| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "sandbox/linux/seccomp-bpf/sandbox_bpf.h" |
| |
| // Some headers on Android are missing cdefs: crbug.com/172337. |
| // (We can't use OS_ANDROID here since build_config.h is not included). |
| #if defined(ANDROID) |
| #include <sys/cdefs.h> |
| #endif |
| |
| #include <errno.h> |
| #include <fcntl.h> |
| #include <linux/filter.h> |
| #include <signal.h> |
| #include <string.h> |
| #include <sys/prctl.h> |
| #include <sys/stat.h> |
| #include <sys/syscall.h> |
| #include <sys/types.h> |
| #include <sys/wait.h> |
| #include <time.h> |
| #include <unistd.h> |
| |
| #include <limits> |
| |
| #include "base/compiler_specific.h" |
| #include "base/logging.h" |
| #include "base/macros.h" |
| #include "base/memory/scoped_ptr.h" |
| #include "base/posix/eintr_wrapper.h" |
| #include "sandbox/linux/seccomp-bpf/codegen.h" |
| #include "sandbox/linux/seccomp-bpf/die.h" |
| #include "sandbox/linux/seccomp-bpf/errorcode.h" |
| #include "sandbox/linux/seccomp-bpf/instruction.h" |
| #include "sandbox/linux/seccomp-bpf/linux_seccomp.h" |
| #include "sandbox/linux/seccomp-bpf/sandbox_bpf_policy.h" |
| #include "sandbox/linux/seccomp-bpf/syscall.h" |
| #include "sandbox/linux/seccomp-bpf/syscall_iterator.h" |
| #include "sandbox/linux/seccomp-bpf/trap.h" |
| #include "sandbox/linux/seccomp-bpf/verifier.h" |
| #include "sandbox/linux/services/linux_syscalls.h" |
| |
| namespace sandbox { |
| |
| namespace { |
| |
| const int kExpectedExitCode = 100; |
| |
| #if defined(__i386__) || defined(__x86_64__) |
| const bool kIsIntel = true; |
| #else |
| const bool kIsIntel = false; |
| #endif |
| #if defined(__x86_64__) && defined(__ILP32__) |
| const bool kIsX32 = true; |
| #else |
| const bool kIsX32 = false; |
| #endif |
| |
| const int kSyscallsRequiredForUnsafeTraps[] = { |
| __NR_rt_sigprocmask, |
| __NR_rt_sigreturn, |
| #if defined(__NR_sigprocmask) |
| __NR_sigprocmask, |
| #endif |
| #if defined(__NR_sigreturn) |
| __NR_sigreturn, |
| #endif |
| }; |
| |
| bool HasExactlyOneBit(uint64_t x) { |
| // Common trick; e.g., see http://stackoverflow.com/a/108329. |
| return x != 0 && (x & (x - 1)) == 0; |
| } |
| |
| #if !defined(NDEBUG) |
| void WriteFailedStderrSetupMessage(int out_fd) { |
| const char* error_string = strerror(errno); |
| static const char msg[] = |
| "You have reproduced a puzzling issue.\n" |
| "Please, report to crbug.com/152530!\n" |
| "Failed to set up stderr: "; |
| if (HANDLE_EINTR(write(out_fd, msg, sizeof(msg) - 1)) > 0 && error_string && |
| HANDLE_EINTR(write(out_fd, error_string, strlen(error_string))) > 0 && |
| HANDLE_EINTR(write(out_fd, "\n", 1))) { |
| } |
| } |
| #endif // !defined(NDEBUG) |
| |
| // We define a really simple sandbox policy. It is just good enough for us |
| // to tell that the sandbox has actually been activated. |
| class ProbePolicy : public SandboxBPFPolicy { |
| public: |
| ProbePolicy() {} |
| virtual ErrorCode EvaluateSyscall(SandboxBPF*, int sysnum) const OVERRIDE { |
| switch (sysnum) { |
| case __NR_getpid: |
| // Return EPERM so that we can check that the filter actually ran. |
| return ErrorCode(EPERM); |
| case __NR_exit_group: |
| // Allow exit() with a non-default return code. |
| return ErrorCode(ErrorCode::ERR_ALLOWED); |
| default: |
| // Make everything else fail in an easily recognizable way. |
| return ErrorCode(EINVAL); |
| } |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(ProbePolicy); |
| }; |
| |
| void ProbeProcess(void) { |
| if (syscall(__NR_getpid) < 0 && errno == EPERM) { |
| syscall(__NR_exit_group, static_cast<intptr_t>(kExpectedExitCode)); |
| } |
| } |
| |
| class AllowAllPolicy : public SandboxBPFPolicy { |
| public: |
| AllowAllPolicy() {} |
| virtual ErrorCode EvaluateSyscall(SandboxBPF*, int sysnum) const OVERRIDE { |
| DCHECK(SandboxBPF::IsValidSyscallNumber(sysnum)); |
| return ErrorCode(ErrorCode::ERR_ALLOWED); |
| } |
| |
| private: |
| DISALLOW_COPY_AND_ASSIGN(AllowAllPolicy); |
| }; |
| |
| void TryVsyscallProcess(void) { |
| time_t current_time; |
| // time() is implemented as a vsyscall. With an older glibc, with |
| // vsyscall=emulate and some versions of the seccomp BPF patch |
| // we may get SIGKILL-ed. Detect this! |
| if (time(¤t_time) != static_cast<time_t>(-1)) { |
| syscall(__NR_exit_group, static_cast<intptr_t>(kExpectedExitCode)); |
| } |
| } |
| |
| bool IsSingleThreaded(int proc_fd) { |
| if (proc_fd < 0) { |
| // Cannot determine whether program is single-threaded. Hope for |
| // the best... |
| return true; |
| } |
| |
| struct stat sb; |
| int task = -1; |
| if ((task = openat(proc_fd, "self/task", O_RDONLY | O_DIRECTORY)) < 0 || |
| fstat(task, &sb) != 0 || sb.st_nlink != 3 || IGNORE_EINTR(close(task))) { |
| if (task >= 0) { |
| if (IGNORE_EINTR(close(task))) { |
| } |
| } |
| return false; |
| } |
| return true; |
| } |
| |
| bool IsDenied(const ErrorCode& code) { |
| return (code.err() & SECCOMP_RET_ACTION) == SECCOMP_RET_TRAP || |
| (code.err() >= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MIN_ERRNO) && |
| code.err() <= (SECCOMP_RET_ERRNO + ErrorCode::ERR_MAX_ERRNO)); |
| } |
| |
| // Function that can be passed as a callback function to CodeGen::Traverse(). |
| // Checks whether the "insn" returns an UnsafeTrap() ErrorCode. If so, it |
| // sets the "bool" variable pointed to by "aux". |
| void CheckForUnsafeErrorCodes(Instruction* insn, void* aux) { |
| bool* is_unsafe = static_cast<bool*>(aux); |
| if (!*is_unsafe) { |
| if (BPF_CLASS(insn->code) == BPF_RET && insn->k > SECCOMP_RET_TRAP && |
| insn->k - SECCOMP_RET_TRAP <= SECCOMP_RET_DATA) { |
| if (!Trap::IsSafeTrapId(insn->k & SECCOMP_RET_DATA)) { |
| *is_unsafe = true; |
| } |
| } |
| } |
| } |
| |
| // A Trap() handler that returns an "errno" value. The value is encoded |
| // in the "aux" parameter. |
| intptr_t ReturnErrno(const struct arch_seccomp_data&, void* aux) { |
| // TrapFnc functions report error by following the native kernel convention |
| // of returning an exit code in the range of -1..-4096. They do not try to |
| // set errno themselves. The glibc wrapper that triggered the SIGSYS will |
| // ultimately do so for us. |
| int err = reinterpret_cast<intptr_t>(aux) & SECCOMP_RET_DATA; |
| return -err; |
| } |
| |
| // Function that can be passed as a callback function to CodeGen::Traverse(). |
| // Checks whether the "insn" returns an errno value from a BPF filter. If so, |
| // it rewrites the instruction to instead call a Trap() handler that does |
| // the same thing. "aux" is ignored. |
| void RedirectToUserspace(Instruction* insn, void* aux) { |
| // When inside an UnsafeTrap() callback, we want to allow all system calls. |
| // This means, we must conditionally disable the sandbox -- and that's not |
| // something that kernel-side BPF filters can do, as they cannot inspect |
| // any state other than the syscall arguments. |
| // But if we redirect all error handlers to user-space, then we can easily |
| // make this decision. |
| // The performance penalty for this extra round-trip to user-space is not |
| // actually that bad, as we only ever pay it for denied system calls; and a |
| // typical program has very few of these. |
| SandboxBPF* sandbox = static_cast<SandboxBPF*>(aux); |
| if (BPF_CLASS(insn->code) == BPF_RET && |
| (insn->k & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) { |
| insn->k = sandbox->Trap(ReturnErrno, |
| reinterpret_cast<void*>(insn->k & SECCOMP_RET_DATA)).err(); |
| } |
| } |
| |
| // This wraps an existing policy and changes its behavior to match the changes |
| // made by RedirectToUserspace(). This is part of the framework that allows BPF |
| // evaluation in userland. |
| // TODO(markus): document the code inside better. |
| class RedirectToUserSpacePolicyWrapper : public SandboxBPFPolicy { |
| public: |
| explicit RedirectToUserSpacePolicyWrapper( |
| const SandboxBPFPolicy* wrapped_policy) |
| : wrapped_policy_(wrapped_policy) { |
| DCHECK(wrapped_policy_); |
| } |
| |
| virtual ErrorCode EvaluateSyscall(SandboxBPF* sandbox_compiler, |
| int system_call_number) const OVERRIDE { |
| ErrorCode err = |
| wrapped_policy_->EvaluateSyscall(sandbox_compiler, system_call_number); |
| ChangeErrnoToTraps(&err, sandbox_compiler); |
| return err; |
| } |
| |
| virtual ErrorCode InvalidSyscall( |
| SandboxBPF* sandbox_compiler) const OVERRIDE { |
| return ReturnErrnoViaTrap(sandbox_compiler, ENOSYS); |
| } |
| |
| private: |
| ErrorCode ReturnErrnoViaTrap(SandboxBPF* sandbox_compiler, int err) const { |
| return sandbox_compiler->Trap(ReturnErrno, reinterpret_cast<void*>(err)); |
| } |
| |
| // ChangeErrnoToTraps recursivly iterates through the ErrorCode |
| // converting any ERRNO to a userspace trap |
| void ChangeErrnoToTraps(ErrorCode* err, SandboxBPF* sandbox_compiler) const { |
| if (err->error_type() == ErrorCode::ET_SIMPLE && |
| (err->err() & SECCOMP_RET_ACTION) == SECCOMP_RET_ERRNO) { |
| // Have an errno, need to change this to a trap |
| *err = |
| ReturnErrnoViaTrap(sandbox_compiler, err->err() & SECCOMP_RET_DATA); |
| return; |
| } else if (err->error_type() == ErrorCode::ET_COND) { |
| // Need to explore both paths |
| ChangeErrnoToTraps((ErrorCode*)err->passed(), sandbox_compiler); |
| ChangeErrnoToTraps((ErrorCode*)err->failed(), sandbox_compiler); |
| return; |
| } else if (err->error_type() == ErrorCode::ET_TRAP) { |
| return; |
| } else if (err->error_type() == ErrorCode::ET_SIMPLE && |
| (err->err() & SECCOMP_RET_ACTION) == SECCOMP_RET_ALLOW) { |
| return; |
| } |
| NOTREACHED(); |
| } |
| |
| const SandboxBPFPolicy* wrapped_policy_; |
| DISALLOW_COPY_AND_ASSIGN(RedirectToUserSpacePolicyWrapper); |
| }; |
| |
| intptr_t BPFFailure(const struct arch_seccomp_data&, void* aux) { |
| SANDBOX_DIE(static_cast<char*>(aux)); |
| } |
| |
| } // namespace |
| |
| SandboxBPF::SandboxBPF() |
| : quiet_(false), |
| proc_fd_(-1), |
| conds_(new Conds), |
| sandbox_has_started_(false) {} |
| |
| SandboxBPF::~SandboxBPF() { |
| // It is generally unsafe to call any memory allocator operations or to even |
| // call arbitrary destructors after having installed a new policy. We just |
| // have no way to tell whether this policy would allow the system calls that |
| // the constructors can trigger. |
| // So, we normally destroy all of our complex state prior to starting the |
| // sandbox. But this won't happen, if the Sandbox object was created and |
| // never actually used to set up a sandbox. So, just in case, we are |
| // destroying any remaining state. |
| // The "if ()" statements are technically superfluous. But let's be explicit |
| // that we really don't want to run any code, when we already destroyed |
| // objects before setting up the sandbox. |
| if (conds_) { |
| delete conds_; |
| } |
| } |
| |
| bool SandboxBPF::IsValidSyscallNumber(int sysnum) { |
| return SyscallIterator::IsValid(sysnum); |
| } |
| |
| bool SandboxBPF::RunFunctionInPolicy(void (*code_in_sandbox)(), |
| scoped_ptr<SandboxBPFPolicy> policy) { |
| // Block all signals before forking a child process. This prevents an |
| // attacker from manipulating our test by sending us an unexpected signal. |
| sigset_t old_mask, new_mask; |
| if (sigfillset(&new_mask) || sigprocmask(SIG_BLOCK, &new_mask, &old_mask)) { |
| SANDBOX_DIE("sigprocmask() failed"); |
| } |
| int fds[2]; |
| if (pipe2(fds, O_NONBLOCK | O_CLOEXEC)) { |
| SANDBOX_DIE("pipe() failed"); |
| } |
| |
| if (fds[0] <= 2 || fds[1] <= 2) { |
| SANDBOX_DIE("Process started without standard file descriptors"); |
| } |
| |
| // This code is using fork() and should only ever run single-threaded. |
| // Most of the code below is "async-signal-safe" and only minor changes |
| // would be needed to support threads. |
| DCHECK(IsSingleThreaded(proc_fd_)); |
| pid_t pid = fork(); |
| if (pid < 0) { |
| // Die if we cannot fork(). We would probably fail a little later |
| // anyway, as the machine is likely very close to running out of |
| // memory. |
| // But what we don't want to do is return "false", as a crafty |
| // attacker might cause fork() to fail at will and could trick us |
| // into running without a sandbox. |
| sigprocmask(SIG_SETMASK, &old_mask, NULL); // OK, if it fails |
| SANDBOX_DIE("fork() failed unexpectedly"); |
| } |
| |
| // In the child process |
| if (!pid) { |
| // Test a very simple sandbox policy to verify that we can |
| // successfully turn on sandboxing. |
| Die::EnableSimpleExit(); |
| |
| errno = 0; |
| if (IGNORE_EINTR(close(fds[0]))) { |
| // This call to close() has been failing in strange ways. See |
| // crbug.com/152530. So we only fail in debug mode now. |
| #if !defined(NDEBUG) |
| WriteFailedStderrSetupMessage(fds[1]); |
| SANDBOX_DIE(NULL); |
| #endif |
| } |
| if (HANDLE_EINTR(dup2(fds[1], 2)) != 2) { |
| // Stderr could very well be a file descriptor to .xsession-errors, or |
| // another file, which could be backed by a file system that could cause |
| // dup2 to fail while trying to close stderr. It's important that we do |
| // not fail on trying to close stderr. |
| // If dup2 fails here, we will continue normally, this means that our |
| // parent won't cause a fatal failure if something writes to stderr in |
| // this child. |
| #if !defined(NDEBUG) |
| // In DEBUG builds, we still want to get a report. |
| WriteFailedStderrSetupMessage(fds[1]); |
| SANDBOX_DIE(NULL); |
| #endif |
| } |
| if (IGNORE_EINTR(close(fds[1]))) { |
| // This call to close() has been failing in strange ways. See |
| // crbug.com/152530. So we only fail in debug mode now. |
| #if !defined(NDEBUG) |
| WriteFailedStderrSetupMessage(fds[1]); |
| SANDBOX_DIE(NULL); |
| #endif |
| } |
| |
| SetSandboxPolicy(policy.release()); |
| if (!StartSandbox(PROCESS_SINGLE_THREADED)) { |
| SANDBOX_DIE(NULL); |
| } |
| |
| // Run our code in the sandbox. |
| code_in_sandbox(); |
| |
| // code_in_sandbox() is not supposed to return here. |
| SANDBOX_DIE(NULL); |
| } |
| |
| // In the parent process. |
| if (IGNORE_EINTR(close(fds[1]))) { |
| SANDBOX_DIE("close() failed"); |
| } |
| if (sigprocmask(SIG_SETMASK, &old_mask, NULL)) { |
| SANDBOX_DIE("sigprocmask() failed"); |
| } |
| int status; |
| if (HANDLE_EINTR(waitpid(pid, &status, 0)) != pid) { |
| SANDBOX_DIE("waitpid() failed unexpectedly"); |
| } |
| bool rc = WIFEXITED(status) && WEXITSTATUS(status) == kExpectedExitCode; |
| |
| // If we fail to support sandboxing, there might be an additional |
| // error message. If so, this was an entirely unexpected and fatal |
| // failure. We should report the failure and somebody must fix |
| // things. This is probably a security-critical bug in the sandboxing |
| // code. |
| if (!rc) { |
| char buf[4096]; |
| ssize_t len = HANDLE_EINTR(read(fds[0], buf, sizeof(buf) - 1)); |
| if (len > 0) { |
| while (len > 1 && buf[len - 1] == '\n') { |
| --len; |
| } |
| buf[len] = '\000'; |
| SANDBOX_DIE(buf); |
| } |
| } |
| if (IGNORE_EINTR(close(fds[0]))) { |
| SANDBOX_DIE("close() failed"); |
| } |
| |
| return rc; |
| } |
| |
| bool SandboxBPF::KernelSupportSeccompBPF() { |
| return RunFunctionInPolicy(ProbeProcess, |
| scoped_ptr<SandboxBPFPolicy>(new ProbePolicy())) && |
| RunFunctionInPolicy( |
| TryVsyscallProcess, |
| scoped_ptr<SandboxBPFPolicy>(new AllowAllPolicy())); |
| } |
| |
| // static |
| SandboxBPF::SandboxStatus SandboxBPF::SupportsSeccompSandbox(int proc_fd) { |
| // It the sandbox is currently active, we clearly must have support for |
| // sandboxing. |
| if (status_ == STATUS_ENABLED) { |
| return status_; |
| } |
| |
| // Even if the sandbox was previously available, something might have |
| // changed in our run-time environment. Check one more time. |
| if (status_ == STATUS_AVAILABLE) { |
| if (!IsSingleThreaded(proc_fd)) { |
| status_ = STATUS_UNAVAILABLE; |
| } |
| return status_; |
| } |
| |
| if (status_ == STATUS_UNAVAILABLE && IsSingleThreaded(proc_fd)) { |
| // All state transitions resulting in STATUS_UNAVAILABLE are immediately |
| // preceded by STATUS_AVAILABLE. Furthermore, these transitions all |
| // happen, if and only if they are triggered by the process being multi- |
| // threaded. |
| // In other words, if a single-threaded process is currently in the |
| // STATUS_UNAVAILABLE state, it is safe to assume that sandboxing is |
| // actually available. |
| status_ = STATUS_AVAILABLE; |
| return status_; |
| } |
| |
| // If we have not previously checked for availability of the sandbox or if |
| // we otherwise don't believe to have a good cached value, we have to |
| // perform a thorough check now. |
| if (status_ == STATUS_UNKNOWN) { |
| // We create our own private copy of a "Sandbox" object. This ensures that |
| // the object does not have any policies configured, that might interfere |
| // with the tests done by "KernelSupportSeccompBPF()". |
| SandboxBPF sandbox; |
| |
| // By setting "quiet_ = true" we suppress messages for expected and benign |
| // failures (e.g. if the current kernel lacks support for BPF filters). |
| sandbox.quiet_ = true; |
| sandbox.set_proc_fd(proc_fd); |
| status_ = sandbox.KernelSupportSeccompBPF() ? STATUS_AVAILABLE |
| : STATUS_UNSUPPORTED; |
| |
| // As we are performing our tests from a child process, the run-time |
| // environment that is visible to the sandbox is always guaranteed to be |
| // single-threaded. Let's check here whether the caller is single- |
| // threaded. Otherwise, we mark the sandbox as temporarily unavailable. |
| if (status_ == STATUS_AVAILABLE && !IsSingleThreaded(proc_fd)) { |
| status_ = STATUS_UNAVAILABLE; |
| } |
| } |
| return status_; |
| } |
| |
| // static |
| SandboxBPF::SandboxStatus |
| SandboxBPF::SupportsSeccompThreadFilterSynchronization() { |
| // Applying NO_NEW_PRIVS, a BPF filter, and synchronizing the filter across |
| // the thread group are all handled atomically by this syscall. |
| const int rv = syscall( |
| __NR_seccomp, SECCOMP_SET_MODE_FILTER, SECCOMP_FILTER_FLAG_TSYNC, NULL); |
| |
| if (rv == -1 && errno == EFAULT) { |
| return STATUS_AVAILABLE; |
| } else { |
| // TODO(jln): turn these into DCHECK after 417888 is considered fixed. |
| CHECK_EQ(-1, rv); |
| CHECK(ENOSYS == errno || EINVAL == errno); |
| return STATUS_UNSUPPORTED; |
| } |
| } |
| |
| void SandboxBPF::set_proc_fd(int proc_fd) { proc_fd_ = proc_fd; } |
| |
| bool SandboxBPF::StartSandbox(SandboxThreadState thread_state) { |
| CHECK(thread_state == PROCESS_SINGLE_THREADED || |
| thread_state == PROCESS_MULTI_THREADED); |
| |
| if (status_ == STATUS_UNSUPPORTED || status_ == STATUS_UNAVAILABLE) { |
| SANDBOX_DIE( |
| "Trying to start sandbox, even though it is known to be " |
| "unavailable"); |
| return false; |
| } else if (sandbox_has_started_ || !conds_) { |
| SANDBOX_DIE( |
| "Cannot repeatedly start sandbox. Create a separate Sandbox " |
| "object instead."); |
| return false; |
| } |
| if (proc_fd_ < 0) { |
| proc_fd_ = open("/proc", O_RDONLY | O_DIRECTORY); |
| } |
| if (proc_fd_ < 0) { |
| // For now, continue in degraded mode, if we can't access /proc. |
| // In the future, we might want to tighten this requirement. |
| } |
| |
| bool supports_tsync = |
| SupportsSeccompThreadFilterSynchronization() == STATUS_AVAILABLE; |
| |
| if (thread_state == PROCESS_SINGLE_THREADED) { |
| if (!IsSingleThreaded(proc_fd_)) { |
| SANDBOX_DIE("Cannot start sandbox; process is already multi-threaded"); |
| return false; |
| } |
| } else if (thread_state == PROCESS_MULTI_THREADED) { |
| if (IsSingleThreaded(proc_fd_)) { |
| SANDBOX_DIE("Cannot start sandbox; " |
| "process may be single-threaded when reported as not"); |
| return false; |
| } |
| if (!supports_tsync) { |
| SANDBOX_DIE("Cannot start sandbox; kernel does not support synchronizing " |
| "filters for a threadgroup"); |
| return false; |
| } |
| } |
| |
| // We no longer need access to any files in /proc. We want to do this |
| // before installing the filters, just in case that our policy denies |
| // close(). |
| if (proc_fd_ >= 0) { |
| if (IGNORE_EINTR(close(proc_fd_))) { |
| SANDBOX_DIE("Failed to close file descriptor for /proc"); |
| return false; |
| } |
| proc_fd_ = -1; |
| } |
| |
| // Install the filters. |
| InstallFilter(supports_tsync || thread_state == PROCESS_MULTI_THREADED); |
| |
| // We are now inside the sandbox. |
| status_ = STATUS_ENABLED; |
| |
| return true; |
| } |
| |
| void SandboxBPF::PolicySanityChecks(SandboxBPFPolicy* policy) { |
| if (!IsDenied(policy->InvalidSyscall(this))) { |
| SANDBOX_DIE("Policies should deny invalid system calls."); |
| } |
| return; |
| } |
| |
| // Don't take a scoped_ptr here, polymorphism make their use awkward. |
| void SandboxBPF::SetSandboxPolicy(SandboxBPFPolicy* policy) { |
| DCHECK(!policy_); |
| if (sandbox_has_started_ || !conds_) { |
| SANDBOX_DIE("Cannot change policy after sandbox has started"); |
| } |
| PolicySanityChecks(policy); |
| policy_.reset(policy); |
| } |
| |
| void SandboxBPF::InstallFilter(bool must_sync_threads) { |
| // We want to be very careful in not imposing any requirements on the |
| // policies that are set with SetSandboxPolicy(). This means, as soon as |
| // the sandbox is active, we shouldn't be relying on libraries that could |
| // be making system calls. This, for example, means we should avoid |
| // using the heap and we should avoid using STL functions. |
| // Temporarily copy the contents of the "program" vector into a |
| // stack-allocated array; and then explicitly destroy that object. |
| // This makes sure we don't ex- or implicitly call new/delete after we |
| // installed the BPF filter program in the kernel. Depending on the |
| // system memory allocator that is in effect, these operators can result |
| // in system calls to things like munmap() or brk(). |
| Program* program = AssembleFilter(false /* force_verification */); |
| |
| struct sock_filter bpf[program->size()]; |
| const struct sock_fprog prog = {static_cast<unsigned short>(program->size()), |
| bpf}; |
| memcpy(bpf, &(*program)[0], sizeof(bpf)); |
| delete program; |
| |
| // Make an attempt to release memory that is no longer needed here, rather |
| // than in the destructor. Try to avoid as much as possible to presume of |
| // what will be possible to do in the new (sandboxed) execution environment. |
| delete conds_; |
| conds_ = NULL; |
| policy_.reset(); |
| |
| if (prctl(PR_SET_NO_NEW_PRIVS, 1, 0, 0, 0)) { |
| SANDBOX_DIE(quiet_ ? NULL : "Kernel refuses to enable no-new-privs"); |
| } |
| |
| // Install BPF filter program. If the thread state indicates multi-threading |
| // support, then the kernel hass the seccomp system call. Otherwise, fall |
| // back on prctl, which requires the process to be single-threaded. |
| if (must_sync_threads) { |
| int rv = syscall(__NR_seccomp, SECCOMP_SET_MODE_FILTER, |
| SECCOMP_FILTER_FLAG_TSYNC, reinterpret_cast<const char*>(&prog)); |
| if (rv) { |
| SANDBOX_DIE(quiet_ ? NULL : |
| "Kernel refuses to turn on and synchronize threads for BPF filters"); |
| } |
| } else { |
| if (prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &prog)) { |
| SANDBOX_DIE(quiet_ ? NULL : "Kernel refuses to turn on BPF filters"); |
| } |
| } |
| |
| sandbox_has_started_ = true; |
| } |
| |
| SandboxBPF::Program* SandboxBPF::AssembleFilter(bool force_verification) { |
| #if !defined(NDEBUG) |
| force_verification = true; |
| #endif |
| |
| // Verify that the user pushed a policy. |
| DCHECK(policy_); |
| |
| // Assemble the BPF filter program. |
| CodeGen* gen = new CodeGen(); |
| if (!gen) { |
| SANDBOX_DIE("Out of memory"); |
| } |
| |
| bool has_unsafe_traps; |
| Instruction* head = CompilePolicy(gen, &has_unsafe_traps); |
| |
| // Turn the DAG into a vector of instructions. |
| Program* program = new Program(); |
| gen->Compile(head, program); |
| delete gen; |
| |
| // Make sure compilation resulted in BPF program that executes |
| // correctly. Otherwise, there is an internal error in our BPF compiler. |
| // There is really nothing the caller can do until the bug is fixed. |
| if (force_verification) { |
| // Verification is expensive. We only perform this step, if we are |
| // compiled in debug mode, or if the caller explicitly requested |
| // verification. |
| VerifyProgram(*program, has_unsafe_traps); |
| } |
| |
| return program; |
| } |
| |
| Instruction* SandboxBPF::CompilePolicy(CodeGen* gen, bool* has_unsafe_traps) { |
| // A compiled policy consists of three logical parts: |
| // 1. Check that the "arch" field matches the expected architecture. |
| // 2. If the policy involves unsafe traps, check if the syscall was |
| // invoked by Syscall::Call, and then allow it unconditionally. |
| // 3. Check the system call number and jump to the appropriate compiled |
| // system call policy number. |
| return CheckArch( |
| gen, MaybeAddEscapeHatch(gen, has_unsafe_traps, DispatchSyscall(gen))); |
| } |
| |
| Instruction* SandboxBPF::CheckArch(CodeGen* gen, Instruction* passed) { |
| // If the architecture doesn't match SECCOMP_ARCH, disallow the |
| // system call. |
| return gen->MakeInstruction( |
| BPF_LD + BPF_W + BPF_ABS, |
| SECCOMP_ARCH_IDX, |
| gen->MakeInstruction( |
| BPF_JMP + BPF_JEQ + BPF_K, |
| SECCOMP_ARCH, |
| passed, |
| RetExpression(gen, |
| Kill("Invalid audit architecture in BPF filter")))); |
| } |
| |
| Instruction* SandboxBPF::MaybeAddEscapeHatch(CodeGen* gen, |
| bool* has_unsafe_traps, |
| Instruction* rest) { |
| // If there is at least one UnsafeTrap() in our program, the entire sandbox |
| // is unsafe. We need to modify the program so that all non- |
| // SECCOMP_RET_ALLOW ErrorCodes are handled in user-space. This will then |
| // allow us to temporarily disable sandboxing rules inside of callbacks to |
| // UnsafeTrap(). |
| *has_unsafe_traps = false; |
| gen->Traverse(rest, CheckForUnsafeErrorCodes, has_unsafe_traps); |
| if (!*has_unsafe_traps) { |
| // If no unsafe traps, then simply return |rest|. |
| return rest; |
| } |
| |
| // If our BPF program has unsafe jumps, enable support for them. This |
| // test happens very early in the BPF filter program. Even before we |
| // consider looking at system call numbers. |
| // As support for unsafe jumps essentially defeats all the security |
| // measures that the sandbox provides, we print a big warning message -- |
| // and of course, we make sure to only ever enable this feature if it |
| // is actually requested by the sandbox policy. |
| if (Syscall::Call(-1) == -1 && errno == ENOSYS) { |
| SANDBOX_DIE( |
| "Support for UnsafeTrap() has not yet been ported to this " |
| "architecture"); |
| } |
| |
| for (size_t i = 0; i < arraysize(kSyscallsRequiredForUnsafeTraps); ++i) { |
| if (!policy_->EvaluateSyscall(this, kSyscallsRequiredForUnsafeTraps[i]) |
| .Equals(ErrorCode(ErrorCode::ERR_ALLOWED))) { |
| SANDBOX_DIE( |
| "Policies that use UnsafeTrap() must unconditionally allow all " |
| "required system calls"); |
| } |
| } |
| |
| if (!Trap::EnableUnsafeTrapsInSigSysHandler()) { |
| // We should never be able to get here, as UnsafeTrap() should never |
| // actually return a valid ErrorCode object unless the user set the |
| // CHROME_SANDBOX_DEBUGGING environment variable; and therefore, |
| // "has_unsafe_traps" would always be false. But better double-check |
| // than enabling dangerous code. |
| SANDBOX_DIE("We'd rather die than enable unsafe traps"); |
| } |
| gen->Traverse(rest, RedirectToUserspace, this); |
| |
| // Allow system calls, if they originate from our magic return address |
| // (which we can query by calling Syscall::Call(-1)). |
| uint64_t syscall_entry_point = |
| static_cast<uint64_t>(static_cast<uintptr_t>(Syscall::Call(-1))); |
| uint32_t low = static_cast<uint32_t>(syscall_entry_point); |
| uint32_t hi = static_cast<uint32_t>(syscall_entry_point >> 32); |
| |
| // BPF cannot do native 64-bit comparisons, so we have to compare |
| // both 32-bit halves of the instruction pointer. If they match what |
| // we expect, we return ERR_ALLOWED. If either or both don't match, |
| // we continue evalutating the rest of the sandbox policy. |
| // |
| // For simplicity, we check the full 64-bit instruction pointer even |
| // on 32-bit architectures. |
| return gen->MakeInstruction( |
| BPF_LD + BPF_W + BPF_ABS, |
| SECCOMP_IP_LSB_IDX, |
| gen->MakeInstruction( |
| BPF_JMP + BPF_JEQ + BPF_K, |
| low, |
| gen->MakeInstruction( |
| BPF_LD + BPF_W + BPF_ABS, |
| SECCOMP_IP_MSB_IDX, |
| gen->MakeInstruction( |
| BPF_JMP + BPF_JEQ + BPF_K, |
| hi, |
| RetExpression(gen, ErrorCode(ErrorCode::ERR_ALLOWED)), |
| rest)), |
| rest)); |
| } |
| |
| Instruction* SandboxBPF::DispatchSyscall(CodeGen* gen) { |
| // Evaluate all possible system calls and group their ErrorCodes into |
| // ranges of identical codes. |
| Ranges ranges; |
| FindRanges(&ranges); |
| |
| // Compile the system call ranges to an optimized BPF jumptable |
| Instruction* jumptable = AssembleJumpTable(gen, ranges.begin(), ranges.end()); |
| |
| // Grab the system call number, so that we can check it and then |
| // execute the jump table. |
| return gen->MakeInstruction(BPF_LD + BPF_W + BPF_ABS, |
| SECCOMP_NR_IDX, |
| CheckSyscallNumber(gen, jumptable)); |
| } |
| |
| Instruction* SandboxBPF::CheckSyscallNumber(CodeGen* gen, Instruction* passed) { |
| if (kIsIntel) { |
| // On Intel architectures, verify that system call numbers are in the |
| // expected number range. |
| Instruction* invalidX32 = |
| RetExpression(gen, Kill("Illegal mixing of system call ABIs")); |
| if (kIsX32) { |
| // The newer x32 API always sets bit 30. |
| return gen->MakeInstruction( |
| BPF_JMP + BPF_JSET + BPF_K, 0x40000000, passed, invalidX32); |
| } else { |
| // The older i386 and x86-64 APIs clear bit 30 on all system calls. |
| return gen->MakeInstruction( |
| BPF_JMP + BPF_JSET + BPF_K, 0x40000000, invalidX32, passed); |
| } |
| } |
| |
| // TODO(mdempsky): Similar validation for other architectures? |
| return passed; |
| } |
| |
| void SandboxBPF::VerifyProgram(const Program& program, bool has_unsafe_traps) { |
| // If we previously rewrote the BPF program so that it calls user-space |
| // whenever we return an "errno" value from the filter, then we have to |
| // wrap our system call evaluator to perform the same operation. Otherwise, |
| // the verifier would also report a mismatch in return codes. |
| scoped_ptr<const RedirectToUserSpacePolicyWrapper> redirected_policy( |
| new RedirectToUserSpacePolicyWrapper(policy_.get())); |
| |
| const char* err = NULL; |
| if (!Verifier::VerifyBPF(this, |
| program, |
| has_unsafe_traps ? *redirected_policy : *policy_, |
| &err)) { |
| CodeGen::PrintProgram(program); |
| SANDBOX_DIE(err); |
| } |
| } |
| |
| void SandboxBPF::FindRanges(Ranges* ranges) { |
| // Please note that "struct seccomp_data" defines system calls as a signed |
| // int32_t, but BPF instructions always operate on unsigned quantities. We |
| // deal with this disparity by enumerating from MIN_SYSCALL to MAX_SYSCALL, |
| // and then verifying that the rest of the number range (both positive and |
| // negative) all return the same ErrorCode. |
| const ErrorCode invalid_err = policy_->InvalidSyscall(this); |
| uint32_t old_sysnum = 0; |
| ErrorCode old_err = IsValidSyscallNumber(old_sysnum) |
| ? policy_->EvaluateSyscall(this, old_sysnum) |
| : invalid_err; |
| |
| for (SyscallIterator iter(false); !iter.Done();) { |
| uint32_t sysnum = iter.Next(); |
| ErrorCode err = |
| IsValidSyscallNumber(sysnum) |
| ? policy_->EvaluateSyscall(this, static_cast<int>(sysnum)) |
| : invalid_err; |
| if (!err.Equals(old_err) || iter.Done()) { |
| ranges->push_back(Range(old_sysnum, sysnum - 1, old_err)); |
| old_sysnum = sysnum; |
| old_err = err; |
| } |
| } |
| } |
| |
| Instruction* SandboxBPF::AssembleJumpTable(CodeGen* gen, |
| Ranges::const_iterator start, |
| Ranges::const_iterator stop) { |
| // We convert the list of system call ranges into jump table that performs |
| // a binary search over the ranges. |
| // As a sanity check, we need to have at least one distinct ranges for us |
| // to be able to build a jump table. |
| if (stop - start <= 0) { |
| SANDBOX_DIE("Invalid set of system call ranges"); |
| } else if (stop - start == 1) { |
| // If we have narrowed things down to a single range object, we can |
| // return from the BPF filter program. |
| return RetExpression(gen, start->err); |
| } |
| |
| // Pick the range object that is located at the mid point of our list. |
| // We compare our system call number against the lowest valid system call |
| // number in this range object. If our number is lower, it is outside of |
| // this range object. If it is greater or equal, it might be inside. |
| Ranges::const_iterator mid = start + (stop - start) / 2; |
| |
| // Sub-divide the list of ranges and continue recursively. |
| Instruction* jf = AssembleJumpTable(gen, start, mid); |
| Instruction* jt = AssembleJumpTable(gen, mid, stop); |
| return gen->MakeInstruction(BPF_JMP + BPF_JGE + BPF_K, mid->from, jt, jf); |
| } |
| |
| Instruction* SandboxBPF::RetExpression(CodeGen* gen, const ErrorCode& err) { |
| switch (err.error_type()) { |
| case ErrorCode::ET_COND: |
| return CondExpression(gen, err); |
| case ErrorCode::ET_SIMPLE: |
| case ErrorCode::ET_TRAP: |
| return gen->MakeInstruction(BPF_RET + BPF_K, err.err()); |
| default: |
| SANDBOX_DIE("ErrorCode is not suitable for returning from a BPF program"); |
| } |
| } |
| |
| Instruction* SandboxBPF::CondExpression(CodeGen* gen, const ErrorCode& cond) { |
| // Sanity check that |cond| makes sense. |
| if (cond.argno_ < 0 || cond.argno_ >= 6) { |
| SANDBOX_DIE("sandbox_bpf: invalid argument number"); |
| } |
| if (cond.width_ != ErrorCode::TP_32BIT && |
| cond.width_ != ErrorCode::TP_64BIT) { |
| SANDBOX_DIE("sandbox_bpf: invalid argument width"); |
| } |
| if (cond.mask_ == 0) { |
| SANDBOX_DIE("sandbox_bpf: zero mask is invalid"); |
| } |
| if ((cond.value_ & cond.mask_) != cond.value_) { |
| SANDBOX_DIE("sandbox_bpf: value contains masked out bits"); |
| } |
| if (cond.width_ == ErrorCode::TP_32BIT && |
| ((cond.mask_ >> 32) != 0 || (cond.value_ >> 32) != 0)) { |
| SANDBOX_DIE("sandbox_bpf: test exceeds argument size"); |
| } |
| // TODO(mdempsky): Reject TP_64BIT on 32-bit platforms. For now we allow it |
| // because some SandboxBPF unit tests exercise it. |
| |
| Instruction* passed = RetExpression(gen, *cond.passed_); |
| Instruction* failed = RetExpression(gen, *cond.failed_); |
| |
| // We want to emit code to check "(arg & mask) == value" where arg, mask, and |
| // value are 64-bit values, but the BPF machine is only 32-bit. We implement |
| // this by independently testing the upper and lower 32-bits and continuing to |
| // |passed| if both evaluate true, or to |failed| if either evaluate false. |
| return CondExpressionHalf( |
| gen, |
| cond, |
| UpperHalf, |
| CondExpressionHalf(gen, cond, LowerHalf, passed, failed), |
| failed); |
| } |
| |
| Instruction* SandboxBPF::CondExpressionHalf(CodeGen* gen, |
| const ErrorCode& cond, |
| ArgHalf half, |
| Instruction* passed, |
| Instruction* failed) { |
| if (cond.width_ == ErrorCode::TP_32BIT && half == UpperHalf) { |
| // Special logic for sanity checking the upper 32-bits of 32-bit system |
| // call arguments. |
| |
| // TODO(mdempsky): Compile Unexpected64bitArgument() just per program. |
| Instruction* invalid_64bit = RetExpression(gen, Unexpected64bitArgument()); |
| |
| const uint32_t upper = SECCOMP_ARG_MSB_IDX(cond.argno_); |
| const uint32_t lower = SECCOMP_ARG_LSB_IDX(cond.argno_); |
| |
| if (sizeof(void*) == 4) { |
| // On 32-bit platforms, the upper 32-bits should always be 0: |
| // LDW [upper] |
| // JEQ 0, passed, invalid |
| return gen->MakeInstruction( |
| BPF_LD + BPF_W + BPF_ABS, |
| upper, |
| gen->MakeInstruction( |
| BPF_JMP + BPF_JEQ + BPF_K, 0, passed, invalid_64bit)); |
| } |
| |
| // On 64-bit platforms, the upper 32-bits may be 0 or ~0; but we only allow |
| // ~0 if the sign bit of the lower 32-bits is set too: |
| // LDW [upper] |
| // JEQ 0, passed, (next) |
| // JEQ ~0, (next), invalid |
| // LDW [lower] |
| // JSET (1<<31), passed, invalid |
| // |
| // TODO(mdempsky): The JSET instruction could perhaps jump to passed->next |
| // instead, as the first instruction of passed should be "LDW [lower]". |
| return gen->MakeInstruction( |
| BPF_LD + BPF_W + BPF_ABS, |
| upper, |
| gen->MakeInstruction( |
| BPF_JMP + BPF_JEQ + BPF_K, |
| 0, |
| passed, |
| gen->MakeInstruction( |
| BPF_JMP + BPF_JEQ + BPF_K, |
| std::numeric_limits<uint32_t>::max(), |
| gen->MakeInstruction( |
| BPF_LD + BPF_W + BPF_ABS, |
| lower, |
| gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, |
| 1U << 31, |
| passed, |
| invalid_64bit)), |
| invalid_64bit))); |
| } |
| |
| const uint32_t idx = (half == UpperHalf) ? SECCOMP_ARG_MSB_IDX(cond.argno_) |
| : SECCOMP_ARG_LSB_IDX(cond.argno_); |
| const uint32_t mask = (half == UpperHalf) ? cond.mask_ >> 32 : cond.mask_; |
| const uint32_t value = (half == UpperHalf) ? cond.value_ >> 32 : cond.value_; |
| |
| // Emit a suitable instruction sequence for (arg & mask) == value. |
| |
| // For (arg & 0) == 0, just return passed. |
| if (mask == 0) { |
| CHECK_EQ(0U, value); |
| return passed; |
| } |
| |
| // For (arg & ~0) == value, emit: |
| // LDW [idx] |
| // JEQ value, passed, failed |
| if (mask == std::numeric_limits<uint32_t>::max()) { |
| return gen->MakeInstruction( |
| BPF_LD + BPF_W + BPF_ABS, |
| idx, |
| gen->MakeInstruction(BPF_JMP + BPF_JEQ + BPF_K, value, passed, failed)); |
| } |
| |
| // For (arg & mask) == 0, emit: |
| // LDW [idx] |
| // JSET mask, failed, passed |
| // (Note: failed and passed are intentionally swapped.) |
| if (value == 0) { |
| return gen->MakeInstruction( |
| BPF_LD + BPF_W + BPF_ABS, |
| idx, |
| gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, mask, failed, passed)); |
| } |
| |
| // For (arg & x) == x where x is a single-bit value, emit: |
| // LDW [idx] |
| // JSET mask, passed, failed |
| if (mask == value && HasExactlyOneBit(mask)) { |
| return gen->MakeInstruction( |
| BPF_LD + BPF_W + BPF_ABS, |
| idx, |
| gen->MakeInstruction(BPF_JMP + BPF_JSET + BPF_K, mask, passed, failed)); |
| } |
| |
| // Generic fallback: |
| // LDW [idx] |
| // AND mask |
| // JEQ value, passed, failed |
| return gen->MakeInstruction( |
| BPF_LD + BPF_W + BPF_ABS, |
| idx, |
| gen->MakeInstruction( |
| BPF_ALU + BPF_AND + BPF_K, |
| mask, |
| gen->MakeInstruction( |
| BPF_JMP + BPF_JEQ + BPF_K, value, passed, failed))); |
| } |
| |
| ErrorCode SandboxBPF::Unexpected64bitArgument() { |
| return Kill("Unexpected 64bit argument detected"); |
| } |
| |
| ErrorCode SandboxBPF::Trap(Trap::TrapFnc fnc, const void* aux) { |
| return ErrorCode(fnc, aux, true /* Safe Trap */); |
| } |
| |
| ErrorCode SandboxBPF::UnsafeTrap(Trap::TrapFnc fnc, const void* aux) { |
| return ErrorCode(fnc, aux, false /* Unsafe Trap */); |
| } |
| |
| bool SandboxBPF::IsRequiredForUnsafeTrap(int sysno) { |
| for (size_t i = 0; i < arraysize(kSyscallsRequiredForUnsafeTraps); ++i) { |
| if (sysno == kSyscallsRequiredForUnsafeTraps[i]) { |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| intptr_t SandboxBPF::ForwardSyscall(const struct arch_seccomp_data& args) { |
| return Syscall::Call(args.nr, |
| static_cast<intptr_t>(args.args[0]), |
| static_cast<intptr_t>(args.args[1]), |
| static_cast<intptr_t>(args.args[2]), |
| static_cast<intptr_t>(args.args[3]), |
| static_cast<intptr_t>(args.args[4]), |
| static_cast<intptr_t>(args.args[5])); |
| } |
| |
| ErrorCode SandboxBPF::CondMaskedEqual(int argno, |
| ErrorCode::ArgType width, |
| uint64_t mask, |
| uint64_t value, |
| const ErrorCode& passed, |
| const ErrorCode& failed) { |
| return ErrorCode(argno, |
| width, |
| mask, |
| value, |
| &*conds_->insert(passed).first, |
| &*conds_->insert(failed).first); |
| } |
| |
| ErrorCode SandboxBPF::Cond(int argno, |
| ErrorCode::ArgType width, |
| ErrorCode::Operation op, |
| uint64_t value, |
| const ErrorCode& passed, |
| const ErrorCode& failed) { |
| // CondExpression() currently rejects mask==0 as invalid, but there are |
| // SandboxBPF unit tests that (questionably) expect OP_HAS_{ANY,ALL}_BITS to |
| // work with value==0. To keep those tests working for now, we specially |
| // convert value==0 here. |
| |
| switch (op) { |
| case ErrorCode::OP_EQUAL: { |
| // Convert to "(arg & ~0) == value". |
| const uint64_t mask = (width == ErrorCode::TP_64BIT) |
| ? std::numeric_limits<uint64_t>::max() |
| : std::numeric_limits<uint32_t>::max(); |
| return CondMaskedEqual(argno, width, mask, value, passed, failed); |
| } |
| |
| case ErrorCode::OP_HAS_ALL_BITS: |
| if (value == 0) { |
| // Always passes. |
| return passed; |
| } |
| // Convert to "(arg & value) == value". |
| return CondMaskedEqual(argno, width, value, value, passed, failed); |
| |
| case ErrorCode::OP_HAS_ANY_BITS: |
| if (value == 0) { |
| // Always fails. |
| return failed; |
| } |
| // Convert to "(arg & value) == 0", but swap passed and failed. |
| return CondMaskedEqual(argno, width, value, 0, failed, passed); |
| |
| default: |
| SANDBOX_DIE("Not implemented"); |
| } |
| } |
| |
| ErrorCode SandboxBPF::Kill(const char* msg) { |
| return Trap(BPFFailure, const_cast<char*>(msg)); |
| } |
| |
| SandboxBPF::SandboxStatus SandboxBPF::status_ = STATUS_UNKNOWN; |
| |
| } // namespace sandbox |