| // Copyright 2014 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "base/memory/scoped_ptr.h" |
| #include "base/strings/string_number_conversions.h" |
| #include "testing/gtest/include/gtest/gtest.h" |
| #include "ui/accessibility/ax_node.h" |
| #include "ui/accessibility/ax_serializable_tree.h" |
| #include "ui/accessibility/ax_tree.h" |
| #include "ui/accessibility/ax_tree_serializer.h" |
| #include "ui/accessibility/tree_generator.h" |
| |
| namespace ui { |
| namespace { |
| |
| // A function to turn a tree into a string, capturing only the node ids |
| // and their relationship to one another. |
| // |
| // The string format is kind of like an S-expression, with each expression |
| // being either a node id, or a node id followed by a subexpression |
| // representing its children. |
| // |
| // Examples: |
| // |
| // (1) is a tree with a single node with id 1. |
| // (1 (2 3)) is a tree with 1 as the root, and 2 and 3 as its children. |
| // (1 (2 (3))) has 1 as the root, 2 as its child, and then 3 as the child of 2. |
| void TreeToStringHelper(const AXNode* node, std::string* out_result) { |
| *out_result += base::IntToString(node->id()); |
| if (node->child_count() != 0) { |
| *out_result += " ("; |
| for (int i = 0; i < node->child_count(); ++i) { |
| if (i != 0) |
| *out_result += " "; |
| TreeToStringHelper(node->ChildAtIndex(i), out_result); |
| } |
| *out_result += ")"; |
| } |
| } |
| |
| std::string TreeToString(const AXTree& tree) { |
| std::string result; |
| TreeToStringHelper(tree.root(), &result); |
| return "(" + result + ")"; |
| } |
| |
| } // anonymous namespace |
| |
| // Test the TreeGenerator class by building all possible trees with |
| // 3 nodes and the ids [1...3]. |
| TEST(AXGeneratedTreeTest, TestTreeGenerator) { |
| int tree_size = 3; |
| TreeGenerator generator(tree_size); |
| const char* EXPECTED_TREES[] = { |
| "(1 (2 3))", |
| "(2 (1 3))", |
| "(3 (1 2))", |
| "(1 (3 2))", |
| "(2 (3 1))", |
| "(3 (2 1))", |
| "(1 (2 (3)))", |
| "(2 (1 (3)))", |
| "(3 (1 (2)))", |
| "(1 (3 (2)))", |
| "(2 (3 (1)))", |
| "(3 (2 (1)))", |
| }; |
| |
| int n = generator.UniqueTreeCount(); |
| ASSERT_EQ(static_cast<int>(arraysize(EXPECTED_TREES)), n); |
| |
| for (int i = 0; i < n; i++) { |
| AXTree tree; |
| generator.BuildUniqueTree(i, &tree); |
| std::string str = TreeToString(tree); |
| EXPECT_EQ(EXPECTED_TREES[i], str); |
| } |
| } |
| |
| // Test mutating every possible tree with <n> nodes to every other possible |
| // tree with <n> nodes, where <n> is 4 in release mode and 3 in debug mode |
| // (for speed). For each possible combination of trees, we also vary which |
| // node we serialize first. |
| // |
| // For every possible scenario, we check that the AXTreeUpdate is valid, |
| // that the destination tree can unserialize it and create a valid tree, |
| // and that after updating all nodes the resulting tree now matches the |
| // intended tree. |
| TEST(AXGeneratedTreeTest, SerializeGeneratedTrees) { |
| // Do a more exhaustive test in release mode. If you're modifying |
| // the algorithm you may want to try even larger tree sizes if you |
| // can afford the time. |
| #ifdef NDEBUG |
| int tree_size = 4; |
| #else |
| LOG(WARNING) << "Debug build, only testing trees with 3 nodes and not 4."; |
| int tree_size = 3; |
| #endif |
| |
| TreeGenerator generator(tree_size); |
| int n = generator.UniqueTreeCount(); |
| |
| for (int i = 0; i < n; i++) { |
| // Build the first tree, tree0. |
| AXSerializableTree tree0; |
| generator.BuildUniqueTree(i, &tree0); |
| SCOPED_TRACE("tree0 is " + TreeToString(tree0)); |
| |
| for (int j = 0; j < n; j++) { |
| // Build the second tree, tree1. |
| AXSerializableTree tree1; |
| generator.BuildUniqueTree(j, &tree1); |
| SCOPED_TRACE("tree1 is " + TreeToString(tree0)); |
| |
| // Now iterate over which node to update first, |k|. |
| for (int k = 0; k < tree_size; k++) { |
| SCOPED_TRACE("i=" + base::IntToString(i) + |
| " j=" + base::IntToString(j) + |
| " k=" + base::IntToString(k)); |
| |
| // Start by serializing tree0 and unserializing it into a new |
| // empty tree |dst_tree|. |
| scoped_ptr<AXTreeSource<const AXNode*> > tree0_source( |
| tree0.CreateTreeSource()); |
| AXTreeSerializer<const AXNode*> serializer(tree0_source.get()); |
| AXTreeUpdate update0; |
| serializer.SerializeChanges(tree0.root(), &update0); |
| |
| AXTree dst_tree; |
| ASSERT_TRUE(dst_tree.Unserialize(update0)); |
| |
| // At this point, |dst_tree| should now be identical to |tree0|. |
| EXPECT_EQ(TreeToString(tree0), TreeToString(dst_tree)); |
| |
| // Next, pretend that tree0 turned into tree1, and serialize |
| // a sequence of updates to |dst_tree| to match. |
| scoped_ptr<AXTreeSource<const AXNode*> > tree1_source( |
| tree1.CreateTreeSource()); |
| serializer.ChangeTreeSourceForTesting(tree1_source.get()); |
| |
| for (int k_index = 0; k_index < tree_size; ++k_index) { |
| int id = 1 + (k + k_index) % tree_size; |
| AXTreeUpdate update; |
| serializer.SerializeChanges(tree1.GetFromId(id), &update); |
| ASSERT_TRUE(dst_tree.Unserialize(update)); |
| } |
| |
| // After the sequence of updates, |dst_tree| should now be |
| // identical to |tree1|. |
| EXPECT_EQ(TreeToString(tree1), TreeToString(dst_tree)); |
| } |
| } |
| } |
| } |
| |
| } // namespace ui |