blob: 22ad20052b472973a3405f20f7161cf1d4e1a10f [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_connection.h"
#include "base/basictypes.h"
#include "base/bind.h"
#include "base/stl_util.h"
#include "net/base/net_errors.h"
#include "net/quic/congestion_control/loss_detection_interface.h"
#include "net/quic/congestion_control/receive_algorithm_interface.h"
#include "net/quic/congestion_control/send_algorithm_interface.h"
#include "net/quic/crypto/null_encrypter.h"
#include "net/quic/crypto/quic_decrypter.h"
#include "net/quic/crypto/quic_encrypter.h"
#include "net/quic/quic_flags.h"
#include "net/quic/quic_protocol.h"
#include "net/quic/quic_utils.h"
#include "net/quic/test_tools/mock_clock.h"
#include "net/quic/test_tools/mock_random.h"
#include "net/quic/test_tools/quic_connection_peer.h"
#include "net/quic/test_tools/quic_framer_peer.h"
#include "net/quic/test_tools/quic_packet_creator_peer.h"
#include "net/quic/test_tools/quic_sent_packet_manager_peer.h"
#include "net/quic/test_tools/quic_test_utils.h"
#include "net/quic/test_tools/simple_quic_framer.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using base::StringPiece;
using std::map;
using std::vector;
using testing::AnyNumber;
using testing::AtLeast;
using testing::ContainerEq;
using testing::Contains;
using testing::DoAll;
using testing::InSequence;
using testing::InvokeWithoutArgs;
using testing::NiceMock;
using testing::Ref;
using testing::Return;
using testing::SaveArg;
using testing::StrictMock;
using testing::_;
namespace net {
namespace test {
namespace {
const char data1[] = "foo";
const char data2[] = "bar";
const bool kFin = true;
const bool kEntropyFlag = true;
const QuicPacketEntropyHash kTestEntropyHash = 76;
const int kDefaultRetransmissionTimeMs = 500;
class TestReceiveAlgorithm : public ReceiveAlgorithmInterface {
public:
explicit TestReceiveAlgorithm(QuicCongestionFeedbackFrame* feedback)
: feedback_(feedback) {
}
bool GenerateCongestionFeedback(
QuicCongestionFeedbackFrame* congestion_feedback) {
if (feedback_ == NULL) {
return false;
}
*congestion_feedback = *feedback_;
return true;
}
MOCK_METHOD3(RecordIncomingPacket,
void(QuicByteCount, QuicPacketSequenceNumber, QuicTime));
private:
QuicCongestionFeedbackFrame* feedback_;
DISALLOW_COPY_AND_ASSIGN(TestReceiveAlgorithm);
};
// TaggingEncrypter appends kTagSize bytes of |tag| to the end of each message.
class TaggingEncrypter : public QuicEncrypter {
public:
explicit TaggingEncrypter(uint8 tag)
: tag_(tag) {
}
virtual ~TaggingEncrypter() {}
// QuicEncrypter interface.
virtual bool SetKey(StringPiece key) OVERRIDE { return true; }
virtual bool SetNoncePrefix(StringPiece nonce_prefix) OVERRIDE {
return true;
}
virtual bool Encrypt(StringPiece nonce,
StringPiece associated_data,
StringPiece plaintext,
unsigned char* output) OVERRIDE {
memcpy(output, plaintext.data(), plaintext.size());
output += plaintext.size();
memset(output, tag_, kTagSize);
return true;
}
virtual QuicData* EncryptPacket(QuicPacketSequenceNumber sequence_number,
StringPiece associated_data,
StringPiece plaintext) OVERRIDE {
const size_t len = plaintext.size() + kTagSize;
uint8* buffer = new uint8[len];
Encrypt(StringPiece(), associated_data, plaintext, buffer);
return new QuicData(reinterpret_cast<char*>(buffer), len, true);
}
virtual size_t GetKeySize() const OVERRIDE { return 0; }
virtual size_t GetNoncePrefixSize() const OVERRIDE { return 0; }
virtual size_t GetMaxPlaintextSize(size_t ciphertext_size) const OVERRIDE {
return ciphertext_size - kTagSize;
}
virtual size_t GetCiphertextSize(size_t plaintext_size) const OVERRIDE {
return plaintext_size + kTagSize;
}
virtual StringPiece GetKey() const OVERRIDE {
return StringPiece();
}
virtual StringPiece GetNoncePrefix() const OVERRIDE {
return StringPiece();
}
private:
enum {
kTagSize = 12,
};
const uint8 tag_;
DISALLOW_COPY_AND_ASSIGN(TaggingEncrypter);
};
// TaggingDecrypter ensures that the final kTagSize bytes of the message all
// have the same value and then removes them.
class TaggingDecrypter : public QuicDecrypter {
public:
virtual ~TaggingDecrypter() {}
// QuicDecrypter interface
virtual bool SetKey(StringPiece key) OVERRIDE { return true; }
virtual bool SetNoncePrefix(StringPiece nonce_prefix) OVERRIDE {
return true;
}
virtual bool Decrypt(StringPiece nonce,
StringPiece associated_data,
StringPiece ciphertext,
unsigned char* output,
size_t* output_length) OVERRIDE {
if (ciphertext.size() < kTagSize) {
return false;
}
if (!CheckTag(ciphertext, GetTag(ciphertext))) {
return false;
}
*output_length = ciphertext.size() - kTagSize;
memcpy(output, ciphertext.data(), *output_length);
return true;
}
virtual QuicData* DecryptPacket(QuicPacketSequenceNumber sequence_number,
StringPiece associated_data,
StringPiece ciphertext) OVERRIDE {
if (ciphertext.size() < kTagSize) {
return NULL;
}
if (!CheckTag(ciphertext, GetTag(ciphertext))) {
return NULL;
}
const size_t len = ciphertext.size() - kTagSize;
uint8* buf = new uint8[len];
memcpy(buf, ciphertext.data(), len);
return new QuicData(reinterpret_cast<char*>(buf), len,
true /* owns buffer */);
}
virtual StringPiece GetKey() const OVERRIDE { return StringPiece(); }
virtual StringPiece GetNoncePrefix() const OVERRIDE { return StringPiece(); }
protected:
virtual uint8 GetTag(StringPiece ciphertext) {
return ciphertext.data()[ciphertext.size()-1];
}
private:
enum {
kTagSize = 12,
};
bool CheckTag(StringPiece ciphertext, uint8 tag) {
for (size_t i = ciphertext.size() - kTagSize; i < ciphertext.size(); i++) {
if (ciphertext.data()[i] != tag) {
return false;
}
}
return true;
}
};
// StringTaggingDecrypter ensures that the final kTagSize bytes of the message
// match the expected value.
class StrictTaggingDecrypter : public TaggingDecrypter {
public:
explicit StrictTaggingDecrypter(uint8 tag) : tag_(tag) {}
virtual ~StrictTaggingDecrypter() {}
// TaggingQuicDecrypter
virtual uint8 GetTag(StringPiece ciphertext) OVERRIDE {
return tag_;
}
private:
const uint8 tag_;
};
class TestConnectionHelper : public QuicConnectionHelperInterface {
public:
class TestAlarm : public QuicAlarm {
public:
explicit TestAlarm(QuicAlarm::Delegate* delegate)
: QuicAlarm(delegate) {
}
virtual void SetImpl() OVERRIDE {}
virtual void CancelImpl() OVERRIDE {}
using QuicAlarm::Fire;
};
TestConnectionHelper(MockClock* clock, MockRandom* random_generator)
: clock_(clock),
random_generator_(random_generator) {
clock_->AdvanceTime(QuicTime::Delta::FromSeconds(1));
}
// QuicConnectionHelperInterface
virtual const QuicClock* GetClock() const OVERRIDE {
return clock_;
}
virtual QuicRandom* GetRandomGenerator() OVERRIDE {
return random_generator_;
}
virtual QuicAlarm* CreateAlarm(QuicAlarm::Delegate* delegate) OVERRIDE {
return new TestAlarm(delegate);
}
private:
MockClock* clock_;
MockRandom* random_generator_;
DISALLOW_COPY_AND_ASSIGN(TestConnectionHelper);
};
class TestPacketWriter : public QuicPacketWriter {
public:
explicit TestPacketWriter(QuicVersion version)
: version_(version),
framer_(SupportedVersions(version_)),
last_packet_size_(0),
write_blocked_(false),
block_on_next_write_(false),
is_write_blocked_data_buffered_(false),
final_bytes_of_last_packet_(0),
final_bytes_of_previous_packet_(0),
use_tagging_decrypter_(false),
packets_write_attempts_(0) {
}
// QuicPacketWriter interface
virtual WriteResult WritePacket(
const char* buffer, size_t buf_len,
const IPAddressNumber& self_address,
const IPEndPoint& peer_address) OVERRIDE {
QuicEncryptedPacket packet(buffer, buf_len);
++packets_write_attempts_;
if (packet.length() >= sizeof(final_bytes_of_last_packet_)) {
final_bytes_of_previous_packet_ = final_bytes_of_last_packet_;
memcpy(&final_bytes_of_last_packet_, packet.data() + packet.length() - 4,
sizeof(final_bytes_of_last_packet_));
}
if (use_tagging_decrypter_) {
framer_.framer()->SetDecrypter(new TaggingDecrypter, ENCRYPTION_NONE);
}
EXPECT_TRUE(framer_.ProcessPacket(packet));
if (block_on_next_write_) {
write_blocked_ = true;
block_on_next_write_ = false;
}
if (IsWriteBlocked()) {
return WriteResult(WRITE_STATUS_BLOCKED, -1);
}
last_packet_size_ = packet.length();
return WriteResult(WRITE_STATUS_OK, last_packet_size_);
}
virtual bool IsWriteBlockedDataBuffered() const OVERRIDE {
return is_write_blocked_data_buffered_;
}
virtual bool IsWriteBlocked() const OVERRIDE { return write_blocked_; }
virtual void SetWritable() OVERRIDE { write_blocked_ = false; }
void BlockOnNextWrite() { block_on_next_write_ = true; }
const QuicPacketHeader& header() { return framer_.header(); }
size_t frame_count() const { return framer_.num_frames(); }
const vector<QuicAckFrame>& ack_frames() const {
return framer_.ack_frames();
}
const vector<QuicCongestionFeedbackFrame>& feedback_frames() const {
return framer_.feedback_frames();
}
const vector<QuicStopWaitingFrame>& stop_waiting_frames() const {
return framer_.stop_waiting_frames();
}
const vector<QuicConnectionCloseFrame>& connection_close_frames() const {
return framer_.connection_close_frames();
}
const vector<QuicStreamFrame>& stream_frames() const {
return framer_.stream_frames();
}
const vector<QuicPingFrame>& ping_frames() const {
return framer_.ping_frames();
}
size_t last_packet_size() {
return last_packet_size_;
}
const QuicVersionNegotiationPacket* version_negotiation_packet() {
return framer_.version_negotiation_packet();
}
void set_is_write_blocked_data_buffered(bool buffered) {
is_write_blocked_data_buffered_ = buffered;
}
void set_is_server(bool is_server) {
// We invert is_server here, because the framer needs to parse packets
// we send.
QuicFramerPeer::SetIsServer(framer_.framer(), !is_server);
}
// final_bytes_of_last_packet_ returns the last four bytes of the previous
// packet as a little-endian, uint32. This is intended to be used with a
// TaggingEncrypter so that tests can determine which encrypter was used for
// a given packet.
uint32 final_bytes_of_last_packet() { return final_bytes_of_last_packet_; }
// Returns the final bytes of the second to last packet.
uint32 final_bytes_of_previous_packet() {
return final_bytes_of_previous_packet_;
}
void use_tagging_decrypter() {
use_tagging_decrypter_ = true;
}
uint32 packets_write_attempts() { return packets_write_attempts_; }
void Reset() { framer_.Reset(); }
void SetSupportedVersions(const QuicVersionVector& versions) {
framer_.SetSupportedVersions(versions);
}
private:
QuicVersion version_;
SimpleQuicFramer framer_;
size_t last_packet_size_;
bool write_blocked_;
bool block_on_next_write_;
bool is_write_blocked_data_buffered_;
uint32 final_bytes_of_last_packet_;
uint32 final_bytes_of_previous_packet_;
bool use_tagging_decrypter_;
uint32 packets_write_attempts_;
DISALLOW_COPY_AND_ASSIGN(TestPacketWriter);
};
class TestConnection : public QuicConnection {
public:
TestConnection(QuicConnectionId connection_id,
IPEndPoint address,
TestConnectionHelper* helper,
const PacketWriterFactory& factory,
bool is_server,
QuicVersion version)
: QuicConnection(connection_id,
address,
helper,
factory,
/* owns_writer= */ false,
is_server,
SupportedVersions(version)) {
// Disable tail loss probes for most tests.
QuicSentPacketManagerPeer::SetMaxTailLossProbes(
QuicConnectionPeer::GetSentPacketManager(this), 0);
writer()->set_is_server(is_server);
}
void SendAck() {
QuicConnectionPeer::SendAck(this);
}
void SetReceiveAlgorithm(TestReceiveAlgorithm* receive_algorithm) {
QuicConnectionPeer::SetReceiveAlgorithm(this, receive_algorithm);
}
void SetSendAlgorithm(SendAlgorithmInterface* send_algorithm) {
QuicConnectionPeer::SetSendAlgorithm(this, send_algorithm);
}
void SetLossAlgorithm(LossDetectionInterface* loss_algorithm) {
QuicSentPacketManagerPeer::SetLossAlgorithm(
QuicConnectionPeer::GetSentPacketManager(this), loss_algorithm);
}
void SendPacket(EncryptionLevel level,
QuicPacketSequenceNumber sequence_number,
QuicPacket* packet,
QuicPacketEntropyHash entropy_hash,
HasRetransmittableData retransmittable) {
RetransmittableFrames* retransmittable_frames =
retransmittable == HAS_RETRANSMITTABLE_DATA ?
new RetransmittableFrames() : NULL;
OnSerializedPacket(
SerializedPacket(sequence_number, PACKET_6BYTE_SEQUENCE_NUMBER,
packet, entropy_hash, retransmittable_frames));
}
QuicConsumedData SendStreamDataWithString(
QuicStreamId id,
StringPiece data,
QuicStreamOffset offset,
bool fin,
QuicAckNotifier::DelegateInterface* delegate) {
return SendStreamDataWithStringHelper(id, data, offset, fin,
MAY_FEC_PROTECT, delegate);
}
QuicConsumedData SendStreamDataWithStringWithFec(
QuicStreamId id,
StringPiece data,
QuicStreamOffset offset,
bool fin,
QuicAckNotifier::DelegateInterface* delegate) {
return SendStreamDataWithStringHelper(id, data, offset, fin,
MUST_FEC_PROTECT, delegate);
}
QuicConsumedData SendStreamDataWithStringHelper(
QuicStreamId id,
StringPiece data,
QuicStreamOffset offset,
bool fin,
FecProtection fec_protection,
QuicAckNotifier::DelegateInterface* delegate) {
IOVector data_iov;
if (!data.empty()) {
data_iov.Append(const_cast<char*>(data.data()), data.size());
}
return QuicConnection::SendStreamData(id, data_iov, offset, fin,
fec_protection, delegate);
}
QuicConsumedData SendStreamData3() {
return SendStreamDataWithString(kClientDataStreamId1, "food", 0, !kFin,
NULL);
}
QuicConsumedData SendStreamData3WithFec() {
return SendStreamDataWithStringWithFec(kClientDataStreamId1, "food", 0,
!kFin, NULL);
}
QuicConsumedData SendStreamData5() {
return SendStreamDataWithString(kClientDataStreamId2, "food2", 0,
!kFin, NULL);
}
QuicConsumedData SendStreamData5WithFec() {
return SendStreamDataWithStringWithFec(kClientDataStreamId2, "food2", 0,
!kFin, NULL);
}
// Ensures the connection can write stream data before writing.
QuicConsumedData EnsureWritableAndSendStreamData5() {
EXPECT_TRUE(CanWriteStreamData());
return SendStreamData5();
}
// The crypto stream has special semantics so that it is not blocked by a
// congestion window limitation, and also so that it gets put into a separate
// packet (so that it is easier to reason about a crypto frame not being
// split needlessly across packet boundaries). As a result, we have separate
// tests for some cases for this stream.
QuicConsumedData SendCryptoStreamData() {
return SendStreamDataWithString(kCryptoStreamId, "chlo", 0, !kFin, NULL);
}
bool is_server() {
return QuicConnectionPeer::IsServer(this);
}
void set_version(QuicVersion version) {
QuicConnectionPeer::GetFramer(this)->set_version(version);
}
void SetSupportedVersions(const QuicVersionVector& versions) {
QuicConnectionPeer::GetFramer(this)->SetSupportedVersions(versions);
writer()->SetSupportedVersions(versions);
}
void set_is_server(bool is_server) {
writer()->set_is_server(is_server);
QuicConnectionPeer::SetIsServer(this, is_server);
}
TestConnectionHelper::TestAlarm* GetAckAlarm() {
return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
QuicConnectionPeer::GetAckAlarm(this));
}
TestConnectionHelper::TestAlarm* GetPingAlarm() {
return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
QuicConnectionPeer::GetPingAlarm(this));
}
TestConnectionHelper::TestAlarm* GetResumeWritesAlarm() {
return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
QuicConnectionPeer::GetResumeWritesAlarm(this));
}
TestConnectionHelper::TestAlarm* GetRetransmissionAlarm() {
return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
QuicConnectionPeer::GetRetransmissionAlarm(this));
}
TestConnectionHelper::TestAlarm* GetSendAlarm() {
return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
QuicConnectionPeer::GetSendAlarm(this));
}
TestConnectionHelper::TestAlarm* GetTimeoutAlarm() {
return reinterpret_cast<TestConnectionHelper::TestAlarm*>(
QuicConnectionPeer::GetTimeoutAlarm(this));
}
using QuicConnection::SelectMutualVersion;
private:
TestPacketWriter* writer() {
return static_cast<TestPacketWriter*>(QuicConnection::writer());
}
DISALLOW_COPY_AND_ASSIGN(TestConnection);
};
// Used for testing packets revived from FEC packets.
class FecQuicConnectionDebugVisitor
: public QuicConnectionDebugVisitor {
public:
virtual void OnRevivedPacket(const QuicPacketHeader& header,
StringPiece data) OVERRIDE {
revived_header_ = header;
}
// Public accessor method.
QuicPacketHeader revived_header() const {
return revived_header_;
}
private:
QuicPacketHeader revived_header_;
};
class MockPacketWriterFactory : public QuicConnection::PacketWriterFactory {
public:
MockPacketWriterFactory(QuicPacketWriter* writer) {
ON_CALL(*this, Create(_)).WillByDefault(Return(writer));
}
virtual ~MockPacketWriterFactory() {}
MOCK_CONST_METHOD1(Create, QuicPacketWriter*(QuicConnection* connection));
};
class QuicConnectionTest : public ::testing::TestWithParam<QuicVersion> {
protected:
QuicConnectionTest()
: connection_id_(42),
framer_(SupportedVersions(version()), QuicTime::Zero(), false),
peer_creator_(connection_id_, &framer_, &random_generator_),
send_algorithm_(new StrictMock<MockSendAlgorithm>),
loss_algorithm_(new MockLossAlgorithm()),
helper_(new TestConnectionHelper(&clock_, &random_generator_)),
writer_(new TestPacketWriter(version())),
factory_(writer_.get()),
connection_(connection_id_, IPEndPoint(), helper_.get(),
factory_, false, version()),
frame1_(1, false, 0, MakeIOVector(data1)),
frame2_(1, false, 3, MakeIOVector(data2)),
sequence_number_length_(PACKET_6BYTE_SEQUENCE_NUMBER),
connection_id_length_(PACKET_8BYTE_CONNECTION_ID) {
connection_.set_visitor(&visitor_);
connection_.SetSendAlgorithm(send_algorithm_);
connection_.SetLossAlgorithm(loss_algorithm_);
framer_.set_received_entropy_calculator(&entropy_calculator_);
// Simplify tests by not sending feedback unless specifically configured.
SetFeedback(NULL);
EXPECT_CALL(
*send_algorithm_, TimeUntilSend(_, _, _)).WillRepeatedly(Return(
QuicTime::Delta::Zero()));
EXPECT_CALL(*receive_algorithm_,
RecordIncomingPacket(_, _, _)).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, RetransmissionDelay()).WillRepeatedly(
Return(QuicTime::Delta::Zero()));
EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly(
Return(kMaxPacketSize));
ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillByDefault(Return(true));
EXPECT_CALL(*send_algorithm_, HasReliableBandwidthEstimate())
.Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, BandwidthEstimate())
.Times(AnyNumber())
.WillRepeatedly(Return(QuicBandwidth::Zero()));
EXPECT_CALL(*send_algorithm_, InSlowStart()).Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, InRecovery()).Times(AnyNumber());
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).Times(AnyNumber());
EXPECT_CALL(visitor_, HasPendingHandshake()).Times(AnyNumber());
EXPECT_CALL(visitor_, OnCanWrite()).Times(AnyNumber());
EXPECT_CALL(visitor_, HasOpenDataStreams()).WillRepeatedly(Return(false));
EXPECT_CALL(visitor_, OnCongestionWindowChange(_)).Times(AnyNumber());
EXPECT_CALL(*loss_algorithm_, GetLossTimeout())
.WillRepeatedly(Return(QuicTime::Zero()));
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillRepeatedly(Return(SequenceNumberSet()));
}
QuicVersion version() {
return GetParam();
}
QuicAckFrame* outgoing_ack() {
outgoing_ack_.reset(QuicConnectionPeer::CreateAckFrame(&connection_));
return outgoing_ack_.get();
}
QuicStopWaitingFrame* stop_waiting() {
stop_waiting_.reset(
QuicConnectionPeer::CreateStopWaitingFrame(&connection_));
return stop_waiting_.get();
}
QuicPacketSequenceNumber least_unacked() {
if (writer_->stop_waiting_frames().empty()) {
return 0;
}
return writer_->stop_waiting_frames()[0].least_unacked;
}
void use_tagging_decrypter() {
writer_->use_tagging_decrypter();
}
void ProcessPacket(QuicPacketSequenceNumber number) {
EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1);
ProcessDataPacket(number, 0, !kEntropyFlag);
}
QuicPacketEntropyHash ProcessFramePacket(QuicFrame frame) {
QuicFrames frames;
frames.push_back(QuicFrame(frame));
QuicPacketCreatorPeer::SetSendVersionInPacket(&peer_creator_,
connection_.is_server());
SerializedPacket serialized_packet =
peer_creator_.SerializeAllFrames(frames);
scoped_ptr<QuicPacket> packet(serialized_packet.packet);
scoped_ptr<QuicEncryptedPacket> encrypted(
framer_.EncryptPacket(ENCRYPTION_NONE,
serialized_packet.sequence_number, *packet));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
return serialized_packet.entropy_hash;
}
size_t ProcessDataPacket(QuicPacketSequenceNumber number,
QuicFecGroupNumber fec_group,
bool entropy_flag) {
return ProcessDataPacketAtLevel(number, fec_group, entropy_flag,
ENCRYPTION_NONE);
}
size_t ProcessDataPacketAtLevel(QuicPacketSequenceNumber number,
QuicFecGroupNumber fec_group,
bool entropy_flag,
EncryptionLevel level) {
scoped_ptr<QuicPacket> packet(ConstructDataPacket(number, fec_group,
entropy_flag));
scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket(
level, number, *packet));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
return encrypted->length();
}
void ProcessPingPacket(QuicPacketSequenceNumber number) {
scoped_ptr<QuicPacket> packet(ConstructPingPacket(number));
scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket(
ENCRYPTION_NONE, number, *packet));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
}
void ProcessClosePacket(QuicPacketSequenceNumber number,
QuicFecGroupNumber fec_group) {
scoped_ptr<QuicPacket> packet(ConstructClosePacket(number, fec_group));
scoped_ptr<QuicEncryptedPacket> encrypted(framer_.EncryptPacket(
ENCRYPTION_NONE, number, *packet));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
}
size_t ProcessFecProtectedPacket(QuicPacketSequenceNumber number,
bool expect_revival, bool entropy_flag) {
if (expect_revival) {
EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1);
}
EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1).
RetiresOnSaturation();
return ProcessDataPacket(number, 1, entropy_flag);
}
// Processes an FEC packet that covers the packets that would have been
// received.
size_t ProcessFecPacket(QuicPacketSequenceNumber number,
QuicPacketSequenceNumber min_protected_packet,
bool expect_revival,
bool entropy_flag,
QuicPacket* packet) {
if (expect_revival) {
EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1);
}
// Construct the decrypted data packet so we can compute the correct
// redundancy. If |packet| has been provided then use that, otherwise
// construct a default data packet.
scoped_ptr<QuicPacket> data_packet;
if (packet) {
data_packet.reset(packet);
} else {
data_packet.reset(ConstructDataPacket(number, 1, !kEntropyFlag));
}
header_.public_header.connection_id = connection_id_;
header_.public_header.reset_flag = false;
header_.public_header.version_flag = false;
header_.public_header.sequence_number_length = sequence_number_length_;
header_.public_header.connection_id_length = connection_id_length_;
header_.packet_sequence_number = number;
header_.entropy_flag = entropy_flag;
header_.fec_flag = true;
header_.is_in_fec_group = IN_FEC_GROUP;
header_.fec_group = min_protected_packet;
QuicFecData fec_data;
fec_data.fec_group = header_.fec_group;
// Since all data packets in this test have the same payload, the
// redundancy is either equal to that payload or the xor of that payload
// with itself, depending on the number of packets.
if (((number - min_protected_packet) % 2) == 0) {
for (size_t i = GetStartOfFecProtectedData(
header_.public_header.connection_id_length,
header_.public_header.version_flag,
header_.public_header.sequence_number_length);
i < data_packet->length(); ++i) {
data_packet->mutable_data()[i] ^= data_packet->data()[i];
}
}
fec_data.redundancy = data_packet->FecProtectedData();
scoped_ptr<QuicPacket> fec_packet(
framer_.BuildFecPacket(header_, fec_data).packet);
scoped_ptr<QuicEncryptedPacket> encrypted(
framer_.EncryptPacket(ENCRYPTION_NONE, number, *fec_packet));
connection_.ProcessUdpPacket(IPEndPoint(), IPEndPoint(), *encrypted);
return encrypted->length();
}
QuicByteCount SendStreamDataToPeer(QuicStreamId id,
StringPiece data,
QuicStreamOffset offset,
bool fin,
QuicPacketSequenceNumber* last_packet) {
QuicByteCount packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<3>(&packet_size), Return(true)));
connection_.SendStreamDataWithString(id, data, offset, fin, NULL);
if (last_packet != NULL) {
*last_packet =
QuicConnectionPeer::GetPacketCreator(&connection_)->sequence_number();
}
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AnyNumber());
return packet_size;
}
void SendAckPacketToPeer() {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendAck();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AnyNumber());
}
QuicPacketEntropyHash ProcessAckPacket(QuicAckFrame* frame) {
return ProcessFramePacket(QuicFrame(frame));
}
QuicPacketEntropyHash ProcessStopWaitingPacket(QuicStopWaitingFrame* frame) {
return ProcessFramePacket(QuicFrame(frame));
}
QuicPacketEntropyHash ProcessGoAwayPacket(QuicGoAwayFrame* frame) {
return ProcessFramePacket(QuicFrame(frame));
}
bool IsMissing(QuicPacketSequenceNumber number) {
return IsAwaitingPacket(*outgoing_ack(), number);
}
QuicPacket* ConstructDataPacket(QuicPacketSequenceNumber number,
QuicFecGroupNumber fec_group,
bool entropy_flag) {
header_.public_header.connection_id = connection_id_;
header_.public_header.reset_flag = false;
header_.public_header.version_flag = false;
header_.public_header.sequence_number_length = sequence_number_length_;
header_.public_header.connection_id_length = connection_id_length_;
header_.entropy_flag = entropy_flag;
header_.fec_flag = false;
header_.packet_sequence_number = number;
header_.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP;
header_.fec_group = fec_group;
QuicFrames frames;
QuicFrame frame(&frame1_);
frames.push_back(frame);
QuicPacket* packet =
BuildUnsizedDataPacket(&framer_, header_, frames).packet;
EXPECT_TRUE(packet != NULL);
return packet;
}
QuicPacket* ConstructPingPacket(QuicPacketSequenceNumber number) {
header_.public_header.connection_id = connection_id_;
header_.packet_sequence_number = number;
header_.public_header.reset_flag = false;
header_.public_header.version_flag = false;
header_.entropy_flag = false;
header_.fec_flag = false;
header_.is_in_fec_group = NOT_IN_FEC_GROUP;
header_.fec_group = 0;
QuicPingFrame ping;
QuicFrames frames;
QuicFrame frame(&ping);
frames.push_back(frame);
QuicPacket* packet =
BuildUnsizedDataPacket(&framer_, header_, frames).packet;
EXPECT_TRUE(packet != NULL);
return packet;
}
QuicPacket* ConstructClosePacket(QuicPacketSequenceNumber number,
QuicFecGroupNumber fec_group) {
header_.public_header.connection_id = connection_id_;
header_.packet_sequence_number = number;
header_.public_header.reset_flag = false;
header_.public_header.version_flag = false;
header_.entropy_flag = false;
header_.fec_flag = false;
header_.is_in_fec_group = fec_group == 0u ? NOT_IN_FEC_GROUP : IN_FEC_GROUP;
header_.fec_group = fec_group;
QuicConnectionCloseFrame qccf;
qccf.error_code = QUIC_PEER_GOING_AWAY;
QuicFrames frames;
QuicFrame frame(&qccf);
frames.push_back(frame);
QuicPacket* packet =
BuildUnsizedDataPacket(&framer_, header_, frames).packet;
EXPECT_TRUE(packet != NULL);
return packet;
}
void SetFeedback(QuicCongestionFeedbackFrame* feedback) {
receive_algorithm_ = new TestReceiveAlgorithm(feedback);
connection_.SetReceiveAlgorithm(receive_algorithm_);
}
QuicTime::Delta DefaultRetransmissionTime() {
return QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs);
}
QuicTime::Delta DefaultDelayedAckTime() {
return QuicTime::Delta::FromMilliseconds(kMaxDelayedAckTimeMs);
}
// Initialize a frame acknowledging all packets up to largest_observed.
const QuicAckFrame InitAckFrame(QuicPacketSequenceNumber largest_observed) {
QuicAckFrame frame(MakeAckFrame(largest_observed));
if (largest_observed > 0) {
frame.entropy_hash =
QuicConnectionPeer::GetSentEntropyHash(&connection_,
largest_observed);
}
return frame;
}
const QuicStopWaitingFrame InitStopWaitingFrame(
QuicPacketSequenceNumber least_unacked) {
QuicStopWaitingFrame frame;
frame.least_unacked = least_unacked;
return frame;
}
// Explicitly nack a packet.
void NackPacket(QuicPacketSequenceNumber missing, QuicAckFrame* frame) {
frame->missing_packets.insert(missing);
frame->entropy_hash ^=
QuicConnectionPeer::PacketEntropy(&connection_, missing);
}
// Undo nacking a packet within the frame.
void AckPacket(QuicPacketSequenceNumber arrived, QuicAckFrame* frame) {
EXPECT_THAT(frame->missing_packets, Contains(arrived));
frame->missing_packets.erase(arrived);
frame->entropy_hash ^=
QuicConnectionPeer::PacketEntropy(&connection_, arrived);
}
void TriggerConnectionClose() {
// Send an erroneous packet to close the connection.
EXPECT_CALL(visitor_,
OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false));
// Call ProcessDataPacket rather than ProcessPacket, as we should not get a
// packet call to the visitor.
ProcessDataPacket(6000, 0, !kEntropyFlag);
EXPECT_FALSE(
QuicConnectionPeer::GetConnectionClosePacket(&connection_) == NULL);
}
void BlockOnNextWrite() {
writer_->BlockOnNextWrite();
EXPECT_CALL(visitor_, OnWriteBlocked()).Times(AtLeast(1));
}
void CongestionBlockWrites() {
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, _, _)).WillRepeatedly(
testing::Return(QuicTime::Delta::FromSeconds(1)));
}
void CongestionUnblockWrites() {
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, _, _)).WillRepeatedly(
testing::Return(QuicTime::Delta::Zero()));
}
QuicConnectionId connection_id_;
QuicFramer framer_;
QuicPacketCreator peer_creator_;
MockEntropyCalculator entropy_calculator_;
MockSendAlgorithm* send_algorithm_;
MockLossAlgorithm* loss_algorithm_;
TestReceiveAlgorithm* receive_algorithm_;
MockClock clock_;
MockRandom random_generator_;
scoped_ptr<TestConnectionHelper> helper_;
scoped_ptr<TestPacketWriter> writer_;
NiceMock<MockPacketWriterFactory> factory_;
TestConnection connection_;
StrictMock<MockConnectionVisitor> visitor_;
QuicPacketHeader header_;
QuicStreamFrame frame1_;
QuicStreamFrame frame2_;
scoped_ptr<QuicAckFrame> outgoing_ack_;
scoped_ptr<QuicStopWaitingFrame> stop_waiting_;
QuicSequenceNumberLength sequence_number_length_;
QuicConnectionIdLength connection_id_length_;
private:
DISALLOW_COPY_AND_ASSIGN(QuicConnectionTest);
};
// Run all end to end tests with all supported versions.
INSTANTIATE_TEST_CASE_P(SupportedVersion,
QuicConnectionTest,
::testing::ValuesIn(QuicSupportedVersions()));
TEST_P(QuicConnectionTest, PacketsInOrder) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
EXPECT_EQ(1u, outgoing_ack()->largest_observed);
EXPECT_EQ(0u, outgoing_ack()->missing_packets.size());
ProcessPacket(2);
EXPECT_EQ(2u, outgoing_ack()->largest_observed);
EXPECT_EQ(0u, outgoing_ack()->missing_packets.size());
ProcessPacket(3);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_EQ(0u, outgoing_ack()->missing_packets.size());
}
TEST_P(QuicConnectionTest, PacketsOutOfOrder) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(3);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(2);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_FALSE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(1);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_FALSE(IsMissing(2));
EXPECT_FALSE(IsMissing(1));
}
TEST_P(QuicConnectionTest, DuplicatePacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(3);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
// Send packet 3 again, but do not set the expectation that
// the visitor OnStreamFrames() will be called.
ProcessDataPacket(3, 0, !kEntropyFlag);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
}
TEST_P(QuicConnectionTest, PacketsOutOfOrderWithAdditionsAndLeastAwaiting) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(3);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(2));
EXPECT_TRUE(IsMissing(1));
ProcessPacket(2);
EXPECT_EQ(3u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(1));
ProcessPacket(5);
EXPECT_EQ(5u, outgoing_ack()->largest_observed);
EXPECT_TRUE(IsMissing(1));
EXPECT_TRUE(IsMissing(4));
// Pretend at this point the client has gotten acks for 2 and 3 and 1 is a
// packet the peer will not retransmit. It indicates this by sending 'least
// awaiting' is 4. The connection should then realize 1 will not be
// retransmitted, and will remove it from the missing list.
peer_creator_.set_sequence_number(5);
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(_, _, _, _));
ProcessAckPacket(&frame);
// Force an ack to be sent.
SendAckPacketToPeer();
EXPECT_TRUE(IsMissing(4));
}
TEST_P(QuicConnectionTest, RejectPacketTooFarOut) {
EXPECT_CALL(visitor_,
OnConnectionClosed(QUIC_INVALID_PACKET_HEADER, false));
// Call ProcessDataPacket rather than ProcessPacket, as we should not get a
// packet call to the visitor.
ProcessDataPacket(6000, 0, !kEntropyFlag);
EXPECT_FALSE(
QuicConnectionPeer::GetConnectionClosePacket(&connection_) == NULL);
}
TEST_P(QuicConnectionTest, RejectUnencryptedStreamData) {
// Process an unencrypted packet from the non-crypto stream.
frame1_.stream_id = 3;
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_UNENCRYPTED_STREAM_DATA,
false));
ProcessDataPacket(1, 0, !kEntropyFlag);
EXPECT_FALSE(
QuicConnectionPeer::GetConnectionClosePacket(&connection_) == NULL);
const vector<QuicConnectionCloseFrame>& connection_close_frames =
writer_->connection_close_frames();
EXPECT_EQ(1u, connection_close_frames.size());
EXPECT_EQ(QUIC_UNENCRYPTED_STREAM_DATA,
connection_close_frames[0].error_code);
}
TEST_P(QuicConnectionTest, TruncatedAck) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketSequenceNumber num_packets = 256 * 2 + 1;
for (QuicPacketSequenceNumber i = 0; i < num_packets; ++i) {
SendStreamDataToPeer(3, "foo", i * 3, !kFin, NULL);
}
QuicAckFrame frame = InitAckFrame(num_packets);
SequenceNumberSet lost_packets;
// Create an ack with 256 nacks, none adjacent to one another.
for (QuicPacketSequenceNumber i = 1; i <= 256; ++i) {
NackPacket(i * 2, &frame);
if (i < 256) { // Last packet is nacked, but not lost.
lost_packets.insert(i * 2);
}
}
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(entropy_calculator_,
EntropyHash(511)).WillOnce(testing::Return(0));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&frame);
const QuicSentPacketManager& sent_packet_manager =
connection_.sent_packet_manager();
// A truncated ack will not have the true largest observed.
EXPECT_GT(num_packets, sent_packet_manager.largest_observed());
AckPacket(192, &frame);
// Removing one missing packet allows us to ack 192 and one more range, but
// 192 has already been declared lost, so it doesn't register as an ack.
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(SequenceNumberSet()));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&frame);
EXPECT_EQ(num_packets, sent_packet_manager.largest_observed());
}
TEST_P(QuicConnectionTest, AckReceiptCausesAckSendBadEntropy) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
// Delay sending, then queue up an ack.
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, _, _)).WillOnce(
testing::Return(QuicTime::Delta::FromMicroseconds(1)));
QuicConnectionPeer::SendAck(&connection_);
// Process an ack with a least unacked of the received ack.
// This causes an ack to be sent when TimeUntilSend returns 0.
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, _, _)).WillRepeatedly(
testing::Return(QuicTime::Delta::Zero()));
// Skip a packet and then record an ack.
peer_creator_.set_sequence_number(2);
QuicAckFrame frame = InitAckFrame(0);
ProcessAckPacket(&frame);
}
TEST_P(QuicConnectionTest, OutOfOrderReceiptCausesAckSend) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(3);
// Should ack immediately since we have missing packets.
EXPECT_EQ(1u, writer_->packets_write_attempts());
ProcessPacket(2);
// Should ack immediately since we have missing packets.
EXPECT_EQ(2u, writer_->packets_write_attempts());
ProcessPacket(1);
// Should ack immediately, since this fills the last hole.
EXPECT_EQ(3u, writer_->packets_write_attempts());
ProcessPacket(4);
// Should not cause an ack.
EXPECT_EQ(3u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, AckReceiptCausesAckSend) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketSequenceNumber original;
QuicByteCount packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<2>(&original), SaveArg<3>(&packet_size),
Return(true)));
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL);
QuicAckFrame frame = InitAckFrame(original);
NackPacket(original, &frame);
// First nack triggers early retransmit.
SequenceNumberSet lost_packets;
lost_packets.insert(1);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicPacketSequenceNumber retransmission;
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _))
.WillOnce(DoAll(SaveArg<2>(&retransmission), Return(true)));
ProcessAckPacket(&frame);
QuicAckFrame frame2 = InitAckFrame(retransmission);
NackPacket(original, &frame2);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(SequenceNumberSet()));
ProcessAckPacket(&frame2);
// Now if the peer sends an ack which still reports the retransmitted packet
// as missing, that will bundle an ack with data after two acks in a row
// indicate the high water mark needs to be raised.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _,
HAS_RETRANSMITTABLE_DATA));
connection_.SendStreamDataWithString(3, "foo", 3, !kFin, NULL);
// No ack sent.
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
// No more packet loss for the rest of the test.
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillRepeatedly(Return(SequenceNumberSet()));
ProcessAckPacket(&frame2);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _,
HAS_RETRANSMITTABLE_DATA));
connection_.SendStreamDataWithString(3, "foo", 3, !kFin, NULL);
// Ack bundled.
EXPECT_EQ(3u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_FALSE(writer_->ack_frames().empty());
// But an ack with no missing packets will not send an ack.
AckPacket(original, &frame2);
ProcessAckPacket(&frame2);
ProcessAckPacket(&frame2);
}
TEST_P(QuicConnectionTest, 20AcksCausesAckSend) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, !kFin, NULL);
QuicAlarm* ack_alarm = QuicConnectionPeer::GetAckAlarm(&connection_);
// But an ack with no missing packets will not send an ack.
QuicAckFrame frame = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillRepeatedly(Return(SequenceNumberSet()));
for (int i = 0; i < 20; ++i) {
EXPECT_FALSE(ack_alarm->IsSet());
ProcessAckPacket(&frame);
}
EXPECT_TRUE(ack_alarm->IsSet());
}
TEST_P(QuicConnectionTest, LeastUnackedLower) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, !kFin, NULL);
SendStreamDataToPeer(1, "bar", 3, !kFin, NULL);
SendStreamDataToPeer(1, "eep", 6, !kFin, NULL);
// Start out saying the least unacked is 2.
peer_creator_.set_sequence_number(5);
QuicStopWaitingFrame frame = InitStopWaitingFrame(2);
ProcessStopWaitingPacket(&frame);
// Change it to 1, but lower the sequence number to fake out-of-order packets.
// This should be fine.
peer_creator_.set_sequence_number(1);
// The scheduler will not process out of order acks, but all packet processing
// causes the connection to try to write.
EXPECT_CALL(visitor_, OnCanWrite());
QuicStopWaitingFrame frame2 = InitStopWaitingFrame(1);
ProcessStopWaitingPacket(&frame2);
// Now claim it's one, but set the ordering so it was sent "after" the first
// one. This should cause a connection error.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
peer_creator_.set_sequence_number(7);
EXPECT_CALL(visitor_,
OnConnectionClosed(QUIC_INVALID_STOP_WAITING_DATA, false));
QuicStopWaitingFrame frame3 = InitStopWaitingFrame(1);
ProcessStopWaitingPacket(&frame3);
}
TEST_P(QuicConnectionTest, LargestObservedLower) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
SendStreamDataToPeer(1, "foo", 0, !kFin, NULL);
SendStreamDataToPeer(1, "bar", 3, !kFin, NULL);
SendStreamDataToPeer(1, "eep", 6, !kFin, NULL);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
// Start out saying the largest observed is 2.
QuicAckFrame frame1 = InitAckFrame(1);
QuicAckFrame frame2 = InitAckFrame(2);
ProcessAckPacket(&frame2);
// Now change it to 1, and it should cause a connection error.
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, false));
EXPECT_CALL(visitor_, OnCanWrite()).Times(0);
ProcessAckPacket(&frame1);
}
TEST_P(QuicConnectionTest, AckUnsentData) {
// Ack a packet which has not been sent.
EXPECT_CALL(visitor_, OnConnectionClosed(QUIC_INVALID_ACK_DATA, false));
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
QuicAckFrame frame(MakeAckFrame(1));
EXPECT_CALL(visitor_, OnCanWrite()).Times(0);
ProcessAckPacket(&frame);
}
TEST_P(QuicConnectionTest, AckAll) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessPacket(1);
peer_creator_.set_sequence_number(1);
QuicAckFrame frame1 = InitAckFrame(0);
ProcessAckPacket(&frame1);
}
TEST_P(QuicConnectionTest, SendingDifferentSequenceNumberLengthsBandwidth) {
QuicPacketSequenceNumber last_packet;
QuicPacketCreator* creator =
QuicConnectionPeer::GetPacketCreator(&connection_);
SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet);
EXPECT_EQ(1u, last_packet);
EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
creator->next_sequence_number_length());
EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly(
Return(kMaxPacketSize * 256));
SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet);
EXPECT_EQ(2u, last_packet);
EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER,
creator->next_sequence_number_length());
// The 1 packet lag is due to the sequence number length being recalculated in
// QuicConnection after a packet is sent.
EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly(
Return(kMaxPacketSize * 256 * 256));
SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet);
EXPECT_EQ(3u, last_packet);
EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
creator->next_sequence_number_length());
EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly(
Return(kMaxPacketSize * 256 * 256 * 256));
SendStreamDataToPeer(1, "bar", 9, !kFin, &last_packet);
EXPECT_EQ(4u, last_packet);
EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
creator->next_sequence_number_length());
EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
EXPECT_CALL(*send_algorithm_, GetCongestionWindow()).WillRepeatedly(
Return(kMaxPacketSize * 256 * 256 * 256 * 256));
SendStreamDataToPeer(1, "foo", 12, !kFin, &last_packet);
EXPECT_EQ(5u, last_packet);
EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER,
creator->next_sequence_number_length());
EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
}
// TODO(ianswett): Re-enable this test by finding a good way to test different
// sequence number lengths without sending packets with giant gaps.
TEST_P(QuicConnectionTest,
DISABLED_SendingDifferentSequenceNumberLengthsUnackedDelta) {
QuicPacketSequenceNumber last_packet;
QuicPacketCreator* creator =
QuicConnectionPeer::GetPacketCreator(&connection_);
SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet);
EXPECT_EQ(1u, last_packet);
EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
creator->next_sequence_number_length());
EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
creator->set_sequence_number(100);
SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet);
EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER,
creator->next_sequence_number_length());
EXPECT_EQ(PACKET_1BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
creator->set_sequence_number(100 * 256);
SendStreamDataToPeer(1, "foo", 6, !kFin, &last_packet);
EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
creator->next_sequence_number_length());
EXPECT_EQ(PACKET_2BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
creator->set_sequence_number(100 * 256 * 256);
SendStreamDataToPeer(1, "bar", 9, !kFin, &last_packet);
EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
creator->next_sequence_number_length());
EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
creator->set_sequence_number(100 * 256 * 256 * 256);
SendStreamDataToPeer(1, "foo", 12, !kFin, &last_packet);
EXPECT_EQ(PACKET_6BYTE_SEQUENCE_NUMBER,
creator->next_sequence_number_length());
EXPECT_EQ(PACKET_4BYTE_SEQUENCE_NUMBER,
writer_->header().public_header.sequence_number_length);
}
TEST_P(QuicConnectionTest, BasicSending) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketSequenceNumber last_packet;
SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1
EXPECT_EQ(1u, last_packet);
SendAckPacketToPeer(); // Packet 2
EXPECT_EQ(1u, least_unacked());
SendAckPacketToPeer(); // Packet 3
EXPECT_EQ(1u, least_unacked());
SendStreamDataToPeer(1, "bar", 3, !kFin, &last_packet); // Packet 4
EXPECT_EQ(4u, last_packet);
SendAckPacketToPeer(); // Packet 5
EXPECT_EQ(1u, least_unacked());
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
// Peer acks up to packet 3.
QuicAckFrame frame = InitAckFrame(3);
ProcessAckPacket(&frame);
SendAckPacketToPeer(); // Packet 6
// As soon as we've acked one, we skip ack packets 2 and 3 and note lack of
// ack for 4.
EXPECT_EQ(4u, least_unacked());
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
// Peer acks up to packet 4, the last packet.
QuicAckFrame frame2 = InitAckFrame(6);
ProcessAckPacket(&frame2); // Acks don't instigate acks.
// Verify that we did not send an ack.
EXPECT_EQ(6u, writer_->header().packet_sequence_number);
// So the last ack has not changed.
EXPECT_EQ(4u, least_unacked());
// If we force an ack, we shouldn't change our retransmit state.
SendAckPacketToPeer(); // Packet 7
EXPECT_EQ(7u, least_unacked());
// But if we send more data it should.
SendStreamDataToPeer(1, "eep", 6, !kFin, &last_packet); // Packet 8
EXPECT_EQ(8u, last_packet);
SendAckPacketToPeer(); // Packet 9
EXPECT_EQ(7u, least_unacked());
}
TEST_P(QuicConnectionTest, FECSending) {
// All packets carry version info till version is negotiated.
QuicPacketCreator* creator =
QuicConnectionPeer::GetPacketCreator(&connection_);
size_t payload_length;
// GetPacketLengthForOneStream() assumes a stream offset of 0 in determining
// packet length. The size of the offset field in a stream frame is 0 for
// offset 0, and 2 for non-zero offsets up through 64K. Increase
// max_packet_length by 2 so that subsequent packets containing subsequent
// stream frames with non-zero offets will fit within the packet length.
size_t length = 2 + GetPacketLengthForOneStream(
connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER,
IN_FEC_GROUP, &payload_length);
creator->set_max_packet_length(length);
// Send 4 protected data packets, which should also trigger 1 FEC packet.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(5);
// The first stream frame will have 2 fewer overhead bytes than the other 3.
const string payload(payload_length * 4 + 2, 'a');
connection_.SendStreamDataWithStringWithFec(1, payload, 0, !kFin, NULL);
// Expect the FEC group to be closed after SendStreamDataWithString.
EXPECT_FALSE(creator->IsFecGroupOpen());
EXPECT_FALSE(creator->IsFecProtected());
}
TEST_P(QuicConnectionTest, FECQueueing) {
// All packets carry version info till version is negotiated.
size_t payload_length;
QuicPacketCreator* creator =
QuicConnectionPeer::GetPacketCreator(&connection_);
size_t length = GetPacketLengthForOneStream(
connection_.version(), kIncludeVersion, PACKET_1BYTE_SEQUENCE_NUMBER,
IN_FEC_GROUP, &payload_length);
creator->set_max_packet_length(length);
EXPECT_TRUE(creator->IsFecEnabled());
EXPECT_EQ(0u, connection_.NumQueuedPackets());
BlockOnNextWrite();
const string payload(payload_length, 'a');
connection_.SendStreamDataWithStringWithFec(1, payload, 0, !kFin, NULL);
EXPECT_FALSE(creator->IsFecGroupOpen());
EXPECT_FALSE(creator->IsFecProtected());
// Expect the first data packet and the fec packet to be queued.
EXPECT_EQ(2u, connection_.NumQueuedPackets());
}
TEST_P(QuicConnectionTest, AbandonFECFromCongestionWindow) {
EXPECT_TRUE(QuicConnectionPeer::GetPacketCreator(
&connection_)->IsFecEnabled());
// 1 Data and 1 FEC packet.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
connection_.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin, NULL);
const QuicTime::Delta retransmission_time =
QuicTime::Delta::FromMilliseconds(5000);
clock_.AdvanceTime(retransmission_time);
// Abandon FEC packet and data packet.
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
EXPECT_CALL(visitor_, OnCanWrite());
connection_.OnRetransmissionTimeout();
}
TEST_P(QuicConnectionTest, DontAbandonAckedFEC) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_TRUE(QuicConnectionPeer::GetPacketCreator(
&connection_)->IsFecEnabled());
// 1 Data and 1 FEC packet.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6);
connection_.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin, NULL);
// Send some more data afterwards to ensure early retransmit doesn't trigger.
connection_.SendStreamDataWithStringWithFec(3, "foo", 3, !kFin, NULL);
connection_.SendStreamDataWithStringWithFec(3, "foo", 6, !kFin, NULL);
QuicAckFrame ack_fec = InitAckFrame(2);
// Data packet missing.
// TODO(ianswett): Note that this is not a sensible ack, since if the FEC was
// received, it would cause the covered packet to be acked as well.
NackPacket(1, &ack_fec);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&ack_fec);
clock_.AdvanceTime(DefaultRetransmissionTime());
// Don't abandon the acked FEC packet, but it will abandon 2 the subsequent
// FEC packets.
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3);
connection_.GetRetransmissionAlarm()->Fire();
}
TEST_P(QuicConnectionTest, AbandonAllFEC) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_TRUE(QuicConnectionPeer::GetPacketCreator(
&connection_)->IsFecEnabled());
// 1 Data and 1 FEC packet.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(6);
connection_.SendStreamDataWithStringWithFec(3, "foo", 0, !kFin, NULL);
// Send some more data afterwards to ensure early retransmit doesn't trigger.
connection_.SendStreamDataWithStringWithFec(3, "foo", 3, !kFin, NULL);
// Advance the time so not all the FEC packets are abandoned.
clock_.AdvanceTime(QuicTime::Delta::FromMilliseconds(1));
connection_.SendStreamDataWithStringWithFec(3, "foo", 6, !kFin, NULL);
QuicAckFrame ack_fec = InitAckFrame(5);
// Ack all data packets, but no fec packets.
NackPacket(2, &ack_fec);
NackPacket(4, &ack_fec);
// Lose the first FEC packet and ack the three data packets.
SequenceNumberSet lost_packets;
lost_packets.insert(2);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&ack_fec);
clock_.AdvanceTime(DefaultRetransmissionTime().Subtract(
QuicTime::Delta::FromMilliseconds(1)));
// Abandon all packets
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(false));
connection_.GetRetransmissionAlarm()->Fire();
// Ensure the alarm is not set since all packets have been abandoned.
EXPECT_FALSE(connection_.GetRetransmissionAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, FramePacking) {
CongestionBlockWrites();
// Send an ack and two stream frames in 1 packet by queueing them.
connection_.SendAck();
EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData3)),
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData5))));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
CongestionUnblockWrites();
connection_.GetSendAlarm()->Fire();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's an ack and two stream frames from
// two different streams.
EXPECT_EQ(4u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
ASSERT_EQ(2u, writer_->stream_frames().size());
EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id);
EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id);
}
TEST_P(QuicConnectionTest, FramePackingNonCryptoThenCrypto) {
CongestionBlockWrites();
// Send an ack and two stream frames (one non-crypto, then one crypto) in 2
// packets by queueing them.
connection_.SendAck();
EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData3)),
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendCryptoStreamData))));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
CongestionUnblockWrites();
connection_.GetSendAlarm()->Fire();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's the crypto stream frame.
EXPECT_EQ(1u, writer_->frame_count());
ASSERT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(kCryptoStreamId, writer_->stream_frames()[0].stream_id);
}
TEST_P(QuicConnectionTest, FramePackingCryptoThenNonCrypto) {
CongestionBlockWrites();
// Send an ack and two stream frames (one crypto, then one non-crypto) in 2
// packets by queueing them.
connection_.SendAck();
EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendCryptoStreamData)),
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData3))));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(2);
CongestionUnblockWrites();
connection_.GetSendAlarm()->Fire();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's the stream frame from stream 3.
EXPECT_EQ(1u, writer_->frame_count());
ASSERT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id);
}
TEST_P(QuicConnectionTest, FramePackingFEC) {
EXPECT_TRUE(QuicConnectionPeer::GetPacketCreator(
&connection_)->IsFecEnabled());
CongestionBlockWrites();
// Queue an ack and two stream frames. Ack gets flushed when FEC is turned on
// for sending protected data; two stream frames are packing in 1 packet.
EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::SendStreamData3WithFec)),
IgnoreResult(InvokeWithoutArgs(
&connection_, &TestConnection::SendStreamData5WithFec))));
connection_.SendAck();
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(3);
CongestionUnblockWrites();
connection_.GetSendAlarm()->Fire();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's in an fec group.
EXPECT_EQ(2u, writer_->header().fec_group);
EXPECT_EQ(0u, writer_->frame_count());
}
TEST_P(QuicConnectionTest, FramePackingAckResponse) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Process a data packet to queue up a pending ack.
EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1);
ProcessDataPacket(1, 1, kEntropyFlag);
EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData3)),
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData5))));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
// Process an ack to cause the visitor's OnCanWrite to be invoked.
peer_creator_.set_sequence_number(2);
QuicAckFrame ack_one = InitAckFrame(0);
ProcessAckPacket(&ack_one);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's an ack and two stream frames from
// two different streams.
EXPECT_EQ(4u, writer_->frame_count());
EXPECT_FALSE(writer_->stop_waiting_frames().empty());
EXPECT_FALSE(writer_->ack_frames().empty());
ASSERT_EQ(2u, writer_->stream_frames().size());
EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id);
EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id);
}
TEST_P(QuicConnectionTest, FramePackingSendv) {
// Send data in 1 packet by writing multiple blocks in a single iovector
// using writev.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
char data[] = "ABCD";
IOVector data_iov;
data_iov.AppendNoCoalesce(data, 2);
data_iov.AppendNoCoalesce(data + 2, 2);
connection_.SendStreamData(1, data_iov, 0, !kFin, MAY_FEC_PROTECT, NULL);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure multiple iovector blocks have
// been packed into a single stream frame from one stream.
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
QuicStreamFrame frame = writer_->stream_frames()[0];
EXPECT_EQ(1u, frame.stream_id);
EXPECT_EQ("ABCD", string(static_cast<char*>
(frame.data.iovec()[0].iov_base),
(frame.data.iovec()[0].iov_len)));
}
TEST_P(QuicConnectionTest, FramePackingSendvQueued) {
// Try to send two stream frames in 1 packet by using writev.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
BlockOnNextWrite();
char data[] = "ABCD";
IOVector data_iov;
data_iov.AppendNoCoalesce(data, 2);
data_iov.AppendNoCoalesce(data + 2, 2);
connection_.SendStreamData(1, data_iov, 0, !kFin, MAY_FEC_PROTECT, NULL);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
EXPECT_TRUE(connection_.HasQueuedData());
// Unblock the writes and actually send.
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
// Parse the last packet and ensure it's one stream frame from one stream.
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(1u, writer_->stream_frames()[0].stream_id);
}
TEST_P(QuicConnectionTest, SendingZeroBytes) {
// Send a zero byte write with a fin using writev.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _));
IOVector empty_iov;
connection_.SendStreamData(1, empty_iov, 0, kFin, MAY_FEC_PROTECT, NULL);
EXPECT_EQ(0u, connection_.NumQueuedPackets());
EXPECT_FALSE(connection_.HasQueuedData());
// Parse the last packet and ensure it's one stream frame from one stream.
EXPECT_EQ(1u, writer_->frame_count());
EXPECT_EQ(1u, writer_->stream_frames().size());
EXPECT_EQ(1u, writer_->stream_frames()[0].stream_id);
EXPECT_TRUE(writer_->stream_frames()[0].fin);
}
TEST_P(QuicConnectionTest, OnCanWrite) {
// Visitor's OnCanWrite will send data, but will have more pending writes.
EXPECT_CALL(visitor_, OnCanWrite()).WillOnce(DoAll(
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData3)),
IgnoreResult(InvokeWithoutArgs(&connection_,
&TestConnection::SendStreamData5))));
EXPECT_CALL(visitor_, WillingAndAbleToWrite()).WillOnce(Return(true));
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, _, _)).WillRepeatedly(
testing::Return(QuicTime::Delta::Zero()));
connection_.OnCanWrite();
// Parse the last packet and ensure it's the two stream frames from
// two different streams.
EXPECT_EQ(2u, writer_->frame_count());
EXPECT_EQ(2u, writer_->stream_frames().size());
EXPECT_EQ(kClientDataStreamId1, writer_->stream_frames()[0].stream_id);
EXPECT_EQ(kClientDataStreamId2, writer_->stream_frames()[1].stream_id);
}
TEST_P(QuicConnectionTest, RetransmitOnNack) {
QuicPacketSequenceNumber last_packet;
QuicByteCount second_packet_size;
SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet); // Packet 1
second_packet_size =
SendStreamDataToPeer(3, "foos", 3, !kFin, &last_packet); // Packet 2
SendStreamDataToPeer(3, "fooos", 7, !kFin, &last_packet); // Packet 3
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Don't lose a packet on an ack, and nothing is retransmitted.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame ack_one = InitAckFrame(1);
ProcessAckPacket(&ack_one);
// Lose a packet and ensure it triggers retransmission.
QuicAckFrame nack_two = InitAckFrame(3);
NackPacket(2, &nack_two);
SequenceNumberSet lost_packets;
lost_packets.insert(2);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, second_packet_size - kQuicVersionSize, _)).
Times(1);
ProcessAckPacket(&nack_two);
}
TEST_P(QuicConnectionTest, DiscardRetransmit) {
QuicPacketSequenceNumber last_packet;
SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1
SendStreamDataToPeer(1, "foos", 3, !kFin, &last_packet); // Packet 2
SendStreamDataToPeer(1, "fooos", 7, !kFin, &last_packet); // Packet 3
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Instigate a loss with an ack.
QuicAckFrame nack_two = InitAckFrame(3);
NackPacket(2, &nack_two);
// The first nack should trigger a fast retransmission, but we'll be
// write blocked, so the packet will be queued.
BlockOnNextWrite();
SequenceNumberSet lost_packets;
lost_packets.insert(2);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
ProcessAckPacket(&nack_two);
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Now, ack the previous transmission.
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(SequenceNumberSet()));
QuicAckFrame ack_all = InitAckFrame(3);
ProcessAckPacket(&ack_all);
// Unblock the socket and attempt to send the queued packets. However,
// since the previous transmission has been acked, we will not
// send the retransmission.
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, _, _)).Times(0);
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
}
TEST_P(QuicConnectionTest, RetransmitNackedLargestObserved) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketSequenceNumber largest_observed;
QuicByteCount packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<2>(&largest_observed), SaveArg<3>(&packet_size),
Return(true)));
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL);
QuicAckFrame frame = InitAckFrame(1);
NackPacket(largest_observed, &frame);
// The first nack should retransmit the largest observed packet.
SequenceNumberSet lost_packets;
lost_packets.insert(1);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, packet_size - kQuicVersionSize, _));
ProcessAckPacket(&frame);
}
TEST_P(QuicConnectionTest, QueueAfterTwoRTOs) {
for (int i = 0; i < 10; ++i) {
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(3, "foo", i * 3, !kFin, NULL);
}
// Block the congestion window and ensure they're queued.
BlockOnNextWrite();
clock_.AdvanceTime(DefaultRetransmissionTime());
// Only one packet should be retransmitted.
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_TRUE(connection_.HasQueuedData());
// Unblock the congestion window.
writer_->SetWritable();
clock_.AdvanceTime(QuicTime::Delta::FromMicroseconds(
2 * DefaultRetransmissionTime().ToMicroseconds()));
// Retransmit already retransmitted packets event though the sequence number
// greater than the largest observed.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(10);
connection_.GetRetransmissionAlarm()->Fire();
connection_.OnCanWrite();
}
TEST_P(QuicConnectionTest, WriteBlockedThenSent) {
BlockOnNextWrite();
writer_->set_is_write_blocked_data_buffered(true);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
writer_->SetWritable();
connection_.OnCanWrite();
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
}
TEST_P(QuicConnectionTest, RetransmitWriteBlockedAckedOriginalThenSent) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL);
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
BlockOnNextWrite();
writer_->set_is_write_blocked_data_buffered(true);
// Simulate the retransmission alarm firing.
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(_));
clock_.AdvanceTime(DefaultRetransmissionTime());
connection_.GetRetransmissionAlarm()->Fire();
// Ack the sent packet before the callback returns, which happens in
// rare circumstances with write blocked sockets.
QuicAckFrame ack = InitAckFrame(1);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_, RevertRetransmissionTimeout());
ProcessAckPacket(&ack);
writer_->SetWritable();
connection_.OnCanWrite();
// There is now a pending packet, but with no retransmittable frames.
EXPECT_TRUE(connection_.GetRetransmissionAlarm()->IsSet());
EXPECT_FALSE(connection_.sent_packet_manager().HasRetransmittableFrames(2));
}
TEST_P(QuicConnectionTest, AlarmsWhenWriteBlocked) {
// Block the connection.
BlockOnNextWrite();
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL);
EXPECT_EQ(1u, writer_->packets_write_attempts());
EXPECT_TRUE(writer_->IsWriteBlocked());
// Set the send and resumption alarms. Fire the alarms and ensure they don't
// attempt to write.
connection_.GetResumeWritesAlarm()->Set(clock_.ApproximateNow());
connection_.GetSendAlarm()->Set(clock_.ApproximateNow());
connection_.GetResumeWritesAlarm()->Fire();
connection_.GetSendAlarm()->Fire();
EXPECT_TRUE(writer_->IsWriteBlocked());
EXPECT_EQ(1u, writer_->packets_write_attempts());
}
TEST_P(QuicConnectionTest, NoLimitPacketsPerNack) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
int offset = 0;
// Send packets 1 to 15.
for (int i = 0; i < 15; ++i) {
SendStreamDataToPeer(1, "foo", offset, !kFin, NULL);
offset += 3;
}
// Ack 15, nack 1-14.
SequenceNumberSet lost_packets;
QuicAckFrame nack = InitAckFrame(15);
for (int i = 1; i < 15; ++i) {
NackPacket(i, &nack);
lost_packets.insert(i);
}
// 14 packets have been NACK'd and lost. In TCP cubic, PRR limits
// the retransmission rate in the case of burst losses.
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(14);
ProcessAckPacket(&nack);
}
// Test sending multiple acks from the connection to the session.
TEST_P(QuicConnectionTest, MultipleAcks) {
QuicPacketSequenceNumber last_packet;
SendStreamDataToPeer(1, "foo", 0, !kFin, &last_packet); // Packet 1
EXPECT_EQ(1u, last_packet);
SendStreamDataToPeer(3, "foo", 0, !kFin, &last_packet); // Packet 2
EXPECT_EQ(2u, last_packet);
SendAckPacketToPeer(); // Packet 3
SendStreamDataToPeer(5, "foo", 0, !kFin, &last_packet); // Packet 4
EXPECT_EQ(4u, last_packet);
SendStreamDataToPeer(1, "foo", 3, !kFin, &last_packet); // Packet 5
EXPECT_EQ(5u, last_packet);
SendStreamDataToPeer(3, "foo", 3, !kFin, &last_packet); // Packet 6
EXPECT_EQ(6u, last_packet);
// Client will ack packets 1, 2, [!3], 4, 5.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame frame1 = InitAckFrame(5);
NackPacket(3, &frame1);
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessAckPacket(&frame1);
// Now the client implicitly acks 3, and explicitly acks 6.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame frame2 = InitAckFrame(6);
ProcessAckPacket(&frame2);
}
TEST_P(QuicConnectionTest, DontLatchUnackedPacket) {
SendStreamDataToPeer(1, "foo", 0, !kFin, NULL); // Packet 1;
// From now on, we send acks, so the send algorithm won't mark them pending.
ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillByDefault(Return(false));
SendAckPacketToPeer(); // Packet 2
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicAckFrame frame = InitAckFrame(1);
ProcessAckPacket(&frame);
// Verify that our internal state has least-unacked as 2, because we're still
// waiting for a potential ack for 2.
EXPECT_EQ(2u, stop_waiting()->least_unacked);
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
frame = InitAckFrame(2);
ProcessAckPacket(&frame);
EXPECT_EQ(3u, stop_waiting()->least_unacked);
// When we send an ack, we make sure our least-unacked makes sense. In this
// case since we're not waiting on an ack for 2 and all packets are acked, we
// set it to 3.
SendAckPacketToPeer(); // Packet 3
// Least_unacked remains at 3 until another ack is received.
EXPECT_EQ(3u, stop_waiting()->least_unacked);
// Check that the outgoing ack had its sequence number as least_unacked.
EXPECT_EQ(3u, least_unacked());
// Ack the ack, which updates the rtt and raises the least unacked.
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
frame = InitAckFrame(3);
ProcessAckPacket(&frame);
ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillByDefault(Return(true));
SendStreamDataToPeer(1, "bar", 3, false, NULL); // Packet 4
EXPECT_EQ(4u, stop_waiting()->least_unacked);
ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillByDefault(Return(false));
SendAckPacketToPeer(); // Packet 5
EXPECT_EQ(4u, least_unacked());
// Send two data packets at the end, and ensure if the last one is acked,
// the least unacked is raised above the ack packets.
ON_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillByDefault(Return(true));
SendStreamDataToPeer(1, "bar", 6, false, NULL); // Packet 6
SendStreamDataToPeer(1, "bar", 9, false, NULL); // Packet 7
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
frame = InitAckFrame(7);
NackPacket(5, &frame);
NackPacket(6, &frame);
ProcessAckPacket(&frame);
EXPECT_EQ(6u, stop_waiting()->least_unacked);
}
TEST_P(QuicConnectionTest, ReviveMissingPacketAfterFecPacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Don't send missing packet 1.
ProcessFecPacket(2, 1, true, !kEntropyFlag, NULL);
// Entropy flag should be false, so entropy should be 0.
EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2));
}
TEST_P(QuicConnectionTest, ReviveMissingPacketWithVaryingSeqNumLengths) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Set up a debug visitor to the connection.
FecQuicConnectionDebugVisitor* fec_visitor =
new FecQuicConnectionDebugVisitor();
connection_.set_debug_visitor(fec_visitor);
QuicPacketSequenceNumber fec_packet = 0;
QuicSequenceNumberLength lengths[] = {PACKET_6BYTE_SEQUENCE_NUMBER,
PACKET_4BYTE_SEQUENCE_NUMBER,
PACKET_2BYTE_SEQUENCE_NUMBER,
PACKET_1BYTE_SEQUENCE_NUMBER};
// For each sequence number length size, revive a packet and check sequence
// number length in the revived packet.
for (size_t i = 0; i < arraysize(lengths); ++i) {
// Set sequence_number_length_ (for data and FEC packets).
sequence_number_length_ = lengths[i];
fec_packet += 2;
// Don't send missing packet, but send fec packet right after it.
ProcessFecPacket(fec_packet, fec_packet - 1, true, !kEntropyFlag, NULL);
// Sequence number length in the revived header should be the same as
// in the original data/fec packet headers.
EXPECT_EQ(sequence_number_length_, fec_visitor->revived_header().
public_header.sequence_number_length);
}
}
TEST_P(QuicConnectionTest, ReviveMissingPacketWithVaryingConnectionIdLengths) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Set up a debug visitor to the connection.
FecQuicConnectionDebugVisitor* fec_visitor =
new FecQuicConnectionDebugVisitor();
connection_.set_debug_visitor(fec_visitor);
QuicPacketSequenceNumber fec_packet = 0;
QuicConnectionIdLength lengths[] = {PACKET_8BYTE_CONNECTION_ID,
PACKET_4BYTE_CONNECTION_ID,
PACKET_1BYTE_CONNECTION_ID,
PACKET_0BYTE_CONNECTION_ID};
// For each connection id length size, revive a packet and check connection
// id length in the revived packet.
for (size_t i = 0; i < arraysize(lengths); ++i) {
// Set connection id length (for data and FEC packets).
connection_id_length_ = lengths[i];
fec_packet += 2;
// Don't send missing packet, but send fec packet right after it.
ProcessFecPacket(fec_packet, fec_packet - 1, true, !kEntropyFlag, NULL);
// Connection id length in the revived header should be the same as
// in the original data/fec packet headers.
EXPECT_EQ(connection_id_length_,
fec_visitor->revived_header().public_header.connection_id_length);
}
}
TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacketThenFecPacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessFecProtectedPacket(1, false, kEntropyFlag);
// Don't send missing packet 2.
ProcessFecPacket(3, 1, true, !kEntropyFlag, NULL);
// Entropy flag should be true, so entropy should not be 0.
EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2));
}
TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacketsThenFecPacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessFecProtectedPacket(1, false, !kEntropyFlag);
// Don't send missing packet 2.
ProcessFecProtectedPacket(3, false, !kEntropyFlag);
ProcessFecPacket(4, 1, true, kEntropyFlag, NULL);
// Ensure QUIC no longer revives entropy for lost packets.
EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2));
EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 4));
}
TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPacket) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
// Don't send missing packet 1.
ProcessFecPacket(3, 1, false, !kEntropyFlag, NULL);
// Out of order.
ProcessFecProtectedPacket(2, true, !kEntropyFlag);
// Entropy flag should be false, so entropy should be 0.
EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2));
}
TEST_P(QuicConnectionTest, ReviveMissingPacketAfterDataPackets) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
ProcessFecProtectedPacket(1, false, !kEntropyFlag);
// Don't send missing packet 2.
ProcessFecPacket(6, 1, false, kEntropyFlag, NULL);
ProcessFecProtectedPacket(3, false, kEntropyFlag);
ProcessFecProtectedPacket(4, false, kEntropyFlag);
ProcessFecProtectedPacket(5, true, !kEntropyFlag);
// Ensure entropy is not revived for the missing packet.
EXPECT_EQ(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 2));
EXPECT_NE(0u, QuicConnectionPeer::ReceivedEntropyHash(&connection_, 3));
}
TEST_P(QuicConnectionTest, TLP) {
QuicSentPacketManagerPeer::SetMaxTailLossProbes(
QuicConnectionPeer::GetSentPacketManager(&connection_), 1);
SendStreamDataToPeer(3, "foo", 0, !kFin, NULL);
EXPECT_EQ(1u, stop_waiting()->least_unacked);
QuicTime retransmission_time =
connection_.GetRetransmissionAlarm()->deadline();
EXPECT_NE(QuicTime::Zero(), retransmission_time);
EXPECT_EQ(1u, writer_->header().packet_sequence_number);
// Simulate the retransmission alarm firing and sending a tlp,
// so send algorithm's OnRetransmissionTimeout is not called.
clock_.AdvanceTime(retransmission_time.Subtract(clock_.Now()));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(2u, writer_->header().packet_sequence_number);
// We do not raise the high water mark yet.
EXPECT_EQ(1u, stop_waiting()->least_unacked);
}
TEST_P(QuicConnectionTest, RTO) {
QuicTime default_retransmission_time = clock_.ApproximateNow().Add(
DefaultRetransmissionTime());
SendStreamDataToPeer(3, "foo", 0, !kFin, NULL);
EXPECT_EQ(1u, stop_waiting()->least_unacked);
EXPECT_EQ(1u, writer_->header().packet_sequence_number);
EXPECT_EQ(default_retransmission_time,
connection_.GetRetransmissionAlarm()->deadline());
// Simulate the retransmission alarm firing.
clock_.AdvanceTime(DefaultRetransmissionTime());
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 2u, _, _));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_EQ(2u, writer_->header().packet_sequence_number);
// We do not raise the high water mark yet.
EXPECT_EQ(1u, stop_waiting()->least_unacked);
}
TEST_P(QuicConnectionTest, RTOWithSameEncryptionLevel) {
QuicTime default_retransmission_time = clock_.ApproximateNow().Add(
DefaultRetransmissionTime());
use_tagging_decrypter();
// A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
// the end of the packet. We can test this to check which encrypter was used.
connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
SendStreamDataToPeer(3, "foo", 0, !kFin, NULL);
EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
SendStreamDataToPeer(3, "foo", 0, !kFin, NULL);
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
EXPECT_EQ(default_retransmission_time,
connection_.GetRetransmissionAlarm()->deadline());
{
InSequence s;
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 3, _, _));
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, 4, _, _));
}
// Simulate the retransmission alarm firing.
clock_.AdvanceTime(DefaultRetransmissionTime());
connection_.GetRetransmissionAlarm()->Fire();
// Packet should have been sent with ENCRYPTION_NONE.
EXPECT_EQ(0x01010101u, writer_->final_bytes_of_previous_packet());
// Packet should have been sent with ENCRYPTION_INITIAL.
EXPECT_EQ(0x02020202u, writer_->final_bytes_of_last_packet());
}
TEST_P(QuicConnectionTest, SendHandshakeMessages) {
use_tagging_decrypter();
// A TaggingEncrypter puts kTagSize copies of the given byte (0x01 here) at
// the end of the packet. We can test this to check which encrypter was used.
connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
// Attempt to send a handshake message and have the socket block.
EXPECT_CALL(*send_algorithm_,
TimeUntilSend(_, _, _)).WillRepeatedly(
testing::Return(QuicTime::Delta::Zero()));
BlockOnNextWrite();
connection_.SendStreamDataWithString(1, "foo", 0, !kFin, NULL);
// The packet should be serialized, but not queued.
EXPECT_EQ(1u, connection_.NumQueuedPackets());
// Switch to the new encrypter.
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
// Now become writeable and flush the packets.
writer_->SetWritable();
EXPECT_CALL(visitor_, OnCanWrite());
connection_.OnCanWrite();
EXPECT_EQ(0u, connection_.NumQueuedPackets());
// Verify that the handshake packet went out at the null encryption.
EXPECT_EQ(0x01010101u, writer_->final_bytes_of_last_packet());
}
TEST_P(QuicConnectionTest,
DropRetransmitsForNullEncryptedPacketAfterForwardSecure) {
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
QuicPacketSequenceNumber sequence_number;
SendStreamDataToPeer(3, "foo", 0, !kFin, &sequence_number);
// Simulate the retransmission alarm firing and the socket blocking.
BlockOnNextWrite();
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
clock_.AdvanceTime(DefaultRetransmissionTime());
connection_.GetRetransmissionAlarm()->Fire();
// Go forward secure.
connection_.SetEncrypter(ENCRYPTION_FORWARD_SECURE,
new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_FORWARD_SECURE);
connection_.NeuterUnencryptedPackets();
EXPECT_EQ(QuicTime::Zero(),
connection_.GetRetransmissionAlarm()->deadline());
// Unblock the socket and ensure that no packets are sent.
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(0);
writer_->SetWritable();
connection_.OnCanWrite();
}
TEST_P(QuicConnectionTest, RetransmitPacketsWithInitialEncryption) {
use_tagging_decrypter();
connection_.SetEncrypter(ENCRYPTION_NONE, new TaggingEncrypter(0x01));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_NONE);
SendStreamDataToPeer(1, "foo", 0, !kFin, NULL);
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(0x02));
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
SendStreamDataToPeer(2, "bar", 0, !kFin, NULL);
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).Times(1);
connection_.RetransmitUnackedPackets(ALL_INITIAL_RETRANSMISSION);
}
TEST_P(QuicConnectionTest, BufferNonDecryptablePackets) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
use_tagging_decrypter();
const uint8 tag = 0x07;
framer_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
// Process an encrypted packet which can not yet be decrypted
// which should result in the packet being buffered.
ProcessDataPacketAtLevel(1, 0, kEntropyFlag, ENCRYPTION_INITIAL);
// Transition to the new encryption state and process another
// encrypted packet which should result in the original packet being
// processed.
connection_.SetDecrypter(new StrictTaggingDecrypter(tag),
ENCRYPTION_INITIAL);
connection_.SetDefaultEncryptionLevel(ENCRYPTION_INITIAL);
connection_.SetEncrypter(ENCRYPTION_INITIAL, new TaggingEncrypter(tag));
EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(2);
ProcessDataPacketAtLevel(2, 0, kEntropyFlag, ENCRYPTION_INITIAL);
// Finally, process a third packet and note that we do not
// reprocess the buffered packet.
EXPECT_CALL(visitor_, OnStreamFrames(_)).Times(1);
ProcessDataPacketAtLevel(3, 0, kEntropyFlag, ENCRYPTION_INITIAL);
}
TEST_P(QuicConnectionTest, TestRetransmitOrder) {
QuicByteCount first_packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).WillOnce(
DoAll(SaveArg<3>(&first_packet_size), Return(true)));
connection_.SendStreamDataWithString(3, "first_packet", 0, !kFin, NULL);
QuicByteCount second_packet_size;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _)).WillOnce(
DoAll(SaveArg<3>(&second_packet_size), Return(true)));
connection_.SendStreamDataWithString(3, "second_packet", 12, !kFin, NULL);
EXPECT_NE(first_packet_size, second_packet_size);
// Advance the clock by huge time to make sure packets will be retransmitted.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
{
InSequence s;
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, first_packet_size, _));
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, second_packet_size, _));
}
connection_.GetRetransmissionAlarm()->Fire();
// Advance again and expect the packets to be sent again in the same order.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(20));
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
{
InSequence s;
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, first_packet_size, _));
EXPECT_CALL(*send_algorithm_,
OnPacketSent(_, _, _, second_packet_size, _));
}
connection_.GetRetransmissionAlarm()->Fire();
}
TEST_P(QuicConnectionTest, RetransmissionCountCalculation) {
EXPECT_CALL(visitor_, OnSuccessfulVersionNegotiation(_));
QuicPacketSequenceNumber original_sequence_number;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<2>(&original_sequence_number), Return(true)));
connection_.SendStreamDataWithString(3, "foo", 0, !kFin, NULL);
EXPECT_TRUE(QuicConnectionPeer::IsSavedForRetransmission(
&connection_, original_sequence_number));
EXPECT_FALSE(QuicConnectionPeer::IsRetransmission(
&connection_, original_sequence_number));
// Force retransmission due to RTO.
clock_.AdvanceTime(QuicTime::Delta::FromSeconds(10));
EXPECT_CALL(*send_algorithm_, OnRetransmissionTimeout(true));
QuicPacketSequenceNumber rto_sequence_number;
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<2>(&rto_sequence_number), Return(true)));
connection_.GetRetransmissionAlarm()->Fire();
EXPECT_FALSE(QuicConnectionPeer::IsSavedForRetransmission(
&connection_, original_sequence_number));
ASSERT_TRUE(QuicConnectionPeer::IsSavedForRetransmission(
&connection_, rto_sequence_number));
EXPECT_TRUE(QuicConnectionPeer::IsRetransmission(
&connection_, rto_sequence_number));
// Once by explicit nack.
SequenceNumberSet lost_packets;
lost_packets.insert(rto_sequence_number);
EXPECT_CALL(*loss_algorithm_, DetectLostPackets(_, _, _, _))
.WillOnce(Return(lost_packets));
EXPECT_CALL(*send_algorithm_, OnCongestionEvent(true, _, _, _));
QuicPacketSequenceNumber nack_sequence_number = 0;
// Ack packets might generate some other packets, which are not
// retransmissions. (More ack packets).
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.Times(AnyNumber());
EXPECT_CALL(*send_algorithm_, OnPacketSent(_, _, _, _, _))
.WillOnce(DoAll(SaveArg<2>(&nack_sequence_number), Return(true)));
QuicAckFrame ack = InitAckFrame(rto_sequence_number);
// Nack the retransmitted packet.
NackPacket(original_sequence_number, &ack);
NackPacket(rto_sequence_number, &ack);
ProcessAckPacket(&ack);
ASSERT_NE(0u, nack_sequence_number);
EXPECT_FALSE(QuicConnectionPeer::IsSavedForRetransmission(
&connection_, rto_sequence_number));
ASSERT_TRUE(QuicConnectionPeer::IsSavedForRetransmission(
&connection_, nack_sequence_number));
EXPECT_TRUE(QuicConnectionPeer::IsRetransmission(
&connection_, nack_sequence_number));