blob: 26dcd6cb9089035fbf04af5e83672809293a90d6 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_data_stream.h"
#include "net/quic/quic_ack_notifier.h"
#include "net/quic/quic_connection.h"
#include "net/quic/quic_utils.h"
#include "net/quic/quic_write_blocked_list.h"
#include "net/quic/spdy_utils.h"
#include "net/quic/test_tools/quic_flow_controller_peer.h"
#include "net/quic/test_tools/quic_session_peer.h"
#include "net/quic/test_tools/quic_test_utils.h"
#include "net/quic/test_tools/reliable_quic_stream_peer.h"
#include "net/test/gtest_util.h"
#include "testing/gmock/include/gmock/gmock.h"
using base::StringPiece;
using std::min;
using testing::AnyNumber;
using testing::InSequence;
using testing::Return;
using testing::SaveArg;
using testing::StrictMock;
using testing::_;
namespace net {
namespace test {
namespace {
const bool kIsServer = true;
const bool kShouldProcessData = true;
class TestStream : public QuicDataStream {
public:
TestStream(QuicStreamId id,
QuicSession* session,
bool should_process_data)
: QuicDataStream(id, session),
should_process_data_(should_process_data) {}
virtual uint32 ProcessData(const char* data, uint32 data_len) OVERRIDE {
EXPECT_NE(0u, data_len);
DVLOG(1) << "ProcessData data_len: " << data_len;
data_ += string(data, data_len);
return should_process_data_ ? data_len : 0;
}
using ReliableQuicStream::WriteOrBufferData;
using ReliableQuicStream::CloseReadSide;
using ReliableQuicStream::CloseWriteSide;
const string& data() const { return data_; }
private:
bool should_process_data_;
string data_;
};
class QuicDataStreamTest : public ::testing::TestWithParam<QuicVersion> {
public:
QuicDataStreamTest() {
headers_[":host"] = "www.google.com";
headers_[":path"] = "/index.hml";
headers_[":scheme"] = "https";
headers_["cookie"] =
"__utma=208381060.1228362404.1372200928.1372200928.1372200928.1; "
"__utmc=160408618; "
"GX=DQAAAOEAAACWJYdewdE9rIrW6qw3PtVi2-d729qaa-74KqOsM1NVQblK4VhX"
"hoALMsy6HOdDad2Sz0flUByv7etmo3mLMidGrBoljqO9hSVA40SLqpG_iuKKSHX"
"RW3Np4bq0F0SDGDNsW0DSmTS9ufMRrlpARJDS7qAI6M3bghqJp4eABKZiRqebHT"
"pMU-RXvTI5D5oCF1vYxYofH_l1Kviuiy3oQ1kS1enqWgbhJ2t61_SNdv-1XJIS0"
"O3YeHLmVCs62O6zp89QwakfAWK9d3IDQvVSJzCQsvxvNIvaZFa567MawWlXg0Rh"
"1zFMi5vzcns38-8_Sns; "
"GA=v*2%2Fmem*57968640*47239936%2Fmem*57968640*47114716%2Fno-nm-"
"yj*15%2Fno-cc-yj*5%2Fpc-ch*133685%2Fpc-s-cr*133947%2Fpc-s-t*1339"
"47%2Fno-nm-yj*4%2Fno-cc-yj*1%2Fceft-as*1%2Fceft-nqas*0%2Fad-ra-c"
"v_p%2Fad-nr-cv_p-f*1%2Fad-v-cv_p*859%2Fad-ns-cv_p-f*1%2Ffn-v-ad%"
"2Fpc-t*250%2Fpc-cm*461%2Fpc-s-cr*722%2Fpc-s-t*722%2Fau_p*4"
"SICAID=AJKiYcHdKgxum7KMXG0ei2t1-W4OD1uW-ecNsCqC0wDuAXiDGIcT_HA2o1"
"3Rs1UKCuBAF9g8rWNOFbxt8PSNSHFuIhOo2t6bJAVpCsMU5Laa6lewuTMYI8MzdQP"
"ARHKyW-koxuhMZHUnGBJAM1gJODe0cATO_KGoX4pbbFxxJ5IicRxOrWK_5rU3cdy6"
"edlR9FsEdH6iujMcHkbE5l18ehJDwTWmBKBzVD87naobhMMrF6VvnDGxQVGp9Ir_b"
"Rgj3RWUoPumQVCxtSOBdX0GlJOEcDTNCzQIm9BSfetog_eP_TfYubKudt5eMsXmN6"
"QnyXHeGeK2UINUzJ-D30AFcpqYgH9_1BvYSpi7fc7_ydBU8TaD8ZRxvtnzXqj0RfG"
"tuHghmv3aD-uzSYJ75XDdzKdizZ86IG6Fbn1XFhYZM-fbHhm3mVEXnyRW4ZuNOLFk"
"Fas6LMcVC6Q8QLlHYbXBpdNFuGbuZGUnav5C-2I_-46lL0NGg3GewxGKGHvHEfoyn"
"EFFlEYHsBQ98rXImL8ySDycdLEFvBPdtctPmWCfTxwmoSMLHU2SCVDhbqMWU5b0yr"
"JBCScs_ejbKaqBDoB7ZGxTvqlrB__2ZmnHHjCr8RgMRtKNtIeuZAo ";
}
void Initialize(bool stream_should_process_data) {
connection_ = new testing::StrictMock<MockConnection>(
kIsServer, SupportedVersions(GetParam()));
session_.reset(new testing::StrictMock<MockSession>(connection_));
stream_.reset(new TestStream(kClientDataStreamId1, session_.get(),
stream_should_process_data));
stream2_.reset(new TestStream(kClientDataStreamId2, session_.get(),
stream_should_process_data));
write_blocked_list_ =
QuicSessionPeer::GetWriteBlockedStreams(session_.get());
}
protected:
MockConnection* connection_;
scoped_ptr<MockSession> session_;
scoped_ptr<TestStream> stream_;
scoped_ptr<TestStream> stream2_;
SpdyHeaderBlock headers_;
QuicWriteBlockedList* write_blocked_list_;
};
INSTANTIATE_TEST_CASE_P(Tests, QuicDataStreamTest,
::testing::ValuesIn(QuicSupportedVersions()));
TEST_P(QuicDataStreamTest, ProcessHeaders) {
Initialize(kShouldProcessData);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
stream_->OnStreamHeadersPriority(QuicUtils::HighestPriority());
stream_->OnStreamHeaders(headers);
EXPECT_EQ(headers, stream_->data());
stream_->OnStreamHeadersComplete(false, headers.size());
EXPECT_EQ(QuicUtils::HighestPriority(), stream_->EffectivePriority());
EXPECT_EQ(headers, stream_->data());
EXPECT_FALSE(stream_->IsDoneReading());
}
TEST_P(QuicDataStreamTest, ProcessHeadersAndBody) {
Initialize(kShouldProcessData);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body = "this is the body";
stream_->OnStreamHeaders(headers);
EXPECT_EQ(headers, stream_->data());
stream_->OnStreamHeadersComplete(false, headers.size());
QuicStreamFrame frame(kClientDataStreamId1, false, 0, MakeIOVector(body));
stream_->OnStreamFrame(frame);
EXPECT_EQ(headers + body, stream_->data());
}
TEST_P(QuicDataStreamTest, ProcessHeadersAndBodyFragments) {
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body = "this is the body";
for (size_t fragment_size = 1; fragment_size < body.size();
++fragment_size) {
Initialize(kShouldProcessData);
for (size_t offset = 0; offset < headers.size();
offset += fragment_size) {
size_t remaining_data = headers.size() - offset;
StringPiece fragment(headers.data() + offset,
min(fragment_size, remaining_data));
stream_->OnStreamHeaders(fragment);
}
stream_->OnStreamHeadersComplete(false, headers.size());
for (size_t offset = 0; offset < body.size(); offset += fragment_size) {
size_t remaining_data = body.size() - offset;
StringPiece fragment(body.data() + offset,
min(fragment_size, remaining_data));
QuicStreamFrame frame(kClientDataStreamId1, false, offset,
MakeIOVector(fragment));
stream_->OnStreamFrame(frame);
}
ASSERT_EQ(headers + body,
stream_->data()) << "fragment_size: " << fragment_size;
}
}
TEST_P(QuicDataStreamTest, ProcessHeadersAndBodyFragmentsSplit) {
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body = "this is the body";
for (size_t split_point = 1; split_point < body.size() - 1; ++split_point) {
Initialize(kShouldProcessData);
StringPiece headers1(headers.data(), split_point);
stream_->OnStreamHeaders(headers1);
StringPiece headers2(headers.data() + split_point,
headers.size() - split_point);
stream_->OnStreamHeaders(headers2);
stream_->OnStreamHeadersComplete(false, headers.size());
StringPiece fragment1(body.data(), split_point);
QuicStreamFrame frame1(kClientDataStreamId1, false, 0,
MakeIOVector(fragment1));
stream_->OnStreamFrame(frame1);
StringPiece fragment2(body.data() + split_point,
body.size() - split_point);
QuicStreamFrame frame2(kClientDataStreamId1, false, split_point,
MakeIOVector(fragment2));
stream_->OnStreamFrame(frame2);
ASSERT_EQ(headers + body,
stream_->data()) << "split_point: " << split_point;
}
}
TEST_P(QuicDataStreamTest, ProcessHeadersAndBodyReadv) {
Initialize(!kShouldProcessData);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body = "this is the body";
stream_->OnStreamHeaders(headers);
EXPECT_EQ(headers, stream_->data());
stream_->OnStreamHeadersComplete(false, headers.size());
QuicStreamFrame frame(kClientDataStreamId1, false, 0, MakeIOVector(body));
stream_->OnStreamFrame(frame);
char buffer[2048];
ASSERT_LT(headers.length() + body.length(), arraysize(buffer));
struct iovec vec;
vec.iov_base = buffer;
vec.iov_len = arraysize(buffer);
size_t bytes_read = stream_->Readv(&vec, 1);
EXPECT_EQ(headers.length(), bytes_read);
EXPECT_EQ(headers, string(buffer, bytes_read));
bytes_read = stream_->Readv(&vec, 1);
EXPECT_EQ(body.length(), bytes_read);
EXPECT_EQ(body, string(buffer, bytes_read));
}
TEST_P(QuicDataStreamTest, ProcessHeadersAndBodyIncrementalReadv) {
Initialize(!kShouldProcessData);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body = "this is the body";
stream_->OnStreamHeaders(headers);
EXPECT_EQ(headers, stream_->data());
stream_->OnStreamHeadersComplete(false, headers.size());
QuicStreamFrame frame(kClientDataStreamId1, false, 0, MakeIOVector(body));
stream_->OnStreamFrame(frame);
char buffer[1];
struct iovec vec;
vec.iov_base = buffer;
vec.iov_len = arraysize(buffer);
string data = headers + body;
for (size_t i = 0; i < data.length(); ++i) {
size_t bytes_read = stream_->Readv(&vec, 1);
ASSERT_EQ(1u, bytes_read);
EXPECT_EQ(data.data()[i], buffer[0]);
}
}
TEST_P(QuicDataStreamTest, ProcessHeadersUsingReadvWithMultipleIovecs) {
Initialize(!kShouldProcessData);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body = "this is the body";
stream_->OnStreamHeaders(headers);
EXPECT_EQ(headers, stream_->data());
stream_->OnStreamHeadersComplete(false, headers.size());
QuicStreamFrame frame(kClientDataStreamId1, false, 0, MakeIOVector(body));
stream_->OnStreamFrame(frame);
char buffer1[1];
char buffer2[1];
struct iovec vec[2];
vec[0].iov_base = buffer1;
vec[0].iov_len = arraysize(buffer1);
vec[1].iov_base = buffer2;
vec[1].iov_len = arraysize(buffer2);
string data = headers + body;
for (size_t i = 0; i < data.length(); i += 2) {
size_t bytes_read = stream_->Readv(vec, 2);
ASSERT_EQ(2u, bytes_read) << i;
ASSERT_EQ(data.data()[i], buffer1[0]) << i;
ASSERT_EQ(data.data()[i + 1], buffer2[0]) << i;
}
}
TEST_P(QuicDataStreamTest, StreamFlowControlBlocked) {
// Tests that we send a BLOCKED frame to the peer when we attempt to write,
// but are flow control blocked.
if (GetParam() <= QUIC_VERSION_16) {
return;
}
Initialize(kShouldProcessData);
// Set a small flow control limit.
const uint64 kWindow = 36;
QuicFlowControllerPeer::SetSendWindowOffset(stream_->flow_controller(),
kWindow);
EXPECT_EQ(kWindow, QuicFlowControllerPeer::SendWindowOffset(
stream_->flow_controller()));
// Try to send more data than the flow control limit allows.
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body;
const uint64 kOverflow = 15;
GenerateBody(&body, kWindow + kOverflow);
EXPECT_CALL(*connection_, SendBlocked(kClientDataStreamId1));
EXPECT_CALL(*session_, WritevData(kClientDataStreamId1, _, _, _, _, _))
.WillOnce(Return(QuicConsumedData(kWindow, true)));
stream_->WriteOrBufferData(body, false, NULL);
// Should have sent as much as possible, resulting in no send window left.
EXPECT_EQ(0u,
QuicFlowControllerPeer::SendWindowSize(stream_->flow_controller()));
// And we should have queued the overflowed data.
EXPECT_EQ(kOverflow,
ReliableQuicStreamPeer::SizeOfQueuedData(stream_.get()));
}
TEST_P(QuicDataStreamTest, StreamFlowControlNoWindowUpdateIfNotConsumed) {
// The flow control receive window decreases whenever we add new bytes to the
// sequencer, whether they are consumed immediately or buffered. However we
// only send WINDOW_UPDATE frames based on increasing number of bytes
// consumed.
if (GetParam() <= QUIC_VERSION_16) {
return;
}
// Don't process data - it will be buffered instead.
Initialize(!kShouldProcessData);
// Expect no WINDOW_UPDATE frames to be sent.
EXPECT_CALL(*connection_, SendWindowUpdate(_, _)).Times(0);
// Set a small flow control receive window.
const uint64 kWindow = 36;
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetMaxReceiveWindow(stream_->flow_controller(),
kWindow);
EXPECT_EQ(kWindow, QuicFlowControllerPeer::ReceiveWindowOffset(
stream_->flow_controller()));
// Stream receives enough data to fill a fraction of the receive window.
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body;
GenerateBody(&body, kWindow / 3);
stream_->OnStreamHeaders(headers);
EXPECT_EQ(headers, stream_->data());
stream_->OnStreamHeadersComplete(false, headers.size());
QuicStreamFrame frame1(kClientDataStreamId1, false, 0, MakeIOVector(body));
stream_->OnStreamFrame(frame1);
EXPECT_EQ(kWindow - (kWindow / 3), QuicFlowControllerPeer::ReceiveWindowSize(
stream_->flow_controller()));
// Now receive another frame which results in the receive window being over
// half full. This should all be buffered, decreasing the receive window but
// not sending WINDOW_UPDATE.
QuicStreamFrame frame2(kClientDataStreamId1, false, kWindow / 3,
MakeIOVector(body));
stream_->OnStreamFrame(frame2);
EXPECT_EQ(
kWindow - (2 * kWindow / 3),
QuicFlowControllerPeer::ReceiveWindowSize(stream_->flow_controller()));
}
TEST_P(QuicDataStreamTest, StreamFlowControlWindowUpdate) {
// Tests that on receipt of data, the stream updates its receive window offset
// appropriately, and sends WINDOW_UPDATE frames when its receive window drops
// too low.
if (GetParam() <= QUIC_VERSION_16) {
return;
}
Initialize(kShouldProcessData);
// Set a small flow control limit.
const uint64 kWindow = 36;
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetMaxReceiveWindow(stream_->flow_controller(),
kWindow);
EXPECT_EQ(kWindow, QuicFlowControllerPeer::ReceiveWindowOffset(
stream_->flow_controller()));
// Stream receives enough data to fill a fraction of the receive window.
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
string body;
GenerateBody(&body, kWindow / 3);
stream_->OnStreamHeaders(headers);
EXPECT_EQ(headers, stream_->data());
stream_->OnStreamHeadersComplete(false, headers.size());
QuicStreamFrame frame1(kClientDataStreamId1, false, 0, MakeIOVector(body));
stream_->OnStreamFrame(frame1);
EXPECT_EQ(kWindow - (kWindow / 3), QuicFlowControllerPeer::ReceiveWindowSize(
stream_->flow_controller()));
// Now receive another frame which results in the receive window being over
// half full. This will trigger the stream to increase its receive window
// offset and send a WINDOW_UPDATE. The result will be again an available
// window of kWindow bytes.
QuicStreamFrame frame2(kClientDataStreamId1, false, kWindow / 3,
MakeIOVector(body));
EXPECT_CALL(*connection_,
SendWindowUpdate(kClientDataStreamId1,
QuicFlowControllerPeer::ReceiveWindowOffset(
stream_->flow_controller()) +
2 * kWindow / 3));
stream_->OnStreamFrame(frame2);
EXPECT_EQ(kWindow, QuicFlowControllerPeer::ReceiveWindowSize(
stream_->flow_controller()));
}
TEST_P(QuicDataStreamTest, ConnectionFlowControlWindowUpdate) {
// Tests that on receipt of data, the connection updates its receive window
// offset appropriately, and sends WINDOW_UPDATE frames when its receive
// window drops too low.
if (GetParam() < QUIC_VERSION_19) {
return;
}
Initialize(kShouldProcessData);
// Set a small flow control limit for streams and connection.
const uint64 kWindow = 36;
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetMaxReceiveWindow(stream_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetReceiveWindowOffset(stream2_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetMaxReceiveWindow(stream2_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetReceiveWindowOffset(session_->flow_controller(),
kWindow);
QuicFlowControllerPeer::SetMaxReceiveWindow(session_->flow_controller(),
kWindow);
// Supply headers to both streams so that they are happy to receive data.
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
stream_->OnStreamHeaders(headers);
stream_->OnStreamHeadersComplete(false, headers.size());
stream2_->OnStreamHeaders(headers);
stream2_->OnStreamHeadersComplete(false, headers.size());
// Each stream gets a quarter window of data. This should not trigger a
// WINDOW_UPDATE for either stream, nor for the connection.
string body;
GenerateBody(&body, kWindow / 4);
QuicStreamFrame frame1(kClientDataStreamId1, false, 0, MakeIOVector(body));
stream_->OnStreamFrame(frame1);
QuicStreamFrame frame2(kClientDataStreamId2, false, 0, MakeIOVector(body));
stream2_->OnStreamFrame(frame2);
// Now receive a further single byte on one stream - again this does not
// trigger a stream WINDOW_UPDATE, but now the connection flow control window
// is over half full and thus a connection WINDOW_UPDATE is sent.
EXPECT_CALL(*connection_, SendWindowUpdate(kClientDataStreamId1, _)).Times(0);
EXPECT_CALL(*connection_, SendWindowUpdate(kClientDataStreamId2, _)).Times(0);
EXPECT_CALL(*connection_,
SendWindowUpdate(0, QuicFlowControllerPeer::ReceiveWindowOffset(
session_->flow_controller()) +
1 + kWindow / 2));
QuicStreamFrame frame3(kClientDataStreamId1, false, (kWindow / 4),
MakeIOVector("a"));
stream_->OnStreamFrame(frame3);
}
TEST_P(QuicDataStreamTest, StreamFlowControlViolation) {
// Tests that on if the peer sends too much data (i.e. violates the flow
// control protocol), then we terminate the connection.
if (GetParam() <= QUIC_VERSION_16) {
return;
}
// Stream should not process data, so that data gets buffered in the
// sequencer, triggering flow control limits.
Initialize(!kShouldProcessData);
// Set a small flow control limit.
const uint64 kWindow = 50;
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(),
kWindow);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
stream_->OnStreamHeaders(headers);
EXPECT_EQ(headers, stream_->data());
stream_->OnStreamHeadersComplete(false, headers.size());
// Receive data to overflow the window, violating flow control.
string body;
GenerateBody(&body, kWindow + 1);
QuicStreamFrame frame(kClientDataStreamId1, false, 0, MakeIOVector(body));
EXPECT_CALL(*connection_,
SendConnectionClose(QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA));
stream_->OnStreamFrame(frame);
}
TEST_P(QuicDataStreamTest, ConnectionFlowControlViolation) {
// Tests that on if the peer sends too much data (i.e. violates the flow
// control protocol), at the connection level (rather than the stream level)
// then we terminate the connection.
if (GetParam() < QUIC_VERSION_19) {
return;
}
// Stream should not process data, so that data gets buffered in the
// sequencer, triggering flow control limits.
Initialize(!kShouldProcessData);
// Set a small flow control window on streams, and connection.
const uint64 kStreamWindow = 50;
const uint64 kConnectionWindow = 10;
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(),
kStreamWindow);
QuicFlowControllerPeer::SetReceiveWindowOffset(session_->flow_controller(),
kConnectionWindow);
string headers = SpdyUtils::SerializeUncompressedHeaders(headers_);
stream_->OnStreamHeaders(headers);
EXPECT_EQ(headers, stream_->data());
stream_->OnStreamHeadersComplete(false, headers.size());
// Send enough data to overflow the connection level flow control window.
string body;
GenerateBody(&body, kConnectionWindow + 1);
EXPECT_LT(body.size(), kStreamWindow);
QuicStreamFrame frame(kClientDataStreamId1, false, 0, MakeIOVector(body));
EXPECT_CALL(*connection_,
SendConnectionClose(QUIC_FLOW_CONTROL_RECEIVED_TOO_MUCH_DATA));
stream_->OnStreamFrame(frame);
}
TEST_P(QuicDataStreamTest, StreamFlowControlFinNotBlocked) {
// An attempt to write a FIN with no data should not be flow control blocked,
// even if the send window is 0.
if (GetParam() <= QUIC_VERSION_16) {
return;
}
Initialize(kShouldProcessData);
// Set a flow control limit of zero.
QuicFlowControllerPeer::SetReceiveWindowOffset(stream_->flow_controller(), 0);
EXPECT_EQ(0u, QuicFlowControllerPeer::ReceiveWindowOffset(
stream_->flow_controller()));
// Send a frame with a FIN but no data. This should not be blocked.
string body = "";
bool fin = true;
EXPECT_CALL(*connection_, SendBlocked(kClientDataStreamId1)).Times(0);
EXPECT_CALL(*session_, WritevData(kClientDataStreamId1, _, _, _, _, _))
.WillOnce(Return(QuicConsumedData(0, fin)));
stream_->WriteOrBufferData(body, fin, NULL);
}
} // namespace
} // namespace test
} // namespace net