blob: ae28ea813655d2e695445076b0b73379b4221862 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <inttypes.h>
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <memory>
#include <queue>
#include <string>
#include <utility>
#include "base/at_exit.h"
#include "base/bind.h"
#include "base/bits.h"
#include "base/command_line.h"
#include "base/files/file_util.h"
#include "base/macros.h"
#include "base/memory/aligned_memory.h"
#include "base/memory/scoped_vector.h"
#include "base/message_loop/message_loop.h"
#include "base/numerics/safe_conversions.h"
#include "base/process/process_handle.h"
#include "base/single_thread_task_runner.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "base/threading/thread.h"
#include "base/threading/thread_checker.h"
#include "base/time/time.h"
#include "base/timer/timer.h"
#include "build/build_config.h"
#include "media/base/bind_to_current_loop.h"
#include "media/base/bitstream_buffer.h"
#include "media/base/cdm_context.h"
#include "media/base/decoder_buffer.h"
#include "media/base/media_util.h"
#include "media/base/test_data_util.h"
#include "media/base/video_decoder.h"
#include "media/base/video_frame.h"
#include "media/filters/ffmpeg_glue.h"
#include "media/filters/ffmpeg_video_decoder.h"
#include "media/filters/h264_parser.h"
#include "media/filters/ivf_parser.h"
#include "media/gpu/video_accelerator_unittest_helpers.h"
#include "media/video/fake_video_encode_accelerator.h"
#include "media/video/video_encode_accelerator.h"
#include "testing/gtest/include/gtest/gtest.h"
#if defined(OS_CHROMEOS)
#if defined(USE_V4L2_CODEC)
#include "media/gpu/v4l2_video_encode_accelerator.h"
#endif
#if defined(ARCH_CPU_X86_FAMILY)
#include "media/gpu/vaapi_video_encode_accelerator.h"
#include "media/gpu/vaapi_wrapper.h"
// Status has been defined as int in Xlib.h.
#undef Status
#endif // defined(ARCH_CPU_X86_FAMILY)
#elif defined(OS_MACOSX)
#include "media/gpu/vt_video_encode_accelerator_mac.h"
#elif defined(OS_WIN)
#include "media/gpu/media_foundation_video_encode_accelerator_win.h"
#else
#error The VideoEncodeAcceleratorUnittest is not supported on this platform.
#endif
namespace media {
namespace {
const VideoPixelFormat kInputFormat = PIXEL_FORMAT_I420;
// The absolute differences between original frame and decoded frame usually
// ranges aroud 1 ~ 7. So we pick 10 as an extreme value to detect abnormal
// decoded frames.
const double kDecodeSimilarityThreshold = 10.0;
// Arbitrarily chosen to add some depth to the pipeline.
const unsigned int kNumOutputBuffers = 4;
const unsigned int kNumExtraInputFrames = 4;
// Maximum delay between requesting a keyframe and receiving one, in frames.
// Arbitrarily chosen as a reasonable requirement.
const unsigned int kMaxKeyframeDelay = 4;
// Default initial bitrate.
const uint32_t kDefaultBitrate = 2000000;
// Default ratio of requested_subsequent_bitrate to initial_bitrate
// (see test parameters below) if one is not provided.
const double kDefaultSubsequentBitrateRatio = 2.0;
// Default initial framerate.
const uint32_t kDefaultFramerate = 30;
// Default ratio of requested_subsequent_framerate to initial_framerate
// (see test parameters below) if one is not provided.
const double kDefaultSubsequentFramerateRatio = 0.1;
// Tolerance factor for how encoded bitrate can differ from requested bitrate.
const double kBitrateTolerance = 0.1;
// Minimum required FPS throughput for the basic performance test.
const uint32_t kMinPerfFPS = 30;
// Minimum (arbitrary) number of frames required to enforce bitrate requirements
// over. Streams shorter than this may be too short to realistically require
// an encoder to be able to converge to the requested bitrate over.
// The input stream will be looped as many times as needed in bitrate tests
// to reach at least this number of frames before calculating final bitrate.
const unsigned int kMinFramesForBitrateTests = 300;
// The percentiles to measure for encode latency.
const unsigned int kLoggedLatencyPercentiles[] = {50, 75, 95};
// The syntax of multiple test streams is:
// test-stream1;test-stream2;test-stream3
// The syntax of each test stream is:
// "in_filename:width:height:profile:out_filename:requested_bitrate
// :requested_framerate:requested_subsequent_bitrate
// :requested_subsequent_framerate"
// Instead of ":", "," can be used as a seperator as well. Note that ":" does
// not work on Windows as it interferes with file paths.
// - |in_filename| must be an I420 (YUV planar) raw stream
// (see http://www.fourcc.org/yuv.php#IYUV).
// - |width| and |height| are in pixels.
// - |profile| to encode into (values of VideoCodecProfile).
// - |out_filename| filename to save the encoded stream to (optional). The
// format for H264 is Annex-B byte stream. The format for VP8 is IVF. Output
// stream is saved for the simple encode test only. H264 raw stream and IVF
// can be used as input of VDA unittest. H264 raw stream can be played by
// "mplayer -fps 25 out.h264" and IVF can be played by mplayer directly.
// Helpful description: http://wiki.multimedia.cx/index.php?title=IVF
// Further parameters are optional (need to provide preceding positional
// parameters if a specific subsequent parameter is required):
// - |requested_bitrate| requested bitrate in bits per second.
// - |requested_framerate| requested initial framerate.
// - |requested_subsequent_bitrate| bitrate to switch to in the middle of the
// stream.
// - |requested_subsequent_framerate| framerate to switch to in the middle
// of the stream.
// Bitrate is only forced for tests that test bitrate.
const char* g_default_in_filename = "bear_320x192_40frames.yuv";
#if defined(OS_CHROMEOS)
const base::FilePath::CharType* g_default_in_parameters =
FILE_PATH_LITERAL(":320:192:1:out.h264:200000");
#elif defined(OS_MACOSX) || defined(OS_WIN)
const base::FilePath::CharType* g_default_in_parameters =
FILE_PATH_LITERAL(",320,192,0,out.h264,200000");
#endif // defined(OS_CHROMEOS)
// Enabled by including a --fake_encoder flag to the command line invoking the
// test.
bool g_fake_encoder = false;
// Environment to store test stream data for all test cases.
class VideoEncodeAcceleratorTestEnvironment;
VideoEncodeAcceleratorTestEnvironment* g_env;
// The number of frames to be encoded. This variable is set by the switch
// "--num_frames_to_encode". Ignored if 0.
int g_num_frames_to_encode = 0;
#ifdef ARCH_CPU_ARMEL
// ARM performs CPU cache management with CPU cache line granularity. We thus
// need to ensure our buffers are CPU cache line-aligned (64 byte-aligned).
// Otherwise newer kernels will refuse to accept them, and on older kernels
// we'll be treating ourselves to random corruption.
// Moreover, some hardware codecs require 128-byte alignment for physical
// buffers.
const size_t kPlatformBufferAlignment = 128;
#else
const size_t kPlatformBufferAlignment = 1;
#endif
inline static size_t AlignToPlatformRequirements(size_t value) {
return base::bits::Align(value, kPlatformBufferAlignment);
}
// An aligned STL allocator.
template <typename T, size_t ByteAlignment>
class AlignedAllocator : public std::allocator<T> {
public:
typedef size_t size_type;
typedef T* pointer;
template <class T1>
struct rebind {
typedef AlignedAllocator<T1, ByteAlignment> other;
};
AlignedAllocator() {}
explicit AlignedAllocator(const AlignedAllocator&) {}
template <class T1>
explicit AlignedAllocator(const AlignedAllocator<T1, ByteAlignment>&) {}
~AlignedAllocator() {}
pointer allocate(size_type n, const void* = 0) {
return static_cast<pointer>(base::AlignedAlloc(n, ByteAlignment));
}
void deallocate(pointer p, size_type n) {
base::AlignedFree(static_cast<void*>(p));
}
size_type max_size() const {
return std::numeric_limits<size_t>::max() / sizeof(T);
}
};
struct TestStream {
TestStream()
: num_frames(0),
aligned_buffer_size(0),
requested_bitrate(0),
requested_framerate(0),
requested_subsequent_bitrate(0),
requested_subsequent_framerate(0) {}
~TestStream() {}
gfx::Size visible_size;
gfx::Size coded_size;
unsigned int num_frames;
// Original unaligned input file name provided as an argument to the test.
// And the file must be an I420 (YUV planar) raw stream.
std::string in_filename;
// A vector used to prepare aligned input buffers of |in_filename|. This
// makes sure starting addresses of YUV planes are aligned to
// kPlatformBufferAlignment bytes.
std::vector<char, AlignedAllocator<char, kPlatformBufferAlignment>>
aligned_in_file_data;
// Byte size of a frame of |aligned_in_file_data|.
size_t aligned_buffer_size;
// Byte size for each aligned plane of a frame.
std::vector<size_t> aligned_plane_size;
std::string out_filename;
VideoCodecProfile requested_profile;
unsigned int requested_bitrate;
unsigned int requested_framerate;
unsigned int requested_subsequent_bitrate;
unsigned int requested_subsequent_framerate;
};
// Return the |percentile| from a sorted vector.
static base::TimeDelta Percentile(
const std::vector<base::TimeDelta>& sorted_values,
unsigned int percentile) {
size_t size = sorted_values.size();
LOG_ASSERT(size > 0UL);
LOG_ASSERT(percentile <= 100UL);
// Use Nearest Rank method in http://en.wikipedia.org/wiki/Percentile.
int index =
std::max(static_cast<int>(ceil(0.01f * percentile * size)) - 1, 0);
return sorted_values[index];
}
static bool IsH264(VideoCodecProfile profile) {
return profile >= H264PROFILE_MIN && profile <= H264PROFILE_MAX;
}
static bool IsVP8(VideoCodecProfile profile) {
return profile >= VP8PROFILE_MIN && profile <= VP8PROFILE_MAX;
}
// Helper functions to do string conversions.
static base::FilePath::StringType StringToFilePathStringType(
const std::string& str) {
#if defined(OS_WIN)
return base::UTF8ToWide(str);
#else
return str;
#endif // defined(OS_WIN)
}
static std::string FilePathStringTypeToString(
const base::FilePath::StringType& str) {
#if defined(OS_WIN)
return base::WideToUTF8(str);
#else
return str;
#endif // defined(OS_WIN)
}
// Some platforms may have requirements on physical memory buffer alignment.
// Since we are just mapping and passing chunks of the input file directly to
// the VEA as input frames, to avoid copying large chunks of raw data on each
// frame, and thus affecting performance measurements, we have to prepare a
// temporary file with all planes aligned to the required alignment beforehand.
static void CreateAlignedInputStreamFile(const gfx::Size& coded_size,
TestStream* test_stream) {
// Test case may have many encoders and memory should be prepared once.
if (test_stream->coded_size == coded_size &&
!test_stream->aligned_in_file_data.empty())
return;
// All encoders in multiple encoder test reuse the same test_stream, make
// sure they requested the same coded_size
ASSERT_TRUE(test_stream->aligned_in_file_data.empty() ||
coded_size == test_stream->coded_size);
test_stream->coded_size = coded_size;
size_t num_planes = VideoFrame::NumPlanes(kInputFormat);
std::vector<size_t> padding_sizes(num_planes);
std::vector<size_t> coded_bpl(num_planes);
std::vector<size_t> visible_bpl(num_planes);
std::vector<size_t> visible_plane_rows(num_planes);
// Calculate padding in bytes to be added after each plane required to keep
// starting addresses of all planes at a byte boundary required by the
// platform. This padding will be added after each plane when copying to the
// temporary file.
// At the same time we also need to take into account coded_size requested by
// the VEA; each row of visible_bpl bytes in the original file needs to be
// copied into a row of coded_bpl bytes in the aligned file.
for (size_t i = 0; i < num_planes; i++) {
const size_t size =
VideoFrame::PlaneSize(kInputFormat, i, coded_size).GetArea();
test_stream->aligned_plane_size.push_back(
AlignToPlatformRequirements(size));
test_stream->aligned_buffer_size += test_stream->aligned_plane_size.back();
coded_bpl[i] = VideoFrame::RowBytes(i, kInputFormat, coded_size.width());
visible_bpl[i] = VideoFrame::RowBytes(i, kInputFormat,
test_stream->visible_size.width());
visible_plane_rows[i] =
VideoFrame::Rows(i, kInputFormat, test_stream->visible_size.height());
const size_t padding_rows =
VideoFrame::Rows(i, kInputFormat, coded_size.height()) -
visible_plane_rows[i];
padding_sizes[i] =
padding_rows * coded_bpl[i] + AlignToPlatformRequirements(size) - size;
}
base::FilePath src_file(StringToFilePathStringType(test_stream->in_filename));
int64_t src_file_size = 0;
LOG_ASSERT(base::GetFileSize(src_file, &src_file_size));
size_t visible_buffer_size =
VideoFrame::AllocationSize(kInputFormat, test_stream->visible_size);
LOG_ASSERT(src_file_size % visible_buffer_size == 0U)
<< "Stream byte size is not a product of calculated frame byte size";
test_stream->num_frames =
static_cast<unsigned int>(src_file_size / visible_buffer_size);
LOG_ASSERT(test_stream->aligned_buffer_size > 0UL);
test_stream->aligned_in_file_data.resize(test_stream->aligned_buffer_size *
test_stream->num_frames);
base::File src(src_file, base::File::FLAG_OPEN | base::File::FLAG_READ);
std::vector<char> src_data(visible_buffer_size);
off_t src_offset = 0, dest_offset = 0;
for (size_t frame = 0; frame < test_stream->num_frames; frame++) {
LOG_ASSERT(src.Read(src_offset, &src_data[0],
static_cast<int>(visible_buffer_size)) ==
static_cast<int>(visible_buffer_size));
const char* src_ptr = &src_data[0];
for (size_t i = 0; i < num_planes; i++) {
// Assert that each plane of frame starts at required byte boundary.
ASSERT_EQ(dest_offset & (kPlatformBufferAlignment - 1), 0u)
<< "Planes of frame should be mapped per platform requirements";
for (size_t j = 0; j < visible_plane_rows[i]; j++) {
memcpy(&test_stream->aligned_in_file_data[dest_offset], src_ptr,
visible_bpl[i]);
src_ptr += visible_bpl[i];
dest_offset += static_cast<off_t>(coded_bpl[i]);
}
dest_offset += static_cast<off_t>(padding_sizes[i]);
}
src_offset += static_cast<off_t>(visible_buffer_size);
}
src.Close();
LOG_ASSERT(test_stream->num_frames > 0UL);
}
// Parse |data| into its constituent parts, set the various output fields
// accordingly, read in video stream, and store them to |test_streams|.
static void ParseAndReadTestStreamData(const base::FilePath::StringType& data,
ScopedVector<TestStream>* test_streams) {
// Split the string to individual test stream data.
std::vector<base::FilePath::StringType> test_streams_data =
base::SplitString(data, base::FilePath::StringType(1, ';'),
base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
LOG_ASSERT(test_streams_data.size() >= 1U) << data;
// Parse each test stream data and read the input file.
for (size_t index = 0; index < test_streams_data.size(); ++index) {
std::vector<base::FilePath::StringType> fields = base::SplitString(
test_streams_data[index], base::FilePath::StringType(1, ','),
base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
// Try using ":" as the seperator if "," isn't used.
if (fields.size() == 1U) {
fields = base::SplitString(test_streams_data[index],
base::FilePath::StringType(1, ':'),
base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
}
LOG_ASSERT(fields.size() >= 4U) << data;
LOG_ASSERT(fields.size() <= 9U) << data;
TestStream* test_stream = new TestStream();
test_stream->in_filename = FilePathStringTypeToString(fields[0]);
int width, height;
bool result = base::StringToInt(fields[1], &width);
LOG_ASSERT(result);
result = base::StringToInt(fields[2], &height);
LOG_ASSERT(result);
test_stream->visible_size = gfx::Size(width, height);
LOG_ASSERT(!test_stream->visible_size.IsEmpty());
int profile;
result = base::StringToInt(fields[3], &profile);
LOG_ASSERT(result);
LOG_ASSERT(profile > VIDEO_CODEC_PROFILE_UNKNOWN);
LOG_ASSERT(profile <= VIDEO_CODEC_PROFILE_MAX);
test_stream->requested_profile = static_cast<VideoCodecProfile>(profile);
if (fields.size() >= 5 && !fields[4].empty())
test_stream->out_filename = FilePathStringTypeToString(fields[4]);
if (fields.size() >= 6 && !fields[5].empty())
LOG_ASSERT(
base::StringToUint(fields[5], &test_stream->requested_bitrate));
if (fields.size() >= 7 && !fields[6].empty())
LOG_ASSERT(
base::StringToUint(fields[6], &test_stream->requested_framerate));
if (fields.size() >= 8 && !fields[7].empty()) {
LOG_ASSERT(base::StringToUint(
fields[7], &test_stream->requested_subsequent_bitrate));
}
if (fields.size() >= 9 && !fields[8].empty()) {
LOG_ASSERT(base::StringToUint(
fields[8], &test_stream->requested_subsequent_framerate));
}
test_streams->push_back(test_stream);
}
}
// Basic test environment shared across multiple test cases. We only need to
// setup it once for all test cases.
// It helps
// - maintain test stream data and other test settings.
// - clean up temporary aligned files.
// - output log to file.
class VideoEncodeAcceleratorTestEnvironment : public ::testing::Environment {
public:
VideoEncodeAcceleratorTestEnvironment(
std::unique_ptr<base::FilePath::StringType> data,
const base::FilePath& log_path,
bool run_at_fps,
bool needs_encode_latency,
bool verify_all_output)
: test_stream_data_(std::move(data)),
log_path_(log_path),
run_at_fps_(run_at_fps),
needs_encode_latency_(needs_encode_latency),
verify_all_output_(verify_all_output) {}
virtual void SetUp() {
if (!log_path_.empty()) {
log_file_.reset(new base::File(
log_path_, base::File::FLAG_CREATE_ALWAYS | base::File::FLAG_WRITE));
LOG_ASSERT(log_file_->IsValid());
}
ParseAndReadTestStreamData(*test_stream_data_, &test_streams_);
}
virtual void TearDown() {
log_file_.reset();
}
// Log one entry of machine-readable data to file and LOG(INFO).
// The log has one data entry per line in the format of "<key>: <value>".
// Note that Chrome OS video_VEAPerf autotest parses the output key and value
// pairs. Be sure to keep the autotest in sync.
void LogToFile(const std::string& key, const std::string& value) {
std::string s = base::StringPrintf("%s: %s\n", key.c_str(), value.c_str());
LOG(INFO) << s;
if (log_file_) {
log_file_->WriteAtCurrentPos(s.data(), static_cast<int>(s.length()));
}
}
// Feed the encoder with the input buffers at the requested framerate. If
// false, feed as fast as possible. This is set by the command line switch
// "--run_at_fps".
bool run_at_fps() const { return run_at_fps_; }
// Whether to measure encode latency. This is set by the command line switch
// "--measure_latency".
bool needs_encode_latency() const { return needs_encode_latency_; }
// Verify the encoder output of all testcases. This is set by the command line
// switch "--verify_all_output".
bool verify_all_output() const { return verify_all_output_; }
ScopedVector<TestStream> test_streams_;
private:
std::unique_ptr<base::FilePath::StringType> test_stream_data_;
base::FilePath log_path_;
std::unique_ptr<base::File> log_file_;
bool run_at_fps_;
bool needs_encode_latency_;
bool verify_all_output_;
};
enum ClientState {
CS_CREATED,
CS_ENCODER_SET,
CS_INITIALIZED,
CS_ENCODING,
// Encoding has finished.
CS_FINISHED,
// Encoded frame quality has been validated.
CS_VALIDATED,
CS_ERROR,
};
// Performs basic, codec-specific sanity checks on the stream buffers passed
// to ProcessStreamBuffer(): whether we've seen keyframes before non-keyframes,
// correct sequences of H.264 NALUs (SPS before PPS and before slices), etc.
// Calls given FrameFoundCallback when a complete frame is found while
// processing.
class StreamValidator {
public:
// To be called when a complete frame is found while processing a stream
// buffer, passing true if the frame is a keyframe. Returns false if we
// are not interested in more frames and further processing should be aborted.
typedef base::Callback<bool(bool)> FrameFoundCallback;
virtual ~StreamValidator() {}
// Provide a StreamValidator instance for the given |profile|.
static std::unique_ptr<StreamValidator> Create(
VideoCodecProfile profile,
const FrameFoundCallback& frame_cb);
// Process and verify contents of a bitstream buffer.
virtual void ProcessStreamBuffer(const uint8_t* stream, size_t size) = 0;
protected:
explicit StreamValidator(const FrameFoundCallback& frame_cb)
: frame_cb_(frame_cb) {}
FrameFoundCallback frame_cb_;
};
class H264Validator : public StreamValidator {
public:
explicit H264Validator(const FrameFoundCallback& frame_cb)
: StreamValidator(frame_cb),
seen_sps_(false),
seen_pps_(false),
seen_idr_(false) {}
void ProcessStreamBuffer(const uint8_t* stream, size_t size) override;
private:
// Set to true when encoder provides us with the corresponding NALU type.
bool seen_sps_;
bool seen_pps_;
bool seen_idr_;
H264Parser h264_parser_;
};
void H264Validator::ProcessStreamBuffer(const uint8_t* stream, size_t size) {
h264_parser_.SetStream(stream, static_cast<off_t>(size));
while (1) {
H264NALU nalu;
H264Parser::Result result;
result = h264_parser_.AdvanceToNextNALU(&nalu);
if (result == H264Parser::kEOStream)
break;
ASSERT_EQ(H264Parser::kOk, result);
bool keyframe = false;
switch (nalu.nal_unit_type) {
case H264NALU::kIDRSlice:
ASSERT_TRUE(seen_sps_);
ASSERT_TRUE(seen_pps_);
seen_idr_ = true;
keyframe = true;
// fallthrough
case H264NALU::kNonIDRSlice: {
ASSERT_TRUE(seen_idr_);
seen_sps_ = seen_pps_ = false;
if (!frame_cb_.Run(keyframe))
return;
break;
}
case H264NALU::kSPS: {
int sps_id;
ASSERT_EQ(H264Parser::kOk, h264_parser_.ParseSPS(&sps_id));
seen_sps_ = true;
break;
}
case H264NALU::kPPS: {
ASSERT_TRUE(seen_sps_);
int pps_id;
ASSERT_EQ(H264Parser::kOk, h264_parser_.ParsePPS(&pps_id));
seen_pps_ = true;
break;
}
default:
break;
}
}
}
class VP8Validator : public StreamValidator {
public:
explicit VP8Validator(const FrameFoundCallback& frame_cb)
: StreamValidator(frame_cb), seen_keyframe_(false) {}
void ProcessStreamBuffer(const uint8_t* stream, size_t size) override;
private:
// Have we already got a keyframe in the stream?
bool seen_keyframe_;
};
void VP8Validator::ProcessStreamBuffer(const uint8_t* stream, size_t size) {
bool keyframe = !(stream[0] & 0x01);
if (keyframe)
seen_keyframe_ = true;
EXPECT_TRUE(seen_keyframe_);
frame_cb_.Run(keyframe);
// TODO(posciak): We could be getting more frames in the buffer, but there is
// no simple way to detect this. We'd need to parse the frames and go through
// partition numbers/sizes. For now assume one frame per buffer.
}
// static
std::unique_ptr<StreamValidator> StreamValidator::Create(
VideoCodecProfile profile,
const FrameFoundCallback& frame_cb) {
std::unique_ptr<StreamValidator> validator;
if (IsH264(profile)) {
validator.reset(new H264Validator(frame_cb));
} else if (IsVP8(profile)) {
validator.reset(new VP8Validator(frame_cb));
} else {
LOG(FATAL) << "Unsupported profile: " << profile;
}
return validator;
}
class VideoFrameQualityValidator {
public:
VideoFrameQualityValidator(const VideoCodecProfile profile,
const base::Closure& flush_complete_cb,
const base::Closure& decode_error_cb);
void Initialize(const gfx::Size& coded_size, const gfx::Rect& visible_size);
// Save original YUV frame to compare it with the decoded frame later.
void AddOriginalFrame(scoped_refptr<VideoFrame> frame);
void AddDecodeBuffer(const scoped_refptr<DecoderBuffer>& buffer);
// Flush the decoder.
void Flush();
private:
void InitializeCB(bool success);
void DecodeDone(DecodeStatus status);
void FlushDone(DecodeStatus status);
void VerifyOutputFrame(const scoped_refptr<VideoFrame>& output_frame);
void Decode();
enum State { UNINITIALIZED, INITIALIZED, DECODING, DECODER_ERROR };
const VideoCodecProfile profile_;
std::unique_ptr<FFmpegVideoDecoder> decoder_;
VideoDecoder::DecodeCB decode_cb_;
// Decode callback of an EOS buffer.
VideoDecoder::DecodeCB eos_decode_cb_;
// Callback of Flush(). Called after all frames are decoded.
const base::Closure flush_complete_cb_;
const base::Closure decode_error_cb_;
State decoder_state_;
std::queue<scoped_refptr<VideoFrame>> original_frames_;
std::queue<scoped_refptr<DecoderBuffer>> decode_buffers_;
};
VideoFrameQualityValidator::VideoFrameQualityValidator(
const VideoCodecProfile profile,
const base::Closure& flush_complete_cb,
const base::Closure& decode_error_cb)
: profile_(profile),
decoder_(new FFmpegVideoDecoder()),
decode_cb_(base::Bind(&VideoFrameQualityValidator::DecodeDone,
base::Unretained(this))),
eos_decode_cb_(base::Bind(&VideoFrameQualityValidator::FlushDone,
base::Unretained(this))),
flush_complete_cb_(flush_complete_cb),
decode_error_cb_(decode_error_cb),
decoder_state_(UNINITIALIZED) {
// Allow decoding of individual NALU. Entire frames are required by default.
decoder_->set_decode_nalus(true);
}
void VideoFrameQualityValidator::Initialize(const gfx::Size& coded_size,
const gfx::Rect& visible_size) {
FFmpegGlue::InitializeFFmpeg();
gfx::Size natural_size(visible_size.size());
// The default output format of ffmpeg video decoder is YV12.
VideoDecoderConfig config;
if (IsVP8(profile_))
config.Initialize(kCodecVP8, VP8PROFILE_ANY, kInputFormat,
COLOR_SPACE_UNSPECIFIED, coded_size, visible_size,
natural_size, EmptyExtraData(), Unencrypted());
else if (IsH264(profile_))
config.Initialize(kCodecH264, H264PROFILE_MAIN, kInputFormat,
COLOR_SPACE_UNSPECIFIED, coded_size, visible_size,
natural_size, EmptyExtraData(), Unencrypted());
else
LOG_ASSERT(0) << "Invalid profile " << profile_;
decoder_->Initialize(
config, false, nullptr,
base::Bind(&VideoFrameQualityValidator::InitializeCB,
base::Unretained(this)),
base::Bind(&VideoFrameQualityValidator::VerifyOutputFrame,
base::Unretained(this)));
}
void VideoFrameQualityValidator::InitializeCB(bool success) {
if (success) {
decoder_state_ = INITIALIZED;
Decode();
} else {
decoder_state_ = DECODER_ERROR;
if (IsH264(profile_))
LOG(ERROR) << "Chromium does not support H264 decode. Try Chrome.";
decode_error_cb_.Run();
FAIL() << "Decoder initialization error";
}
}
void VideoFrameQualityValidator::AddOriginalFrame(
scoped_refptr<VideoFrame> frame) {
original_frames_.push(frame);
}
void VideoFrameQualityValidator::DecodeDone(DecodeStatus status) {
if (status == DecodeStatus::OK) {
decoder_state_ = INITIALIZED;
Decode();
} else {
decoder_state_ = DECODER_ERROR;
decode_error_cb_.Run();
FAIL() << "Unexpected decode status = " << status << ". Stop decoding.";
}
}
void VideoFrameQualityValidator::FlushDone(DecodeStatus status) {
flush_complete_cb_.Run();
}
void VideoFrameQualityValidator::Flush() {
if (decoder_state_ != DECODER_ERROR) {
decode_buffers_.push(DecoderBuffer::CreateEOSBuffer());
Decode();
}
}
void VideoFrameQualityValidator::AddDecodeBuffer(
const scoped_refptr<DecoderBuffer>& buffer) {
if (decoder_state_ != DECODER_ERROR) {
decode_buffers_.push(buffer);
Decode();
}
}
void VideoFrameQualityValidator::Decode() {
if (decoder_state_ == INITIALIZED && !decode_buffers_.empty()) {
scoped_refptr<DecoderBuffer> next_buffer = decode_buffers_.front();
decode_buffers_.pop();
decoder_state_ = DECODING;
if (next_buffer->end_of_stream())
decoder_->Decode(next_buffer, eos_decode_cb_);
else
decoder_->Decode(next_buffer, decode_cb_);
}
}
void VideoFrameQualityValidator::VerifyOutputFrame(
const scoped_refptr<VideoFrame>& output_frame) {
scoped_refptr<VideoFrame> original_frame = original_frames_.front();
original_frames_.pop();
gfx::Size visible_size = original_frame->visible_rect().size();
int planes[] = {VideoFrame::kYPlane, VideoFrame::kUPlane,
VideoFrame::kVPlane};
double difference = 0;
for (int plane : planes) {
uint8_t* original_plane = original_frame->data(plane);
uint8_t* output_plane = output_frame->data(plane);
size_t rows = VideoFrame::Rows(plane, kInputFormat, visible_size.height());
size_t columns =
VideoFrame::Columns(plane, kInputFormat, visible_size.width());
size_t stride = original_frame->stride(plane);
for (size_t i = 0; i < rows; i++) {
for (size_t j = 0; j < columns; j++) {
difference += std::abs(original_plane[stride * i + j] -
output_plane[stride * i + j]);
}
}
}
// Divide the difference by the size of frame.
difference /= VideoFrame::AllocationSize(kInputFormat, visible_size);
EXPECT_TRUE(difference <= kDecodeSimilarityThreshold)
<< "difference = " << difference << " > decode similarity threshold";
}
class VEAClient : public VideoEncodeAccelerator::Client {
public:
VEAClient(TestStream* test_stream,
ClientStateNotification<ClientState>* note,
bool save_to_file,
unsigned int keyframe_period,
bool force_bitrate,
bool test_perf,
bool mid_stream_bitrate_switch,
bool mid_stream_framerate_switch,
bool verify_output,
bool verify_output_timestamp);
~VEAClient() override;
void CreateEncoder();
void DestroyEncoder();
// VideoDecodeAccelerator::Client implementation.
void RequireBitstreamBuffers(unsigned int input_count,
const gfx::Size& input_coded_size,
size_t output_buffer_size) override;
void BitstreamBufferReady(int32_t bitstream_buffer_id,
size_t payload_size,
bool key_frame,
base::TimeDelta timestamp) override;
void NotifyError(VideoEncodeAccelerator::Error error) override;
private:
bool has_encoder() { return encoder_.get(); }
// Return the number of encoded frames per second.
double frames_per_second();
std::unique_ptr<VideoEncodeAccelerator> CreateFakeVEA();
std::unique_ptr<VideoEncodeAccelerator> CreateV4L2VEA();
std::unique_ptr<VideoEncodeAccelerator> CreateVaapiVEA();
std::unique_ptr<VideoEncodeAccelerator> CreateVTVEA();
std::unique_ptr<VideoEncodeAccelerator> CreateMFVEA();
void SetState(ClientState new_state);
// Set current stream parameters to given |bitrate| at |framerate|.
void SetStreamParameters(unsigned int bitrate, unsigned int framerate);
// Called when encoder is done with a VideoFrame.
void InputNoLongerNeededCallback(int32_t input_id);
// Feed the encoder with one input frame.
void FeedEncoderWithOneInput();
// Provide the encoder with a new output buffer.
void FeedEncoderWithOutput(base::SharedMemory* shm);
// Called on finding a complete frame (with |keyframe| set to true for
// keyframes) in the stream, to perform codec-independent, per-frame checks
// and accounting. Returns false once we have collected all frames we needed.
bool HandleEncodedFrame(bool keyframe);
// Verify the minimum FPS requirement.
void VerifyMinFPS();
// Verify that stream bitrate has been close to current_requested_bitrate_,
// assuming current_framerate_ since the last time VerifyStreamProperties()
// was called. Fail the test if |force_bitrate_| is true and the bitrate
// is not within kBitrateTolerance.
void VerifyStreamProperties();
// Log the performance data.
void LogPerf();
// Write IVF file header to test_stream_->out_filename.
void WriteIvfFileHeader();
// Write an IVF frame header to test_stream_->out_filename.
void WriteIvfFrameHeader(int frame_index, size_t frame_size);
// Create and return a VideoFrame wrapping the data at |position| bytes in the
// input stream.
scoped_refptr<VideoFrame> CreateFrame(off_t position);
// Prepare and return a frame wrapping the data at |position| bytes in the
// input stream, ready to be sent to encoder.
// The input frame id is returned in |input_id|.
scoped_refptr<VideoFrame> PrepareInputFrame(off_t position,
int32_t* input_id);
// Update the parameters according to |mid_stream_bitrate_switch| and
// |mid_stream_framerate_switch|.
void UpdateTestStreamData(bool mid_stream_bitrate_switch,
bool mid_stream_framerate_switch);
// Callback function of the |input_timer_|.
void OnInputTimer();
// Called when the quality validator has decoded all the frames.
void DecodeCompleted();
// Called when the quality validator fails to decode a frame.
void DecodeFailed();
// Verify that the output timestamp matches input timestamp.
void VerifyOutputTimestamp(base::TimeDelta timestamp);
ClientState state_;
std::unique_ptr<VideoEncodeAccelerator> encoder_;
TestStream* test_stream_;
// Used to notify another thread about the state. VEAClient does not own this.
ClientStateNotification<ClientState>* note_;
// Ids assigned to VideoFrames.
std::set<int32_t> inputs_at_client_;
int32_t next_input_id_;
// Encode start time of all encoded frames. The position in the vector is the
// frame input id.
std::vector<base::TimeTicks> encode_start_time_;
// The encode latencies of all encoded frames. We define encode latency as the
// time delay from input of each VideoFrame (VEA::Encode()) to output of the
// corresponding BitstreamBuffer (VEA::Client::BitstreamBufferReady()).
std::vector<base::TimeDelta> encode_latencies_;
// Ids for output BitstreamBuffers.
typedef std::map<int32_t, base::SharedMemory*> IdToSHM;
ScopedVector<base::SharedMemory> output_shms_;
IdToSHM output_buffers_at_client_;
int32_t next_output_buffer_id_;
// Current offset into input stream.
off_t pos_in_input_stream_;
gfx::Size input_coded_size_;
// Requested by encoder.
unsigned int num_required_input_buffers_;
size_t output_buffer_size_;
// Number of frames to encode. This may differ from the number of frames in
// stream if we need more frames for bitrate tests.
unsigned int num_frames_to_encode_;
// Number of encoded frames we've got from the encoder thus far.
unsigned int num_encoded_frames_;
// Frames since last bitrate verification.
unsigned int num_frames_since_last_check_;
// True if received a keyframe while processing current bitstream buffer.
bool seen_keyframe_in_this_buffer_;
// True if we are to save the encoded stream to a file.
bool save_to_file_;
// Request a keyframe every keyframe_period_ frames.
const unsigned int keyframe_period_;
// Number of keyframes requested by now.
unsigned int num_keyframes_requested_;
// Next keyframe expected before next_keyframe_at_ + kMaxKeyframeDelay.
unsigned int next_keyframe_at_;
// True if we are asking encoder for a particular bitrate.
bool force_bitrate_;
// Current requested bitrate.
unsigned int current_requested_bitrate_;
// Current expected framerate.
unsigned int current_framerate_;
// Byte size of the encoded stream (for bitrate calculation) since last
// time we checked bitrate.
size_t encoded_stream_size_since_last_check_;
// If true, verify performance at the end of the test.
bool test_perf_;
// Check the output frame quality of the encoder.
bool verify_output_;
// Check whether the output timestamps match input timestamps.
bool verify_output_timestamp_;
// Used to perform codec-specific sanity checks on the stream.
std::unique_ptr<StreamValidator> stream_validator_;
// Used to validate the encoded frame quality.
std::unique_ptr<VideoFrameQualityValidator> quality_validator_;
// The time when the first frame is submitted for encode.
base::TimeTicks first_frame_start_time_;
// The time when the last encoded frame is ready.
base::TimeTicks last_frame_ready_time_;
// All methods of this class should be run on the same thread.
base::ThreadChecker thread_checker_;
// Requested bitrate in bits per second.
unsigned int requested_bitrate_;
// Requested initial framerate.
unsigned int requested_framerate_;
// Bitrate to switch to in the middle of the stream.
unsigned int requested_subsequent_bitrate_;
// Framerate to switch to in the middle of the stream.
unsigned int requested_subsequent_framerate_;
// The timer used to feed the encoder with the input frames.
std::unique_ptr<base::RepeatingTimer> input_timer_;
// The timestamps for each frame in the order of CreateFrame() invocation.
std::queue<base::TimeDelta> frame_timestamps_;
// The last timestamp popped from |frame_timestamps_|.
base::TimeDelta previous_timestamp_;
};
VEAClient::VEAClient(TestStream* test_stream,
ClientStateNotification<ClientState>* note,
bool save_to_file,
unsigned int keyframe_period,
bool force_bitrate,
bool test_perf,
bool mid_stream_bitrate_switch,
bool mid_stream_framerate_switch,
bool verify_output,
bool verify_output_timestamp)
: state_(CS_CREATED),
test_stream_(test_stream),
note_(note),
next_input_id_(0),
next_output_buffer_id_(0),
pos_in_input_stream_(0),
num_required_input_buffers_(0),
output_buffer_size_(0),
num_frames_to_encode_(0),
num_encoded_frames_(0),
num_frames_since_last_check_(0),
seen_keyframe_in_this_buffer_(false),
save_to_file_(save_to_file),
keyframe_period_(keyframe_period),
num_keyframes_requested_(0),
next_keyframe_at_(0),
force_bitrate_(force_bitrate),
current_requested_bitrate_(0),
current_framerate_(0),
encoded_stream_size_since_last_check_(0),
test_perf_(test_perf),
verify_output_(verify_output),
verify_output_timestamp_(verify_output_timestamp),
requested_bitrate_(0),
requested_framerate_(0),
requested_subsequent_bitrate_(0),
requested_subsequent_framerate_(0) {
if (keyframe_period_)
LOG_ASSERT(kMaxKeyframeDelay < keyframe_period_);
// Fake encoder produces an invalid stream, so skip validating it.
if (!g_fake_encoder) {
stream_validator_ = StreamValidator::Create(
test_stream_->requested_profile,
base::Bind(&VEAClient::HandleEncodedFrame, base::Unretained(this)));
CHECK(stream_validator_);
}
if (save_to_file_) {
LOG_ASSERT(!test_stream_->out_filename.empty());
#if defined(OS_POSIX)
base::FilePath out_filename(test_stream_->out_filename);
#elif defined(OS_WIN)
base::FilePath out_filename(base::UTF8ToWide(test_stream_->out_filename));
#endif
// This creates or truncates out_filename.
// Without it, AppendToFile() will not work.
EXPECT_EQ(0, base::WriteFile(out_filename, NULL, 0));
}
// Initialize the parameters of the test streams.
UpdateTestStreamData(mid_stream_bitrate_switch, mid_stream_framerate_switch);
thread_checker_.DetachFromThread();
}
VEAClient::~VEAClient() {
LOG_ASSERT(!has_encoder());
}
std::unique_ptr<VideoEncodeAccelerator> VEAClient::CreateFakeVEA() {
std::unique_ptr<VideoEncodeAccelerator> encoder;
if (g_fake_encoder) {
encoder.reset(new FakeVideoEncodeAccelerator(
scoped_refptr<base::SingleThreadTaskRunner>(
base::ThreadTaskRunnerHandle::Get())));
}
return encoder;
}
std::unique_ptr<VideoEncodeAccelerator> VEAClient::CreateV4L2VEA() {
std::unique_ptr<VideoEncodeAccelerator> encoder;
#if defined(OS_CHROMEOS) && defined(USE_V4L2_CODEC)
scoped_refptr<V4L2Device> device = V4L2Device::Create(V4L2Device::kEncoder);
if (device)
encoder.reset(new V4L2VideoEncodeAccelerator(device));
#endif
return encoder;
}
std::unique_ptr<VideoEncodeAccelerator> VEAClient::CreateVaapiVEA() {
std::unique_ptr<VideoEncodeAccelerator> encoder;
#if defined(OS_CHROMEOS) && defined(ARCH_CPU_X86_FAMILY)
encoder.reset(new VaapiVideoEncodeAccelerator());
#endif
return encoder;
}
std::unique_ptr<VideoEncodeAccelerator> VEAClient::CreateVTVEA() {
std::unique_ptr<VideoEncodeAccelerator> encoder;
#if defined(OS_MACOSX)
encoder.reset(new VTVideoEncodeAccelerator());
#endif
return encoder;
}
std::unique_ptr<VideoEncodeAccelerator> VEAClient::CreateMFVEA() {
std::unique_ptr<VideoEncodeAccelerator> encoder;
#if defined(OS_WIN)
MediaFoundationVideoEncodeAccelerator::PreSandboxInitialization();
encoder.reset(new MediaFoundationVideoEncodeAccelerator());
#endif
return encoder;
}
void VEAClient::CreateEncoder() {
DCHECK(thread_checker_.CalledOnValidThread());
LOG_ASSERT(!has_encoder());
std::unique_ptr<VideoEncodeAccelerator> encoders[] = {
CreateFakeVEA(), CreateV4L2VEA(), CreateVaapiVEA(), CreateVTVEA(),
CreateMFVEA()};
DVLOG(1) << "Profile: " << test_stream_->requested_profile
<< ", initial bitrate: " << requested_bitrate_;
for (size_t i = 0; i < arraysize(encoders); ++i) {
if (!encoders[i])
continue;
encoder_ = std::move(encoders[i]);
SetState(CS_ENCODER_SET);
if (encoder_->Initialize(kInputFormat, test_stream_->visible_size,
test_stream_->requested_profile,
requested_bitrate_, this)) {
SetStreamParameters(requested_bitrate_, requested_framerate_);
SetState(CS_INITIALIZED);
if (verify_output_ && !g_fake_encoder)
quality_validator_.reset(new VideoFrameQualityValidator(
test_stream_->requested_profile,
base::Bind(&VEAClient::DecodeCompleted, base::Unretained(this)),
base::Bind(&VEAClient::DecodeFailed, base::Unretained(this))));
return;
}
}
encoder_.reset();
LOG(ERROR) << "VideoEncodeAccelerator::Initialize() failed";
SetState(CS_ERROR);
}
void VEAClient::DecodeCompleted() {
SetState(CS_VALIDATED);
}
void VEAClient::DecodeFailed() {
SetState(CS_ERROR);
}
void VEAClient::DestroyEncoder() {
DCHECK(thread_checker_.CalledOnValidThread());
if (!has_encoder())
return;
// Clear the objects that should be destroyed on the same thread as creation.
encoder_.reset();
input_timer_.reset();
quality_validator_.reset();
}
void VEAClient::UpdateTestStreamData(bool mid_stream_bitrate_switch,
bool mid_stream_framerate_switch) {
// Use defaults for bitrate/framerate if they are not provided.
if (test_stream_->requested_bitrate == 0)
requested_bitrate_ = kDefaultBitrate;
else
requested_bitrate_ = test_stream_->requested_bitrate;
if (test_stream_->requested_framerate == 0)
requested_framerate_ = kDefaultFramerate;
else
requested_framerate_ = test_stream_->requested_framerate;
// If bitrate/framerate switch is requested, use the subsequent values if
// provided, or, if not, calculate them from their initial values using
// the default ratios.
// Otherwise, if a switch is not requested, keep the initial values.
if (mid_stream_bitrate_switch) {
if (test_stream_->requested_subsequent_bitrate == 0)
requested_subsequent_bitrate_ =
requested_bitrate_ * kDefaultSubsequentBitrateRatio;
else
requested_subsequent_bitrate_ =
test_stream_->requested_subsequent_bitrate;
} else {
requested_subsequent_bitrate_ = requested_bitrate_;
}
if (requested_subsequent_bitrate_ == 0)
requested_subsequent_bitrate_ = 1;
if (mid_stream_framerate_switch) {
if (test_stream_->requested_subsequent_framerate == 0)
requested_subsequent_framerate_ =
requested_framerate_ * kDefaultSubsequentFramerateRatio;
else
requested_subsequent_framerate_ =
test_stream_->requested_subsequent_framerate;
} else {
requested_subsequent_framerate_ = requested_framerate_;
}
if (requested_subsequent_framerate_ == 0)
requested_subsequent_framerate_ = 1;
}
double VEAClient::frames_per_second() {
LOG_ASSERT(num_encoded_frames_ != 0UL);
base::TimeDelta duration = last_frame_ready_time_ - first_frame_start_time_;
return num_encoded_frames_ / duration.InSecondsF();
}
void VEAClient::RequireBitstreamBuffers(unsigned int input_count,
const gfx::Size& input_coded_size,
size_t output_size) {
DCHECK(thread_checker_.CalledOnValidThread());
ASSERT_EQ(state_, CS_INITIALIZED);
SetState(CS_ENCODING);
if (quality_validator_)
quality_validator_->Initialize(input_coded_size,
gfx::Rect(test_stream_->visible_size));
CreateAlignedInputStreamFile(input_coded_size, test_stream_);
num_frames_to_encode_ = test_stream_->num_frames;
if (g_num_frames_to_encode > 0)
num_frames_to_encode_ = g_num_frames_to_encode;
// We may need to loop over the stream more than once if more frames than
// provided is required for bitrate tests.
if (force_bitrate_ && num_frames_to_encode_ < kMinFramesForBitrateTests) {
DVLOG(1) << "Stream too short for bitrate test ("
<< test_stream_->num_frames << " frames), will loop it to reach "
<< kMinFramesForBitrateTests << " frames";
num_frames_to_encode_ = kMinFramesForBitrateTests;
}
if (save_to_file_ && IsVP8(test_stream_->requested_profile))
WriteIvfFileHeader();
input_coded_size_ = input_coded_size;
num_required_input_buffers_ = input_count;
ASSERT_GT(num_required_input_buffers_, 0UL);
output_buffer_size_ = output_size;
ASSERT_GT(output_buffer_size_, 0UL);
for (unsigned int i = 0; i < kNumOutputBuffers; ++i) {
base::SharedMemory* shm = new base::SharedMemory();
LOG_ASSERT(shm->CreateAndMapAnonymous(output_buffer_size_));
output_shms_.push_back(shm);
FeedEncoderWithOutput(shm);
}
if (g_env->run_at_fps()) {
input_timer_.reset(new base::RepeatingTimer());
input_timer_->Start(
FROM_HERE, base::TimeDelta::FromSeconds(1) / current_framerate_,
base::Bind(&VEAClient::OnInputTimer, base::Unretained(this)));
} else {
while (inputs_at_client_.size() <
num_required_input_buffers_ + kNumExtraInputFrames)
FeedEncoderWithOneInput();
}
}
void VEAClient::VerifyOutputTimestamp(base::TimeDelta timestamp) {
// One input frame may be mapped to multiple output frames, so the current
// timestamp should be equal to previous timestamp or the top of
// frame_timestamps_.
if (timestamp != previous_timestamp_) {
ASSERT_TRUE(!frame_timestamps_.empty());
EXPECT_EQ(frame_timestamps_.front(), timestamp);
previous_timestamp_ = frame_timestamps_.front();
frame_timestamps_.pop();
}
}
void VEAClient::BitstreamBufferReady(int32_t bitstream_buffer_id,
size_t payload_size,
bool key_frame,
base::TimeDelta timestamp) {
DCHECK(thread_checker_.CalledOnValidThread());
ASSERT_LE(payload_size, output_buffer_size_);
IdToSHM::iterator it = output_buffers_at_client_.find(bitstream_buffer_id);
ASSERT_NE(it, output_buffers_at_client_.end());
base::SharedMemory* shm = it->second;
output_buffers_at_client_.erase(it);
if (state_ == CS_FINISHED || state_ == CS_VALIDATED)
return;
if (verify_output_timestamp_) {
VerifyOutputTimestamp(timestamp);
}
encoded_stream_size_since_last_check_ += payload_size;
const uint8_t* stream_ptr = static_cast<const uint8_t*>(shm->memory());
if (payload_size > 0) {
if (stream_validator_) {
stream_validator_->ProcessStreamBuffer(stream_ptr, payload_size);
} else {
HandleEncodedFrame(key_frame);
}
if (quality_validator_) {
scoped_refptr<DecoderBuffer> buffer(DecoderBuffer::CopyFrom(
reinterpret_cast<const uint8_t*>(shm->memory()),
static_cast<int>(payload_size)));
quality_validator_->AddDecodeBuffer(buffer);
// Insert EOS buffer to flush the decoder.
if (num_encoded_frames_ == num_frames_to_encode_)
quality_validator_->Flush();
}
if (save_to_file_) {
if (IsVP8(test_stream_->requested_profile))
WriteIvfFrameHeader(num_encoded_frames_ - 1, payload_size);
EXPECT_TRUE(base::AppendToFile(
base::FilePath::FromUTF8Unsafe(test_stream_->out_filename),
static_cast<char*>(shm->memory()),
base::checked_cast<int>(payload_size)));
}
}
EXPECT_EQ(key_frame, seen_keyframe_in_this_buffer_);
seen_keyframe_in_this_buffer_ = false;
FeedEncoderWithOutput(shm);
}
void VEAClient::NotifyError(VideoEncodeAccelerator::Error error) {
DCHECK(thread_checker_.CalledOnValidThread());
SetState(CS_ERROR);
}
void VEAClient::SetState(ClientState new_state) {
DVLOG(4) << "Changing state " << state_ << "->" << new_state;
note_->Notify(new_state);
state_ = new_state;
}
void VEAClient::SetStreamParameters(unsigned int bitrate,
unsigned int framerate) {
current_requested_bitrate_ = bitrate;
current_framerate_ = framerate;
LOG_ASSERT(current_requested_bitrate_ > 0UL);
LOG_ASSERT(current_framerate_ > 0UL);
encoder_->RequestEncodingParametersChange(current_requested_bitrate_,
current_framerate_);
DVLOG(1) << "Switched parameters to " << current_requested_bitrate_
<< " bps @ " << current_framerate_ << " FPS";
}
void VEAClient::InputNoLongerNeededCallback(int32_t input_id) {
std::set<int32_t>::iterator it = inputs_at_client_.find(input_id);
ASSERT_NE(it, inputs_at_client_.end());
inputs_at_client_.erase(it);
if (!g_env->run_at_fps())
FeedEncoderWithOneInput();
}
scoped_refptr<VideoFrame> VEAClient::CreateFrame(off_t position) {
uint8_t* frame_data_y =
reinterpret_cast<uint8_t*>(&test_stream_->aligned_in_file_data[0]) +
position;
uint8_t* frame_data_u = frame_data_y + test_stream_->aligned_plane_size[0];
uint8_t* frame_data_v = frame_data_u + test_stream_->aligned_plane_size[1];
CHECK_GT(current_framerate_, 0U);
scoped_refptr<VideoFrame> video_frame = VideoFrame::WrapExternalYuvData(
kInputFormat, input_coded_size_, gfx::Rect(test_stream_->visible_size),
test_stream_->visible_size, input_coded_size_.width(),
input_coded_size_.width() / 2, input_coded_size_.width() / 2,
frame_data_y, frame_data_u, frame_data_v,
// Timestamp needs to avoid starting from 0.
base::TimeDelta().FromMilliseconds((next_input_id_ + 1) *
base::Time::kMillisecondsPerSecond /
current_framerate_));
EXPECT_NE(nullptr, video_frame.get());
return video_frame;
}
scoped_refptr<VideoFrame> VEAClient::PrepareInputFrame(off_t position,
int32_t* input_id) {
CHECK_LE(position + test_stream_->aligned_buffer_size,
test_stream_->aligned_in_file_data.size());
scoped_refptr<VideoFrame> frame = CreateFrame(position);
EXPECT_TRUE(frame);
frame->AddDestructionObserver(
BindToCurrentLoop(base::Bind(&VEAClient::InputNoLongerNeededCallback,
base::Unretained(this), next_input_id_)));
LOG_ASSERT(inputs_at_client_.insert(next_input_id_).second);
*input_id = next_input_id_++;
return frame;
}
void VEAClient::OnInputTimer() {
if (!has_encoder() || state_ != CS_ENCODING)
input_timer_.reset();
else if (inputs_at_client_.size() <
num_required_input_buffers_ + kNumExtraInputFrames)
FeedEncoderWithOneInput();
else
DVLOG(1) << "Dropping input frame";
}
void VEAClient::FeedEncoderWithOneInput() {
if (!has_encoder() || state_ != CS_ENCODING)
return;
size_t bytes_left =
test_stream_->aligned_in_file_data.size() - pos_in_input_stream_;
if (bytes_left < test_stream_->aligned_buffer_size) {
DCHECK_EQ(bytes_left, 0UL);
// Rewind if at the end of stream and we are still encoding.
// This is to flush the encoder with additional frames from the beginning
// of the stream, or if the stream is shorter that the number of frames
// we require for bitrate tests.
pos_in_input_stream_ = 0;
}
if (quality_validator_)
quality_validator_->AddOriginalFrame(CreateFrame(pos_in_input_stream_));
int32_t input_id;
scoped_refptr<VideoFrame> video_frame =
PrepareInputFrame(pos_in_input_stream_, &input_id);
frame_timestamps_.push(video_frame->timestamp());
pos_in_input_stream_ += static_cast<off_t>(test_stream_->aligned_buffer_size);
bool force_keyframe = false;
if (keyframe_period_ && input_id % keyframe_period_ == 0) {
force_keyframe = true;
++num_keyframes_requested_;
}
if (input_id == 0) {
first_frame_start_time_ = base::TimeTicks::Now();
}
if (g_env->needs_encode_latency()) {
LOG_ASSERT(input_id == static_cast<int32_t>(encode_start_time_.size()));
encode_start_time_.push_back(base::TimeTicks::Now());
}
encoder_->Encode(video_frame, force_keyframe);
}
void VEAClient::FeedEncoderWithOutput(base::SharedMemory* shm) {
if (!has_encoder())
return;
if (state_ != CS_ENCODING)
return;
base::SharedMemoryHandle dup_handle;
LOG_ASSERT(shm->ShareToProcess(base::GetCurrentProcessHandle(), &dup_handle));
BitstreamBuffer bitstream_buffer(next_output_buffer_id_++, dup_handle,
output_buffer_size_);
LOG_ASSERT(output_buffers_at_client_
.insert(std::make_pair(bitstream_buffer.id(), shm))
.second);
encoder_->UseOutputBitstreamBuffer(bitstream_buffer);
}
bool VEAClient::HandleEncodedFrame(bool keyframe) {
// This would be a bug in the test, which should not ignore false
// return value from this method.
LOG_ASSERT(num_encoded_frames_ <= num_frames_to_encode_);
last_frame_ready_time_ = base::TimeTicks::Now();
if (g_env->needs_encode_latency()) {
LOG_ASSERT(num_encoded_frames_ < encode_start_time_.size());
base::TimeTicks start_time = encode_start_time_[num_encoded_frames_];
LOG_ASSERT(!start_time.is_null());
encode_latencies_.push_back(last_frame_ready_time_ - start_time);
}
++num_encoded_frames_;
++num_frames_since_last_check_;
// Because the keyframe behavior requirements are loose, we give
// the encoder more freedom here. It could either deliver a keyframe
// immediately after we requested it, which could be for a frame number
// before the one we requested it for (if the keyframe request
// is asynchronous, i.e. not bound to any concrete frame, and because
// the pipeline can be deeper than one frame), at that frame, or after.
// So the only constraints we put here is that we get a keyframe not
// earlier than we requested one (in time), and not later than
// kMaxKeyframeDelay frames after the frame, for which we requested
// it, comes back encoded.
if (keyframe) {
if (num_keyframes_requested_ > 0) {
--num_keyframes_requested_;
next_keyframe_at_ += keyframe_period_;
}
seen_keyframe_in_this_buffer_ = true;
}
if (num_keyframes_requested_ > 0)
EXPECT_LE(num_encoded_frames_, next_keyframe_at_ + kMaxKeyframeDelay);
if (num_encoded_frames_ == num_frames_to_encode_ / 2) {
VerifyStreamProperties();
if (requested_subsequent_bitrate_ != current_requested_bitrate_ ||
requested_subsequent_framerate_ != current_framerate_) {
SetStreamParameters(requested_subsequent_bitrate_,
requested_subsequent_framerate_);
if (g_env->run_at_fps() && input_timer_)
input_timer_->Start(
FROM_HERE, base::TimeDelta::FromSeconds(1) / current_framerate_,
base::Bind(&VEAClient::OnInputTimer, base::Unretained(this)));
}
} else if (num_encoded_frames_ == num_frames_to_encode_) {
LogPerf();
VerifyMinFPS();
VerifyStreamProperties();
SetState(CS_FINISHED);
if (!quality_validator_)
SetState(CS_VALIDATED);
if (verify_output_timestamp_) {
// There may be some timestamps left because we push extra frames to flush
// encoder.
EXPECT_LE(frame_timestamps_.size(),
static_cast<size_t>(next_input_id_ - num_frames_to_encode_));
}
return false;
}
return true;
}
void VEAClient::LogPerf() {
g_env->LogToFile("Measured encoder FPS",
base::StringPrintf("%.3f", frames_per_second()));
// Log encode latencies.
if (g_env->needs_encode_latency()) {
std::sort(encode_latencies_.begin(), encode_latencies_.end());
for (const auto& percentile : kLoggedLatencyPercentiles) {
base::TimeDelta latency = Percentile(encode_latencies_, percentile);
g_env->LogToFile(
base::StringPrintf("Encode latency for the %dth percentile",
percentile),
base::StringPrintf("%" PRId64 " us", latency.InMicroseconds()));
}
}
}
void VEAClient::VerifyMinFPS() {
if (test_perf_)
EXPECT_GE(frames_per_second(), kMinPerfFPS);
}
void VEAClient::VerifyStreamProperties() {
LOG_ASSERT(num_frames_since_last_check_ > 0UL);
LOG_ASSERT(encoded_stream_size_since_last_check_ > 0UL);
unsigned int bitrate = static_cast<unsigned int>(
encoded_stream_size_since_last_check_ * 8 * current_framerate_ /
num_frames_since_last_check_);
DVLOG(1) << "Current chunk's bitrate: " << bitrate
<< " (expected: " << current_requested_bitrate_ << " @ "
<< current_framerate_ << " FPS,"
<< " num frames in chunk: " << num_frames_since_last_check_;
num_frames_since_last_check_ = 0;
encoded_stream_size_since_last_check_ = 0;
if (force_bitrate_) {
EXPECT_NEAR(bitrate, current_requested_bitrate_,
kBitrateTolerance * current_requested_bitrate_);
}
// All requested keyframes should've been provided. Allow the last requested
// frame to remain undelivered if we haven't reached the maximum frame number
// by which it should have arrived.
if (num_encoded_frames_ < next_keyframe_at_ + kMaxKeyframeDelay)
EXPECT_LE(num_keyframes_requested_, 1UL);
else
EXPECT_EQ(num_keyframes_requested_, 0UL);
}
void VEAClient::WriteIvfFileHeader() {
IvfFileHeader header = {};
memcpy(header.signature, kIvfHeaderSignature, sizeof(header.signature));
header.version = 0;
header.header_size = sizeof(header);
header.fourcc = 0x30385056; // VP80
header.width =
base::checked_cast<uint16_t>(test_stream_->visible_size.width());
header.height =
base::checked_cast<uint16_t>(test_stream_->visible_size.height());
header.timebase_denum = requested_framerate_;
header.timebase_num = 1;
header.num_frames = num_frames_to_encode_;
header.ByteSwap();
EXPECT_TRUE(base::AppendToFile(
base::FilePath::FromUTF8Unsafe(test_stream_->out_filename),
reinterpret_cast<char*>(&header), sizeof(header)));
}
void VEAClient::WriteIvfFrameHeader(int frame_index, size_t frame_size) {
IvfFrameHeader header = {};
header.frame_size = static_cast<uint32_t>(frame_size);
header.timestamp = frame_index;
header.ByteSwap();
EXPECT_TRUE(base::AppendToFile(
base::FilePath::FromUTF8Unsafe(test_stream_->out_filename),
reinterpret_cast<char*>(&header), sizeof(header)));
}
// Test parameters:
// - Number of concurrent encoders. The value takes effect when there is only
// one input stream; otherwise, one encoder per input stream will be
// instantiated.
// - If true, save output to file (provided an output filename was supplied).
// - Force a keyframe every n frames.
// - Force bitrate; the actual required value is provided as a property
// of the input stream, because it depends on stream type/resolution/etc.
// - If true, measure performance.
// - If true, switch bitrate mid-stream.
// - If true, switch framerate mid-stream.
// - If true, verify the output frames of encoder.
// - If true, verify the timestamps of output frames.
class VideoEncodeAcceleratorTest
: public ::testing::TestWithParam<
std::tuple<int, bool, int, bool, bool, bool, bool, bool, bool>> {};
TEST_P(VideoEncodeAcceleratorTest, TestSimpleEncode) {
size_t num_concurrent_encoders = std::get<0>(GetParam());
const bool save_to_file = std::get<1>(GetParam());
const unsigned int keyframe_period = std::get<2>(GetParam());
const bool force_bitrate = std::get<3>(GetParam());
const bool test_perf = std::get<4>(GetParam());
const bool mid_stream_bitrate_switch = std::get<5>(GetParam());
const bool mid_stream_framerate_switch = std::get<6>(GetParam());
const bool verify_output =
std::get<7>(GetParam()) || g_env->verify_all_output();
const bool verify_output_timestamp = std::get<8>(GetParam());
ScopedVector<ClientStateNotification<ClientState>> notes;
ScopedVector<VEAClient> clients;
base::Thread encoder_thread("EncoderThread");
ASSERT_TRUE(encoder_thread.Start());
if (g_env->test_streams_.size() > 1)
num_concurrent_encoders = g_env->test_streams_.size();
// Create all encoders.
for (size_t i = 0; i < num_concurrent_encoders; i++) {
size_t test_stream_index = i % g_env->test_streams_.size();
// Disregard save_to_file if we didn't get an output filename.
bool encoder_save_to_file =
(save_to_file &&
!g_env->test_streams_[test_stream_index]->out_filename.empty());
notes.push_back(new ClientStateNotification<ClientState>());
clients.push_back(new VEAClient(
g_env->test_streams_[test_stream_index], notes.back(),
encoder_save_to_file, keyframe_period, force_bitrate, test_perf,
mid_stream_bitrate_switch, mid_stream_framerate_switch, verify_output,
verify_output_timestamp));
encoder_thread.task_runner()->PostTask(
FROM_HERE, base::Bind(&VEAClient::CreateEncoder,
base::Unretained(clients.back())));
}
// All encoders must pass through states in this order.
enum ClientState state_transitions[] = {
CS_ENCODER_SET, CS_INITIALIZED, CS_ENCODING, CS_FINISHED, CS_VALIDATED};
// Wait for all encoders to go through all states and finish.
// Do this by waiting for all encoders to advance to state n before checking
// state n+1, to verify that they are able to operate concurrently.
// It also simulates the real-world usage better, as the main thread, on which
// encoders are created/destroyed, is a single GPU Process ChildThread.
// Moreover, we can't have proper multithreading on X11, so this could cause
// hard to debug issues there, if there were multiple "ChildThreads".
for (size_t state_no = 0; state_no < arraysize(state_transitions);
++state_no) {
for (size_t i = 0; i < num_concurrent_encoders; i++)
ASSERT_EQ(notes[i]->Wait(), state_transitions[state_no]);
}
for (size_t i = 0; i < num_concurrent_encoders; ++i) {
encoder_thread.task_runner()->PostTask(
FROM_HERE,
base::Bind(&VEAClient::DestroyEncoder, base::Unretained(clients[i])));
}
// This ensures all tasks have finished.
encoder_thread.Stop();
}
#if defined(OS_CHROMEOS)
INSTANTIATE_TEST_CASE_P(
SimpleEncode,
VideoEncodeAcceleratorTest,
::testing::Values(
std::make_tuple(1, true, 0, false, false, false, false, false, false),
std::make_tuple(1, true, 0, false, false, false, false, true, false)));
INSTANTIATE_TEST_CASE_P(
EncoderPerf,
VideoEncodeAcceleratorTest,
::testing::Values(
std::make_tuple(1, false, 0, false, true, false, false, false, false)));
INSTANTIATE_TEST_CASE_P(ForceKeyframes,
VideoEncodeAcceleratorTest,
::testing::Values(std::make_tuple(1,
false,
10,
false,
false,
false,
false,
false,
false)));
INSTANTIATE_TEST_CASE_P(
ForceBitrate,
VideoEncodeAcceleratorTest,
::testing::Values(
std::make_tuple(1, false, 0, true, false, false, false, false, false)));
INSTANTIATE_TEST_CASE_P(
MidStreamParamSwitchBitrate,
VideoEncodeAcceleratorTest,
::testing::Values(
std::make_tuple(1, false, 0, true, false, true, false, false, false)));
INSTANTIATE_TEST_CASE_P(
MidStreamParamSwitchFPS,
VideoEncodeAcceleratorTest,
::testing::Values(
std::make_tuple(1, false, 0, true, false, false, true, false, false)));
INSTANTIATE_TEST_CASE_P(
MultipleEncoders,
VideoEncodeAcceleratorTest,
::testing::Values(
std::make_tuple(3, false, 0, false, false, false, false, false, false),
std::make_tuple(3, false, 0, true, false, false, true, false, false),
std::make_tuple(3, false, 0, true, false, true, false, false, false)));
INSTANTIATE_TEST_CASE_P(
VerifyTimestamp,
VideoEncodeAcceleratorTest,
::testing::Values(
std::make_tuple(1, false, 0, false, false, false, false, false, true)));
#elif defined(OS_MACOSX) || defined(OS_WIN)
INSTANTIATE_TEST_CASE_P(
SimpleEncode,
VideoEncodeAcceleratorTest,
::testing::Values(
std::make_tuple(1, true, 0, false, false, false, false, false, false),
std::make_tuple(1, true, 0, false, false, false, false, true, false)));
INSTANTIATE_TEST_CASE_P(
EncoderPerf,
VideoEncodeAcceleratorTest,
::testing::Values(
std::make_tuple(1, false, 0, false, true, false, false, false, false)));
INSTANTIATE_TEST_CASE_P(MultipleEncoders,
VideoEncodeAcceleratorTest,
::testing::Values(std::make_tuple(3,
false,
0,
false,
false,
false,
false,
false,
false)));
#if defined(OS_WIN)
INSTANTIATE_TEST_CASE_P(
ForceBitrate,
VideoEncodeAcceleratorTest,
::testing::Values(
std::make_tuple(1, false, 0, true, false, false, false, false, false)));
#endif // defined(OS_WIN)
#endif // defined(OS_CHROMEOS)
// TODO(posciak): more tests:
// - async FeedEncoderWithOutput
// - out-of-order return of outputs to encoder
// - multiple encoders + decoders
// - mid-stream encoder_->Destroy()
} // namespace
} // namespace media
int main(int argc, char** argv) {
testing::InitGoogleTest(&argc, argv); // Removes gtest-specific args.
base::CommandLine::Init(argc, argv);
base::ShadowingAtExitManager at_exit_manager;
base::MessageLoop main_loop;
std::unique_ptr<base::FilePath::StringType> test_stream_data(
new base::FilePath::StringType(
media::GetTestDataFilePath(media::g_default_in_filename).value()));
test_stream_data->append(media::g_default_in_parameters);
// Needed to enable DVLOG through --vmodule.
logging::LoggingSettings settings;
settings.logging_dest = logging::LOG_TO_SYSTEM_DEBUG_LOG;
LOG_ASSERT(logging::InitLogging(settings));
const base::CommandLine* cmd_line = base::CommandLine::ForCurrentProcess();
DCHECK(cmd_line);
bool run_at_fps = false;
bool needs_encode_latency = false;
bool verify_all_output = false;
base::FilePath log_path;
base::CommandLine::SwitchMap switches = cmd_line->GetSwitches();
for (base::CommandLine::SwitchMap::const_iterator it = switches.begin();
it != switches.end(); ++it) {
if (it->first == "test_stream_data") {
test_stream_data->assign(it->second.c_str());
continue;
}
// Output machine-readable logs with fixed formats to a file.
if (it->first == "output_log") {
log_path = base::FilePath(
base::FilePath::StringType(it->second.begin(), it->second.end()));
continue;
}
if (it->first == "num_frames_to_encode") {
std::string input(it->second.begin(), it->second.end());
LOG_ASSERT(base::StringToInt(input, &media::g_num_frames_to_encode));
continue;
}
if (it->first == "measure_latency") {
needs_encode_latency = true;
continue;
}
if (it->first == "fake_encoder") {
media::g_fake_encoder = true;
continue;
}
if (it->first == "run_at_fps") {
run_at_fps = true;
continue;
}
if (it->first == "verify_all_output") {
verify_all_output = true;
continue;
}
if (it->first == "v" || it->first == "vmodule")
continue;
if (it->first == "ozone-platform" || it->first == "ozone-use-surfaceless")
continue;
LOG(FATAL) << "Unexpected switch: " << it->first << ":" << it->second;
}
if (needs_encode_latency && !run_at_fps) {
// Encode latency can only be measured with --run_at_fps. Otherwise, we get
// skewed results since it may queue too many frames at once with the same
// encode start time.
LOG(FATAL) << "--measure_latency requires --run_at_fps enabled to work.";
}
#if defined(OS_CHROMEOS) && defined(ARCH_CPU_X86_FAMILY)
media::VaapiWrapper::PreSandboxInitialization();
#endif
media::g_env =
reinterpret_cast<media::VideoEncodeAcceleratorTestEnvironment*>(
testing::AddGlobalTestEnvironment(
new media::VideoEncodeAcceleratorTestEnvironment(
std::move(test_stream_data), log_path, run_at_fps,
needs_encode_latency, verify_all_output)));
return RUN_ALL_TESTS();
}