // SAFETY: std::span contains a valid data pointer and size such |
| // that pointer+size remains valid. |
| UNSAFE_BUFFERS( |
| span(std::ranges::data(other), std::ranges::size(other))) {} |
| |
| // Implicit conversion from base::span<T, N> to std::span<T, N>. |
| // |
| // We get other conversions for free from std::span's constructors, but it |
| // does not deduce N on its range constructor. |
| operator std::span<T, N>() const { return std::span<T, N>(*this); } |
| operator std::span<const T, N>() const |
| requires(!std::is_const_v<T>) |
| { |
| return std::span<const T, N>(*this); |
| } |
| |
| // Compares two spans for equality by comparing the objects pointed to by the |
| // spans. The operation is defined for spans of different types as long as the |
| // types are themselves comparable. |
| // |
| // For primitive types, this replaces the less safe `memcmp` function, where |
| // `memcmp(a.data(), b.data(), a.size())` can be written as `a == b` and can |
| // no longer go outside the bounds of `b`. Otherwise, it replaced std::equal |
| // or std::ranges::equal when working with spans, and when no projection is |
| // needed. |
| // |
| // If the spans are of different sizes, they are not equal. If both spans are |
| // empty, they are always equal (even though their data pointers may differ). |
| // |
| // # Implementation note |
| // The non-template overloads allow implicit conversions to span for |
| // comparison. |
| friend constexpr bool operator==(span lhs, span rhs) |
| requires(std::equality_comparable<const T>) |
| { |
| return internal::span_cmp(span<const T, N>(lhs), span<const T, N>(rhs)); |
| } |
| friend constexpr bool operator==(span lhs, span<const T, N> rhs) |
| requires(!std::is_const_v<T> && std::equality_comparable<const T>) |
| { |
| return internal::span_cmp(span<const T, N>(lhs), span<const T, N>(rhs)); |
| } |
| template <class U, size_t M> |
| requires((N == M || M == dynamic_extent) && |
| std::equality_comparable_with<const T, const U>) |
| friend constexpr bool operator==(span lhs, span<U, M> rhs) { |
| return internal::span_cmp(span<const T, N>(lhs), span<const U, M>(rhs)); |
| } |
| |
| private: |
| // This field is not a raw_ptr<> since span is mostly used for stack |
| // variables. Use `raw_span` instead for class fields, which does use |
| // raw_ptr<> internally. |
| InternalPtrType data_ = nullptr; |
| }; |
| |
| // [span], class template span |
| template <typename T, typename InternalPtrType> |
| class GSL_POINTER span<T, dynamic_extent, InternalPtrType> { |
| public: |
| using element_type = T; |
| using value_type = std::remove_cv_t<T>; |
| using size_type = size_t; |
| using difference_type = ptrdiff_t; |
| using pointer = T*; |
| using const_pointer = const T*; |
| using reference = T&; |
| using const_reference = const T&; |
| using iterator = CheckedContiguousIterator<T>; |
| using reverse_iterator = std::reverse_iterator<iterator>; |
| static constexpr size_t extent = dynamic_extent; |
| |
| constexpr span() noexcept = default; |
| |
| // Constructs a span from a contiguous iterator and a size. |
| // |
| // # Safety |
| // The iterator must point to the first of at least `count` many elements, or |
| // Undefined Behaviour can result as the span will allow access beyond the |
| // valid range of the collection pointed to by the iterator. |
| template <typename It> |
| requires(internal::CompatibleIter<T, It>) |
| UNSAFE_BUFFER_USAGE constexpr span(It first, |
| StrictNumeric<size_t> count) noexcept |
| // The use of to_address() here is to handle the case where the iterator |
| // `first` is pointing to the container's `end()`. In that case we can |
| // not use the address returned from the iterator, or dereference it |
| // through the iterator's `operator*`, but we can store it. We must |
| // assume in this case that `count` is 0, since the iterator does not |
| // point to valid data. Future hardening of iterators may disallow |
| // pulling the address from `end()`, as demonstrated by asserts() in |
| // libstdc++: https://gcc.gnu.org/bugzilla/show_bug.cgi?id=93960. |
| // |
| // The span API dictates that the `data()` is accessible when size is 0, |
| // since the pointer may be valid, so we cannot prevent storing and |
| // giving out an invalid pointer here without breaking API compatibility |
| // and our unit tests. Thus protecting against this can likely only be |
| // successful from inside iterators themselves, where the context about |
| // the pointer is known. |
| // |
| // We can not protect here generally against an invalid iterator/count |
| // being passed in, since we have no context to determine if the |
| // iterator or count are valid. |
| : data_(base::to_address(first)), size_(count) {} |
| |
| // Constructs a span from a contiguous iterator and a size. |
| // |
| // # Safety |
| // The begin and end iterators must be for the same allocation, and `begin <= |
| // end` or Undefined Behaviour can result as the span will allow access beyond |
| // the valid range of the collection pointed to by `begin`. |
| template <typename It, typename End> |
| requires(internal::CompatibleIter<T, It> && |
| std::sized_sentinel_for<End, It> && |
| !std::convertible_to<End, size_t>) |
| UNSAFE_BUFFER_USAGE constexpr span(It begin, End end) noexcept |
| // SAFETY: The caller must guarantee that the iterator and end sentinel |
| // are part of the same allocation, in which case it is the number of |
| // elements between the iterators and thus a valid size for the pointer to |
| // the element at `begin`. |
| // |
| // We CHECK that `end - begin` did not underflow below. Normally checking |
| // correctness afterward is flawed, however underflow is not UB and the |
| // size is not converted to an invalid pointer (which would be UB) before |
| // we CHECK for underflow. |
| : UNSAFE_BUFFERS(span(begin, static_cast<size_t>(end - begin))) { |
| // Verify `end - begin` did not underflow. |
| CHECK(begin <= end); |
| } |
| |
| template <size_t N> |
| // NOLINTNEXTLINE(google-explicit-constructor) |
| constexpr span(T (&arr)[N]) noexcept |
| // SAFETY: The std::ranges::size() function gives the number of elements |
| // pointed to by the std::ranges::data() function, which meets the |
| // requirement of span. |
| : UNSAFE_BUFFERS(span(std::ranges::data(arr), std::ranges::size(arr))) {} |
| |
| template <typename R> |
| requires(internal::LegacyCompatibleRange<T, R>) |
| // NOLINTNEXTLINE(google-explicit-constructor) |
| constexpr span(R&& range) noexcept |
| // SAFETY: The std::ranges::size() function gives the number of elements |
| // pointed to by the std::ranges::data() function, which meets the |
| // requirement of span. |
| : UNSAFE_BUFFERS( |
| span(std::ranges::data(range), std::ranges::size(range))) {} |
| |
| // [span.sub], span subviews |
| template <size_t Count> |
| constexpr span<T, Count> first() const noexcept { |
| CHECK_LE(Count, size()); |
| // SAFETY: span provides that data() points to at least `size()` many |
| // elements. `Count` is non-negative by its type and `Count <= size()` from |
| // the CHECK above. So `Count` is a valid new size for `data()`. |
| return UNSAFE_BUFFERS(span<T, Count>(data(), Count)); |
| } |
| |
| template <size_t Count> |
| constexpr span<T, Count> last() const noexcept { |
| CHECK_LE(Count, size()); |
| // SAFETY: span provides that data() points to at least `size()` many |
| // elements. `Count` is non-negative by its type and `Count <= size()` from |
| // the check above. So `0 <= size() - Count <= size()`, meaning |
| // `size() - Count` is a valid new size for `data()` and it will point to |
| // `Count` many elements. |
| return UNSAFE_BUFFERS(span<T, Count>(data() + (size() - Count), Count)); |
| } |
| |
| // Returns a span over the first `count` elements. |
| // |
| // # Checks |
| // The function CHECKs that the span contains at least `count` elements and |
| // will terminate otherwise. |
| constexpr span<T> first(StrictNumeric<size_t> count) const noexcept { |
| CHECK_LE(size_t{count}, size()); |
| // SAFETY: span provides that data() points to at least `size()` many |
| // elements. `count` is non-negative by its type and `count <= size()` from |
| // the CHECK above. So `count` is a valid new size for `data()`. |
| return UNSAFE_BUFFERS({data(), count}); |
| } |
| |
| // Returns a span over the last `count` elements. |
| // |
| // # Checks |
| // The function CHECKs that the span contains at least `count` elements and |
| // will terminate otherwise. |
| constexpr span<T> last(StrictNumeric<size_t> count) const noexcept { |
| CHECK_LE(size_t{count}, size()); |
| // SAFETY: span provides that data() points to at least `size()` many |
| // elements. `count` is non-negative by its type and `count <= size()` from |
| // the CHECK above. So `0 <= size() - count <= size()`, meaning |
| // `size() - count` is a valid new size for `data()` and it will point to |
| // `count` many elements. |
| return UNSAFE_BUFFERS({data() + (size() - size_t{count}), count}); |
| } |
| |
| template <size_t Offset, size_t Count = dynamic_extent> |
| constexpr span<T, Count> subspan() const noexcept { |
| CHECK_LE(Offset, size()); |
| CHECK(Count == dynamic_extent || Count <= size() - Offset); |
| const size_t new_extent = Count != dynamic_extent ? Count : size() - Offset; |
| // SAFETY: span provides that data() points to at least `size()` many |
| // elements. |
| // |
| // If Count is dynamic_extent, `new_extent` becomes `size() - Offset`. Since |
| // `Offset <= size()` from the check above, then `Offset` is a valid offset |
| // for data(), and `Offset + new_extent = Offset + size() - Offset = size() |
| // >= Offset` is also a valid offset that is not before `Offset`. This makes |
| // a span at `Offset` with size `new_extent` valid. |
| // |
| // Otherwise `Count <= size() - Offset` and `0 <= Offset <= size()` by the |
| // check above, so `Offset <= size() - Count` and `size() - Count` can not |
| // underflow. Then `Offset` is a valid offset for data() and `new_extent` is |
| // `Count <= size() - Offset`, so `Offset + extent <= Offset + size() - |
| // Offset = size()` which makes both `Offset` and `Offset + new_extent` |
| // valid offsets for data(), and since `new_extent` is non-negative, `Offset |
| // + new_extent` is not before `Offset` so `new_extent` is a valid size for |
| // the span at `data() + Offset`. |
| return UNSAFE_BUFFERS(span<T, Count>(data() + Offset, new_extent)); |
| } |
| |
| // Returns a span over the first `count` elements starting at the given |
| // `offset` from the start of the span. |
| // |
| // # Checks |
| // The function CHECKs that the span contains at least `offset + count` |
| // elements, or at least `offset` elements if `count` is not specified, and |
| // will terminate otherwise. |
| constexpr span<T> subspan(size_t offset, |
| size_t count = dynamic_extent) const noexcept { |
| CHECK_LE(offset, size()); |
| CHECK(count == dynamic_extent || count <= size() - offset); |
| const size_t new_extent = count != dynamic_extent ? count : size() - offset; |
| // SAFETY: span provides that data() points to at least `size()` many |
| // elements. |
| // |
| // If count is dynamic_extent, `new_extent` becomes `size() - offset`. Since |
| // `offset <= size()` from the check above, then `offset` is a valid offset |
| // for data(), and `offset + new_extent = offset + size() - offset = size() |
| // >= offset` is also a valid offset that is not before `offset`. This makes |
| // a span at `offset` with size `new_extent` valid. |
| // |
| // Otherwise `count <= size() - offset` and `0 <= offset <= size()` by the |
| // checks above, so `offset <= size() - count` and `size() - count` can not |
| // underflow. Then `offset` is a valid offset for data() and `new_extent` is |
| // `count <= size() - offset`, so `offset + new_extent <= offset + size() - |
| // offset = size()` which makes both `offset` and `offset + new_extent` |
| // valid offsets for data(), and since `new_extent` is non-negative, `offset |
| // + new_extent` is not before `offset` so `new_extent` is a valid size for |
| // the span at `data() + offset`. |
| return UNSAFE_BUFFERS({data() + offset, new_extent}); |
| } |
| |
| // Splits a span into two at the given `offset`, returning two spans that |
| // cover the full range of the original span. |
| // |
| // Similar to calling subspan() with the `offset` as the length on the first |
| // call, and then the `offset` as the offset in the second. |
| // |
| // The split_at<N>() overload allows construction of a fixed-size span from a |
| // compile-time constant. If the input span is fixed-size, both output output |
| // spans will be. Otherwise, the first will be fixed-size and the second will |
| // be dynamic-size. |
| // |
| // This is a non-std extension that is inspired by the Rust slice::split_at() |
| // and split_at_mut() methods. |
| // |
| // # Checks |
| // The function CHECKs that the span contains at least `offset` elements and |
| // will terminate otherwise. |
| constexpr std::pair<span<T>, span<T>> split_at(size_t offset) const noexcept { |
| return {first(offset), subspan(offset)}; |
| } |
| |
| // An overload of `split_at` which returns a fixed-size span. |
| // |
| // # Checks |
| // The function CHECKs that the span contains at least `Offset` elements and |
| // will terminate otherwise. |
| template <size_t Offset> |
| constexpr std::pair<span<T, Offset>, span<T>> split_at() const noexcept { |
| CHECK_LE(Offset, size()); |
| return {first<Offset>(), subspan(Offset)}; |
| } |
| |
| // [span.obs], span observers |
| constexpr size_t size() const noexcept { return size_; } |
| constexpr size_t size_bytes() const noexcept { return size() * sizeof(T); } |
| [[nodiscard]] constexpr bool empty() const noexcept { return size() == 0; } |
| |
| // [span.elem], span element access |
| // |
| // # Checks |
| // The function CHECKs that the `idx` is inside the span and will terminate |
| // otherwise. |
| constexpr T& operator[](size_t idx) const noexcept { |
| CHECK_LT(idx, size()); |
| // SAFETY: Since data() always points to at least `size()` elements, the |
| // check above ensures `idx < size()` and is thus in range for data(). |
| return UNSAFE_BUFFERS(data()[idx]); |
| } |
| |
| // Returns a reference to the first element in the span. |
| // |
| // # Checks |
| // The function CHECKs that the span is not empty and will terminate |
| // otherwise. |
| constexpr T& front() const noexcept { |
| CHECK(!empty()); |
| // SAFETY: Since data() always points to at least `size()` elements, the |
| // check above above ensures `0 < size()` and is thus in range for data(). |
| return UNSAFE_BUFFERS(data()[0]); |
| } |
| |
| // Returns a reference to the last element in the span. |
| // |
| // # Checks |
| // The function CHECKs that the span is not empty and will terminate |
| // otherwise. |
| constexpr T& back() const noexcept { |
| CHECK(!empty()); |
| // SAFETY: Since data() always points to at least `size()` elements, the |
| // check above above ensures `size() > 0` and thus `size() - 1` does not |
| // underflow and is in range for data(). |
| return UNSAFE_BUFFERS(data()[size() - 1]); |
| } |
| |
| // Returns a pointer to the first element in the span. If the span is empty |
| // (`size()` is 0), the returned pointer may or may not be null, and it must |
| // not be dereferenced. |
| // |
| // It is always valid to add `size()` to the the pointer in C++ code, though |
| // it may be invalid in C code when the span is empty. |
| constexpr T* data() const noexcept { return data_; } |
| |
| // [span.iter], span iterator support |
| constexpr iterator begin() const noexcept { |
| // SAFETY: span provides that data() points to at least `size()` many |
| // elements, and size() is non-negative. So data() + size() is a valid |
| // pointer for the data() allocation. |
| return UNSAFE_BUFFERS(iterator(data(), data() + size())); |
| } |
| |
| constexpr iterator end() const noexcept { |
| // SAFETY: span provides that data() points to at least `size()` many |
| // elements, and size() is non-negative. So data() + size() is a valid |
| // pointer for the data() allocation. |
| return UNSAFE_BUFFERS(iterator(data(), data() + size(), data() + size())); |
| } |
| |
| constexpr reverse_iterator rbegin() const noexcept { |
| return reverse_iterator(end()); |
| } |
| |
| constexpr reverse_iterator rend() const noexcept { |
| return reverse_iterator(begin()); |
| } |
| |
| // Bounds-checked copy from a non-overlapping span. The spans must be the |
| // exact same size or a hard CHECK() occurs. If the two spans overlap, |
| // Undefined Behaviour occurs. |
| // |
| // This is a non-std extension that is inspired by the Rust |
| // slice::copy_from_slice() method. |
| // |
| // # Checks |
| // The function CHECKs that the `other` span has the same size as itself and |
| // will terminate otherwise. |
| constexpr void copy_from(span<const T> other) |
| requires(!std::is_const_v<T>) |
| { |
| CHECK_EQ(size_bytes(), other.size_bytes()); |
| // Verify non-overlapping in developer builds. |
| // |
| // SAFETY: span provides that data() points to at least size() many |
| // elements, so adding size() to the data() pointer is well-defined. |
| DCHECK(UNSAFE_BUFFERS(data() + size()) <= other.data() || |
| data() >= UNSAFE_BUFFERS(other.data() + other.size())); |
| // When compiling with -Oz, std::ranges::copy() does not get inlined, which |
| // makes copy_from() very expensive compared to memcpy for small sizes (up |
| // to around 4x slower). We observe that this is because ranges::copy() uses |
| // begin()/end() and span's iterators are checked iterators, not just |
| // pointers. This additional complexity prevents inlining and breaks the |
| // ability for the compiler to eliminate code. |
| // |
| // See also https://crbug.com/1396134. |
| // |
| // We also see std::copy() (with pointer arguments! not iterators) optimize |
| // and inline better than memcpy() since memcpy() needs to rely on |
| // size_bytes(), which while computable at compile time when `other` has a |
| // fixed size, the optimizer stumbles on with -Oz. |
| // |
| // SAFETY: The copy() here does not check bounds, but we have verified that |
| // `this` and `other` have the same bounds above (and are pointers of the |
| // same type), so `data()` and `other.data()` both have at least |
| // `other.size()` elements. |
| UNSAFE_BUFFERS( |
| std::copy(other.data(), other.data() + other.size(), data())); |
| } |
| |
| // Compares two spans for equality by comparing the objects pointed to by the |
| // spans. The operation is defined for spans of different types as long as the |
| // types are themselves comparable. |
| // |
| // For primitive types, this replaces the less safe `memcmp` function, where |
| // `memcmp(a.data(), b.data(), a.size())` can be written as `a == b` and can |
| // no longer go outside the bounds of `b`. Otherwise, it replaced std::equal |
| // or std::ranges::equal when working with spans, and when no projection is |
| // needed. |
| // |
| // If the spans are of different sizes, they are not equal. If both spans are |
| // empty, they are always equal (even though their data pointers may differ). |
| // |
| // # Implementation note |
| // The non-template overloads allow implicit conversions to span for |
| // comparison. |
| friend constexpr bool operator==(span lhs, span rhs) |
| requires(std::equality_comparable<const T>) |
| { |
| return internal::span_cmp(span<const T>(lhs), span<const T>(rhs)); |
| } |
| friend constexpr bool operator==(span lhs, span<const T> rhs) |
| requires(!std::is_const_v<T> && std::equality_comparable<const T>) |
| { |
| return internal::span_cmp(span<const T>(lhs), span<const T>(rhs)); |
| } |
| template <class U, size_t M> |
| requires(std::equality_comparable_with<const T, const U>) |
| friend constexpr bool operator==(span lhs, span<U, M> rhs) { |
| return internal::span_cmp(span<const T>(lhs), span<const U, M>(rhs)); |
| } |
| |
| private: |
| // This field is not a raw_ptr<> since span is mostly used for stack |
| // variables. Use `raw_span` instead for class fields, which does use |
| // raw_ptr<> internally. |
| InternalPtrType data_ = nullptr; |
| size_t size_ = 0; |
| }; |
| |
| // [span.deduct], deduction guides. |
| template <typename It, typename EndOrSize> |
| requires(std::contiguous_iterator<It>) |
| span(It, EndOrSize) -> span<std::remove_reference_t<std::iter_reference_t<It>>, |
| internal::MaybeStaticExt<EndOrSize>>; |
| |
| template < |
| typename R, |
| typename T = std::remove_reference_t<std::ranges::range_reference_t<R>>> |
| requires(std::ranges::contiguous_range<R>) |
| span(R&&) |
| -> span<std::conditional_t<std::ranges::borrowed_range<R>, T, const T>, |
| internal::ExtentV<R>>; |
| |
| template <typename T, size_t N> |
| span(const T (&)[N]) -> span<const T, N>; |
| |
| // [span.objectrep], views of object representation |
| template <typename T, size_t X> |
| constexpr auto as_bytes(span<T, X> s) noexcept { |
| constexpr size_t N = X == dynamic_extent ? dynamic_extent : sizeof(T) * X; |
| // SAFETY: span provides that data() points to at least size_bytes() many |
| // bytes. So since `uint8_t` has a size of 1 byte, the size_bytes() value is |
| // a valid size for a span at data() when viewed as `uint8_t*`. |
| // |
| // The reinterpret_cast is valid as the alignment of uint8_t (which is 1) is |
| // always less-than or equal to the alignment of T. |
| return UNSAFE_BUFFERS(span<const uint8_t, N>( |
| reinterpret_cast<const uint8_t*>(s.data()), s.size_bytes())); |
| } |
| |
| template <typename T, size_t X> |
| requires(!std::is_const_v<T>) |
| constexpr auto as_writable_bytes(span<T, X> s) noexcept { |
| constexpr size_t N = X == dynamic_extent ? dynamic_extent : sizeof(T) * X; |
| // SAFETY: span provides that data() points to at least size_bytes() many |
| // bytes. So since `uint8_t` has a size of 1 byte, the size_bytes() value is a |
| // valid size for a span at data() when viewed as `uint8_t*`. |
| // |
| // The reinterpret_cast is valid as the alignment of uint8_t (which is 1) is |
| // always less-than or equal to the alignment of T. |
| return UNSAFE_BUFFERS( |
| span<uint8_t, N>(reinterpret_cast<uint8_t*>(s.data()), s.size_bytes())); |
| } |
| |
| // as_chars() is the equivalent of as_bytes(), except that it returns a |
| // span of const char rather than const uint8_t. This non-std function is |
| // added since chrome still represents many things as char arrays which |
| // rightfully should be uint8_t. |
| template <typename T, size_t X> |
| constexpr auto as_chars(span<T, X> s) noexcept { |
| constexpr size_t N = X == dynamic_extent ? dynamic_extent : sizeof(T) * X; |
| // SAFETY: span provides that data() points to at least size_bytes() many |
| // bytes. So since `char` has a size of 1 byte, the size_bytes() value is a |
| // valid size for a span at data() when viewed as `char*`. |
| // |
| // The reinterpret_cast is valid as the alignment of char (which is 1) is |
| // always less-than or equal to the alignment of T. |
| return UNSAFE_BUFFERS(span<const char, N>( |
| reinterpret_cast<const char*>(s.data()), s.size_bytes())); |
| } |
| |
| // as_string_view() converts a span over byte-sized primitives (holding chars or |
| // uint8_t) into a std::string_view, where each byte is represented as a char. |
| // It also accepts any type that can implicitly convert to a span, such as |
| // arrays. |
| // |
| // If you want to view an arbitrary span type as a string, first explicitly |
| // convert it to bytes via `base::as_bytes()`. |
| // |
| // For spans over byte-sized primitives, this is sugar for: |
| // ``` |
| // std::string_view(as_chars(span).begin(), as_chars(span).end()) |
| // ``` |
| constexpr std::string_view as_string_view(span<const char> s) noexcept { |
| return std::string_view(s.begin(), s.end()); |
| } |
| constexpr std::string_view as_string_view( |
| span<const unsigned char> s) noexcept { |
| const auto c = as_chars(s); |
| return std::string_view(c.begin(), c.end()); |
| } |
| |
| // as_writable_chars() is the equivalent of as_writable_bytes(), except that |
| // it returns a span of char rather than uint8_t. This non-std function is |
| // added since chrome still represents many things as char arrays which |
| // rightfully should be uint8_t. |
| template <typename T, size_t X> |
| requires(!std::is_const_v<T>) |
| auto as_writable_chars(span<T, X> s) noexcept { |
| constexpr size_t N = X == dynamic_extent ? dynamic_extent : sizeof(T) * X; |
| // SAFETY: span provides that data() points to at least size_bytes() many |
| // bytes. So since `char` has a size of 1 byte, the size_bytes() value is |
| // a valid size for a span at data() when viewed as `char*`. |
| // |
| // The reinterpret_cast is valid as the alignment of char (which is 1) is |
| // always less-than or equal to the alignment of T. |
| return UNSAFE_BUFFERS( |
| span<char, N>(reinterpret_cast<char*>(s.data()), s.size_bytes())); |
| } |
| |
| // Type-deducing helper for constructing a span. |
| // |
| // # Safety |
| // The contiguous iterator `it` must point to the first element of at least |
| // `size` many elements or Undefined Behaviour may result as the span may give |
| // access beyond the bounds of the collection pointed to by `it`. |
| template <int&... ExplicitArgumentBarrier, typename It> |
| UNSAFE_BUFFER_USAGE constexpr auto make_span( |
| It it, |
| StrictNumeric<size_t> size) noexcept { |
| using T = std::remove_reference_t<std::iter_reference_t<It>>; |
| // SAFETY: The caller guarantees that `it` is the first of at least `size` |
| // many elements. |
| return UNSAFE_BUFFERS(span<T>(it, size)); |
| } |
| |
| // Type-deducing helper for constructing a span. |
| // |
| // # Checks |
| // The function CHECKs that `it <= end` and will terminate otherwise. |
| // |
| // # Safety |
| // The contiguous iterator `it` and its end sentinel `end` must be for the same |
| // allocation or Undefined Behaviour may result as the span may give access |
| // beyond the bounds of the collection pointed to by `it`. |
| template <int&... ExplicitArgumentBarrier, |
| typename It, |
| typename End, |
| typename = std::enable_if_t<!std::is_convertible_v<End, size_t>>> |
| UNSAFE_BUFFER_USAGE constexpr auto make_span(It it, End end) noexcept { |
| using T = std::remove_reference_t<std::iter_reference_t<It>>; |
| // SAFETY: The caller guarantees that `it` and `end` are iterators of the |
| // same allocation. |
| return UNSAFE_BUFFERS(span<T>(it, end)); |
| } |
| |
| // make_span utility function that deduces both the span's value_type and extent |
| // from the passed in argument. |
| // |
| // Usage: auto span = base::make_span(...); |
| template <int&... ExplicitArgumentBarrier, typename Container> |
| constexpr auto make_span(Container&& container) noexcept { |
| using T = |
| std::remove_pointer_t<decltype(std::data(std::declval<Container>()))>; |
| using Extent = internal::Extent<Container>; |
| return span<T, Extent::value>(std::forward<Container>(container)); |
| } |
| |
| // make_span utility function that allows callers to explicit specify the span's |
| // extent, the value_type is deduced automatically. This is useful when passing |
| // a dynamically sized container to a method expecting static spans, when the |
| // container is known to have the correct size. |
| // |
| // Note: This will CHECK that N indeed matches size(container). |
| // |
| // # Usage |
| // As this function is unsafe, the caller must guarantee that the size is |
| // correct for the iterator, and will not allow the span to reach out of bounds. |
| // ``` |
| // // SAFETY: <An explanation of how the size is checked/ensured to always be |
| // // valid for the iterator>. |
| // auto static_span = UNSAFE_BUFFERS(base::make_span<N>(it, size)); |
| // ``` |
| // |
| // # Safety |
| // The contiguous iterator `it` must point to the first element of at least |
| // `size` many elements or Undefined Behaviour may result as the span may give |
| // access beyond the bounds of the collection pointed to by `it`. |
| template <size_t N, int&... ExplicitArgumentBarrier, typename It> |
| UNSAFE_BUFFER_USAGE constexpr auto make_span( |
| It it, |
| StrictNumeric<size_t> size) noexcept { |
| using T = std::remove_reference_t<std::iter_reference_t<It>>; |
| // SAFETY: The caller guarantees that `it` is the first of at least `size` |
| // many elements. |
| return UNSAFE_BUFFERS(span<T, N>(it, size)); |
| } |
| |
| // make_span utility function that allows callers to explicit specify the span's |
| // extent, the value_type is deduced automatically. This is useful when passing |
| // a dynamically sized container to a method expecting static spans, when the |
| // container is known to have the correct size. |
| // |
| // Note: This will CHECK that N indeed matches size(container). |
| // |
| // # Usage |
| // As this function is unsafe, the caller must guarantee that the `end` is from |
| // the same allocation as the `it` iterator. |
| // ``` |
| // // SAFETY: <An explanation if non-trivial how the iterators are not from |
| // // different containers/allocations>. |
| // auto static_span = UNSAFE_BUFFERS(base::make_span<N>(it, end)); |
| // ``` |
| // |
| // # Checks |
| // The function CHECKs that `it <= end` and will terminate otherwise. |
| // |
| // # Safety |
| // The contiguous iterator `it` and its end sentinel `end` must be for the same |
| // allocation or Undefined Behaviour may result as the span may give access |
| // beyond the bounds of the collection pointed to by `it`. |
| template <size_t N, |
| int&... ExplicitArgumentBarrier, |
| typename It, |
| typename End, |
| typename = std::enable_if_t<!std::is_convertible_v<End, size_t>>> |
| UNSAFE_BUFFER_USAGE constexpr auto make_span(It it, End end) noexcept { |
| using T = std::remove_reference_t<std::iter_reference_t<It>>; |
| // SAFETY: The caller guarantees that `it` and `end` are iterators of the |
| // same allocation. |
| return UNSAFE_BUFFERS(span<T, N>(it, end)); |
| } |
| |
| template <size_t N, int&... ExplicitArgumentBarrier, typename Container> |
| constexpr auto make_span(Container&& container) noexcept { |
| using T = |
| std::remove_pointer_t<decltype(std::data(std::declval<Container>()))>; |
| // SAFETY: The std::size() function gives the number of elements pointed to by |
| // the std::data() function, which meets the requirement of span. |
| return UNSAFE_BUFFERS(span<T, N>(std::data(container), std::size(container))); |
| } |
| |
| // `span_from_ref` converts a reference to T into a span of length 1. This is a |
| // non-std helper that is inspired by the `std::slice::from_ref()` function from |
| // Rust. |
| template <typename T> |
| constexpr span<T, 1u> span_from_ref( |
| T& single_object ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept { |
| // SAFETY: Given a valid reference to `single_object` the span of size 1 will |
| // be a valid span that points to the `single_object`. |
| return UNSAFE_BUFFERS(span<T, 1u>(std::addressof(single_object), 1u)); |
| } |
| |
| // `byte_span_from_ref` converts a reference to T into a span of uint8_t of |
| // length sizeof(T). This is a non-std helper that is a sugar for |
| // `as_writable_bytes(span_from_ref(x))`. |
| // |
| // Const references are turned into a `span<const T, sizeof(T)>` while mutable |
| // references are turned into a `span<T, sizeof(T)>`. |
| template <typename T> |
| constexpr span<const uint8_t, sizeof(T)> byte_span_from_ref( |
| const T& single_object ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept { |
| return as_bytes(span_from_ref(single_object)); |
| } |
| template <typename T> |
| constexpr span<uint8_t, sizeof(T)> byte_span_from_ref( |
| T& single_object ABSL_ATTRIBUTE_LIFETIME_BOUND) noexcept { |
| return as_writable_bytes(span_from_ref(single_object)); |
| } |
| |
| // Converts a string literal (such as `"hello"`) to a span of `char` while |
| // omitting the terminating NUL character. These two are equivalent: |
| // ``` |
| // base::span<char, 5u> s1 = base::span_from_cstring("hello"); |
| // base::span<char, 5u> s2 = base::span(std::string_view("hello")); |
| // ``` |
| // |
| // If you want to include the NUL terminator, then use the span constructor |
| // directly, such as: |
| // ``` |
| // base::span<char, 6u> s = base::span("hello"); |
| // ``` |
| template <size_t N> |
| constexpr span<const char, N - 1> span_from_cstring( |
| const char (&lit ABSL_ATTRIBUTE_LIFETIME_BOUND)[N]) { |
| return span(lit).template first<N - 1>(); |
| } |
| |
| // Converts a string literal (such as `"hello"`) to a span of `uint8_t` while |
| // omitting the terminating NUL character. These two are equivalent: |
| // ``` |
| // base::span<uint8_t, 5u> s1 = base::byte_span_from_cstring("hello"); |
| // base::span<uint8_t, 5u> s2 = base::as_byte_span(std::string_view("hello")); |
| // ``` |
| // |
| // If you want to include the NUL terminator, then use the span constructor |
| // directly, such as: |
| // ``` |
| // base::span<uint8_t, 6u> s = base::as_bytes(base::span("hello")); |
| // ``` |
| template <size_t N> |
| constexpr span<const uint8_t, N - 1> byte_span_from_cstring( |
| const char (&lit ABSL_ATTRIBUTE_LIFETIME_BOUND)[N]) { |
| return as_bytes(span(lit).template first<N - 1>()); |
| } |
| |
| // Convenience function for converting an object which is itself convertible |
| // to span into a span of bytes (i.e. span of const uint8_t). Typically used |
| // to convert std::string or string-objects holding chars, or std::vector |
| // or vector-like objects holding other scalar types, prior to passing them |
| // into an API that requires byte spans. |
| template <typename T> |
| requires requires(const T& arg) { |
| requires !std::is_array_v<std::remove_reference_t<T>>; |
| make_span(arg); |
| } |
| constexpr span<const uint8_t> as_byte_span(const T& arg) { |
| return as_bytes(make_span(arg)); |
| } |
| |
| // This overload for arrays preserves the compile-time size N of the array in |
| // the span type signature span<uint8_t, N>. |
| template <typename T, size_t N> |
| constexpr span<const uint8_t, N * sizeof(T)> as_byte_span( |
| const T (&arr ABSL_ATTRIBUTE_LIFETIME_BOUND)[N]) { |
| return as_bytes(make_span<N>(arr)); |
| } |
| |
| // Convenience function for converting an object which is itself convertible |
| // to span into a span of mutable bytes (i.e. span of uint8_t). Typically used |
| // to convert std::string or string-objects holding chars, or std::vector |
| // or vector-like objects holding other scalar types, prior to passing them |
| // into an API that requires mutable byte spans. |
| template <typename T> |
| requires requires(T&& arg) { |
| requires !std::is_array_v<std::remove_reference_t<T>>; |
| make_span(arg); |
| requires !std::is_const_v<typename decltype(make_span(arg))::element_type>; |
| } |
| constexpr span<uint8_t> as_writable_byte_span(T&& arg) { |
| return as_writable_bytes(make_span(arg)); |
| } |
| |
| // This overload for arrays preserves the compile-time size N of the array in |
| // the span type signature span<uint8_t, N>. |
| template <typename T, size_t N> |
| requires(!std::is_const_v<T>) |
| constexpr span<uint8_t, N * sizeof(T)> as_writable_byte_span( |
| T (&arr ABSL_ATTRIBUTE_LIFETIME_BOUND)[N]) { |
| return as_writable_bytes(make_span<N>(arr)); |
| } |
| template <typename T, size_t N> |
| requires(!std::is_const_v<T>) |
| constexpr span<uint8_t, N * sizeof(T)> as_writable_byte_span( |
| T (&&arr ABSL_ATTRIBUTE_LIFETIME_BOUND)[N]) { |
| return as_writable_bytes(make_span<N>(arr)); |
| } |
| |
| namespace internal { |
| |
| // Template helper for implementing operator==. |
| template <class T, class U, size_t N, size_t M> |
| requires((N == M || N == dynamic_extent || M == dynamic_extent) && |
| std::equality_comparable_with<T, U>) |
| constexpr bool span_cmp(span<T, N> l, span<U, M> r) { |
| return l.size() == r.size() && std::equal(l.begin(), l.end(), r.begin()); |
| } |
| |
| } // namespace internal |
| |
| } // namespace base |
| |
| template <typename T, size_t N, typename Ptr> |
| inline constexpr bool |
| std::ranges::enable_borrowed_range<base::span<T, N, Ptr>> = true; |
| |
| template <typename T, size_t N, typename Ptr> |
| inline constexpr bool std::ranges::enable_view<base::span<T, N, Ptr>> = true; |
| |
| // EXTENT returns the size of any type that can be converted to a |base::span| |
| // with definite extent, i.e. everything that is a contiguous storage of some |
| // sort with static size. Specifically, this works for std::array in a constexpr |
| // context. Note: |
| // * |std::size| should be preferred for plain arrays. |
| // * In run-time contexts, functions such as |std::array::size| should be |
| // preferred. |
| #define EXTENT(x) \ |
| ::base::internal::must_not_be_dynamic_extent<decltype(::base::make_span( \ |
| x))::extent>() |
| |
| #endif // MINI_CHROMIUM_BASE_CONTAINERS_SPAN_H_ |