| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "net/cert/cert_verify_proc_mac.h" |
| |
| #include <CommonCrypto/CommonDigest.h> |
| #include <CoreServices/CoreServices.h> |
| #include <Security/Security.h> |
| |
| #include <algorithm> |
| #include <string> |
| #include <vector> |
| |
| #include "base/logging.h" |
| #include "base/mac/mac_logging.h" |
| #include "base/mac/mac_util.h" |
| #include "base/mac/scoped_cftyperef.h" |
| #include "base/strings/string_piece.h" |
| #include "base/synchronization/lock.h" |
| #include "crypto/mac_security_services_lock.h" |
| #include "crypto/sha2.h" |
| #include "net/base/hash_value.h" |
| #include "net/base/net_errors.h" |
| #include "net/cert/asn1_util.h" |
| #include "net/cert/cert_status_flags.h" |
| #include "net/cert/cert_verifier.h" |
| #include "net/cert/cert_verify_result.h" |
| #include "net/cert/crl_set.h" |
| #include "net/cert/ct_serialization.h" |
| #include "net/cert/ev_root_ca_metadata.h" |
| #include "net/cert/internal/certificate_policies.h" |
| #include "net/cert/internal/parsed_certificate.h" |
| #include "net/cert/known_roots.h" |
| #include "net/cert/known_roots_mac.h" |
| #include "net/cert/test_keychain_search_list_mac.h" |
| #include "net/cert/test_root_certs.h" |
| #include "net/cert/x509_certificate.h" |
| #include "net/cert/x509_util.h" |
| #include "net/cert/x509_util_ios_and_mac.h" |
| #include "net/cert/x509_util_mac.h" |
| |
| // CSSM functions are deprecated as of OSX 10.7, but have no replacement. |
| // https://bugs.chromium.org/p/chromium/issues/detail?id=590914#c1 |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wdeprecated-declarations" |
| |
| using base::ScopedCFTypeRef; |
| |
| extern "C" { |
| // Declared in <Security/SecTrust.h>, available in 10.14.2+ |
| // TODO(mattm): Remove this weak_import once chromium compiles against the |
| // macOS 10.14 SDK. |
| OSStatus SecTrustSetSignedCertificateTimestamps(SecTrustRef, CFArrayRef) |
| __attribute__((weak_import)); |
| } // extern "C" |
| |
| namespace net { |
| |
| namespace { |
| |
| const void* kResultDebugDataKey = &kResultDebugDataKey; |
| |
| typedef OSStatus (*SecTrustCopyExtendedResultFuncPtr)(SecTrustRef, |
| CFDictionaryRef*); |
| |
| int NetErrorFromOSStatus(OSStatus status) { |
| switch (status) { |
| case noErr: |
| return OK; |
| case errSecNotAvailable: |
| case errSecNoCertificateModule: |
| case errSecNoPolicyModule: |
| return ERR_NOT_IMPLEMENTED; |
| case errSecAuthFailed: |
| return ERR_ACCESS_DENIED; |
| default: { |
| OSSTATUS_LOG(ERROR, status) << "Unknown error mapped to ERR_FAILED"; |
| return ERR_FAILED; |
| } |
| } |
| } |
| |
| // Beginning with macOS 10.13, certificate verification is dispatched |
| // to trustd, which uses OSStatus internally to track errors, and |
| // then maps the internal codes into CSSM codes for applications still |
| // calling the deprecated (since 10.7) APIs. |
| // |
| // The mapping is maintained in SecPolicyChecks.list, to see the |
| // checks applied to leaves/intermediates/roots/chains and what |
| // failure of those checks will cause, both the OSStatus and the |
| // mapped CSSM error code. |
| // |
| // Not all checks in the table are applicable; some only apply to |
| // Apple-specific services (e.g. iTunes checking for an Apple |
| // policy), so only those applicable to TLS are mapped here. |
| // |
| // The downside is that it does mean that as Apple introduces |
| // additional checks (e.g. as done in 10.15), any failures of these |
| // checks are initially mapped to ERR_CERT_INVALID for safety, even |
| // if there may be a more applicable CertStatus code. |
| CertStatus CertStatusFromOSStatusAtLeastOS10_13(OSStatus status) { |
| switch (status) { |
| case noErr: |
| return 0; |
| |
| case CSSMERR_APPLETP_HOSTNAME_MISMATCH: |
| return CERT_STATUS_COMMON_NAME_INVALID; |
| |
| case CSSMERR_TP_CERT_EXPIRED: |
| case CSSMERR_TP_CERT_NOT_VALID_YET: |
| return CERT_STATUS_DATE_INVALID; |
| |
| case CSSMERR_APPLETP_TRUST_SETTING_DENY: |
| case CSSMERR_TP_NOT_TRUSTED: |
| // CSSMERR_TP_VERIFY_ACTION_FAILED is used when CT is required |
| // and not present. The OS rejected this chain, and so mapping |
| // to CERT_STATUS_CT_COMPLIANCE_FAILED (which is informational, |
| // as policy enforcement is not handled in the CertVerifier) |
| // would cause this error to be ignored and mapped to |
| // CERT_STATUS_INVALID. Rather than do that, mark it simply as |
| // "untrusted". The CT_COMPLIANCE_FAILED bit is not set, since |
| // it's not necessarily a compliance failure with the embedder's |
| // CT policy. It's a bit of a hack, but hopefully temporary. |
| // TP_NOT_TRUSTED is somewhat similar. It applies for |
| // situations where a root isn't trusted or an intermediate |
| // isn't trusted, when a key is restricted, or when the calling |
| // application requested CT enforcement (which CertVerifier |
| // should never being doing). |
| case CSSMERR_TP_VERIFY_ACTION_FAILED: |
| return CERT_STATUS_AUTHORITY_INVALID; |
| |
| case CSSMERR_APPLETP_INVALID_AUTHORITY_ID: |
| case CSSMERR_APPLETP_INVALID_CA: |
| case CSSMERR_APPLETP_INVALID_EMPTY_SUBJECT: |
| case CSSMERR_APPLETP_INVALID_EXTENDED_KEY_USAGE: |
| case CSSMERR_APPLETP_INVALID_KEY_USAGE: |
| case CSSMERR_APPLETP_MISSING_REQUIRED_EXTENSION: |
| case CSSMERR_APPLETP_NO_BASIC_CONSTRAINTS: |
| case CSSMERR_APPLETP_PATH_LEN_CONSTRAINT: |
| case CSSMERR_APPLETP_UNKNOWN_CERT_EXTEN: |
| case CSSMERR_APPLETP_UNKNOWN_CRITICAL_EXTEN: |
| case CSSMERR_CSP_ALGID_MISMATCH: |
| // INVALID_POLICY_IDENTIFIERS and INVALID_NAME are used for |
| // certificates that violate the constraints imposed upon the |
| // issuer. Nominally this could be mapped to |
| // CERT_STATUS_AUTHORITY_INVALID, except the trustd behaviour |
| // is to treat this as a fatal (non-recoverable) error. That |
| // behavior is preserved here for consistency with Safari. |
| case CSSMERR_TP_INVALID_POLICY_IDENTIFIERS: |
| case CSSMERR_TP_INVALID_NAME: |
| return CERT_STATUS_INVALID; |
| |
| // In trustd, an unsupported algorithm is CSP_ALGID_MISMATCH, |
| // which should cause a path building failure, while supported |
| // but weak algorithms use this code. |
| case CSSMERR_CSP_INVALID_DIGEST_ALGORITHM: |
| return CERT_STATUS_WEAK_SIGNATURE_ALGORITHM; |
| |
| // In trustd, certificates that are too weak to process, period, |
| // are mapped to INVALID_CERTIFICATE. However, certificates which |
| // are too weak according to compliance policies (e.g. restrictions |
| // for publicly trusted certificates) are mapped to UNSUPPORTED_KEY_SIZE. |
| case CSSMERR_CSP_UNSUPPORTED_KEY_SIZE: |
| return CERT_STATUS_WEAK_KEY; |
| |
| case CSSMERR_TP_CERT_REVOKED: |
| return CERT_STATUS_REVOKED; |
| |
| case CSSMERR_APPLETP_INCOMPLETE_REVOCATION_CHECK: |
| return CERT_STATUS_UNABLE_TO_CHECK_REVOCATION; |
| |
| // In the trustd world, if a CRL suspends a certificate, |
| // that's signaled by TP_CERT_REVOKED, with the revocation |
| // reason available in the error details dictionary. The |
| // SUSPENDED error is repurposed to indicate failure to |
| // comply with the macOS 10.15+ limits on certificate |
| // lifetimes - https://support.apple.com/en-us/HT210176 |
| case CSSMERR_TP_CERT_SUSPENDED: |
| return CERT_STATUS_VALIDITY_TOO_LONG; |
| |
| // CSSMERR_TP_INVALID_CERTIFICATE is unfortunate. It may be |
| // used to signal a weak key (CERT_STATUS_WEAK_KEY), which |
| // would be accompanied by a kSecTrustResultFatalTrustFailure, while |
| // the other situations (such as an invalid certificate, a |
| // name constraint violation, or a policy constraint violation) |
| // would be accompanied by a kSecTrustResultRecoverableTrustFailure. |
| // However, CertVerifier treats these as inverted: name constraint or |
| // policy violations are fatal (CERT_STATUS_INVALID), while WEAK_KEY |
| // may be recoverable. |
| // Further, because macOS attempts to gather all the errors, a different |
| // fatal error may have occurred elsewhere in the chain, so the overall |
| // result can't be used to distinguish individual certificate errors. |
| // For this complicated reason, the weak key case is mapped to |
| // CERT_STATUS_INVALID for safety, rather than mapping the policy |
| // violations as weak keys. |
| case CSSMERR_TP_INVALID_CERTIFICATE: |
| return CERT_STATUS_INVALID; |
| |
| default: { |
| // Failure was due to something Chromium doesn't define a |
| // specific status for (such as basic constraints violation, or |
| // unknown critical extension) |
| OSSTATUS_LOG(WARNING, status) |
| << "Unknown error mapped to CERT_STATUS_INVALID"; |
| return CERT_STATUS_INVALID; |
| } |
| } |
| } |
| |
| CertStatus CertStatusFromOSStatusAtMostOS10_12(OSStatus status) { |
| switch (status) { |
| case noErr: |
| return 0; |
| |
| case CSSMERR_TP_INVALID_ANCHOR_CERT: |
| case CSSMERR_TP_NOT_TRUSTED: |
| case CSSMERR_TP_INVALID_CERT_AUTHORITY: |
| return CERT_STATUS_AUTHORITY_INVALID; |
| |
| case CSSMERR_TP_CERT_EXPIRED: |
| case CSSMERR_TP_CERT_NOT_VALID_YET: |
| // "Expired" and "not yet valid" collapse into a single status. |
| return CERT_STATUS_DATE_INVALID; |
| |
| case CSSMERR_TP_CERT_REVOKED: |
| case CSSMERR_TP_CERT_SUSPENDED: |
| return CERT_STATUS_REVOKED; |
| |
| case CSSMERR_APPLETP_HOSTNAME_MISMATCH: |
| return CERT_STATUS_COMMON_NAME_INVALID; |
| |
| case CSSMERR_APPLETP_CRL_NOT_FOUND: |
| case CSSMERR_APPLETP_OCSP_UNAVAILABLE: |
| return CERT_STATUS_NO_REVOCATION_MECHANISM; |
| |
| case CSSMERR_APPLETP_INCOMPLETE_REVOCATION_CHECK: |
| // Starting with later 10.12 versions, |
| // CSSMERR_APPLETP_INCOMPLETE_REVOCATION_CHECK is a catch-all code for |
| // failures to check revocation status. |
| // However, on pre-10.12 versions, it would also be used on revocation |
| // failures. (CERT_STATUS_NO_REVOCATION_MECHANISM isn't really right |
| // there either, but that's what the old code has, and it just gets |
| // masked off later so has no actual effect.) |
| return base::mac::IsAtLeastOS10_12() |
| ? CERT_STATUS_UNABLE_TO_CHECK_REVOCATION |
| : CERT_STATUS_NO_REVOCATION_MECHANISM; |
| |
| case CSSMERR_APPLETP_CRL_EXPIRED: |
| case CSSMERR_APPLETP_CRL_NOT_VALID_YET: |
| case CSSMERR_APPLETP_CRL_SERVER_DOWN: |
| case CSSMERR_APPLETP_CRL_NOT_TRUSTED: |
| case CSSMERR_APPLETP_CRL_INVALID_ANCHOR_CERT: |
| case CSSMERR_APPLETP_CRL_POLICY_FAIL: |
| case CSSMERR_APPLETP_OCSP_BAD_RESPONSE: |
| case CSSMERR_APPLETP_OCSP_BAD_REQUEST: |
| case CSSMERR_APPLETP_OCSP_STATUS_UNRECOGNIZED: |
| case CSSMERR_APPLETP_NETWORK_FAILURE: |
| case CSSMERR_APPLETP_OCSP_NOT_TRUSTED: |
| case CSSMERR_APPLETP_OCSP_INVALID_ANCHOR_CERT: |
| case CSSMERR_APPLETP_OCSP_SIG_ERROR: |
| case CSSMERR_APPLETP_OCSP_NO_SIGNER: |
| case CSSMERR_APPLETP_OCSP_RESP_MALFORMED_REQ: |
| case CSSMERR_APPLETP_OCSP_RESP_INTERNAL_ERR: |
| case CSSMERR_APPLETP_OCSP_RESP_TRY_LATER: |
| case CSSMERR_APPLETP_OCSP_RESP_SIG_REQUIRED: |
| case CSSMERR_APPLETP_OCSP_RESP_UNAUTHORIZED: |
| case CSSMERR_APPLETP_OCSP_NONCE_MISMATCH: |
| // We asked for a revocation check, but didn't get it. |
| return CERT_STATUS_UNABLE_TO_CHECK_REVOCATION; |
| |
| case CSSMERR_APPLETP_SSL_BAD_EXT_KEY_USE: |
| return CERT_STATUS_INVALID; |
| |
| case errSecInternalError: |
| case CSSMERR_APPLETP_CRL_BAD_URI: |
| case CSSMERR_APPLETP_IDP_FAIL: |
| return CERT_STATUS_INVALID; |
| |
| case CSSMERR_CSP_UNSUPPORTED_KEY_SIZE: |
| // Mapping UNSUPPORTED_KEY_SIZE to CERT_STATUS_WEAK_KEY is not strictly |
| // accurate, as the error may have been returned due to a key size |
| // that exceeded the maximum supported. However, within |
| // CertVerifyProcMac::VerifyInternal(), this code should only be |
| // encountered as a certificate status code, and only when the key size |
| // is smaller than the minimum required (1024 bits). |
| return CERT_STATUS_WEAK_KEY; |
| |
| default: { |
| // Failure was due to something Chromium doesn't define a |
| // specific status for (such as basic constraints violation, or |
| // unknown critical extension) |
| OSSTATUS_LOG(WARNING, status) |
| << "Unknown error mapped to CERT_STATUS_INVALID"; |
| return CERT_STATUS_INVALID; |
| } |
| } |
| } |
| |
| CertStatus CertStatusFromOSStatus(OSStatus status) { |
| if (base::mac::IsAtLeastOS10_13()) { |
| return CertStatusFromOSStatusAtLeastOS10_13(status); |
| } |
| return CertStatusFromOSStatusAtMostOS10_12(status); |
| } |
| |
| // Creates a series of SecPolicyRefs to be added to a SecTrustRef used to |
| // validate a certificate for an SSL server. |flags| is a bitwise-OR of |
| // VerifyFlags that can further alter how trust is validated, such as how |
| // revocation is checked. If successful, returns noErr, and stores the |
| // resultant array of SecPolicyRefs in |policies|. |
| OSStatus CreateTrustPolicies(int flags, ScopedCFTypeRef<CFArrayRef>* policies) { |
| ScopedCFTypeRef<CFMutableArrayRef> local_policies( |
| CFArrayCreateMutable(kCFAllocatorDefault, 0, &kCFTypeArrayCallBacks)); |
| if (!local_policies) |
| return memFullErr; |
| |
| SecPolicyRef ssl_policy; |
| OSStatus status = |
| x509_util::CreateSSLServerPolicy(std::string(), &ssl_policy); |
| if (status) |
| return status; |
| CFArrayAppendValue(local_policies, ssl_policy); |
| CFRelease(ssl_policy); |
| |
| // Explicitly add revocation policies, in order to override system |
| // revocation checking policies and instead respect the application-level |
| // revocation preference. |
| status = x509_util::CreateRevocationPolicies( |
| (flags & CertVerifyProc::VERIFY_REV_CHECKING_ENABLED), local_policies); |
| if (status) |
| return status; |
| |
| policies->reset(local_policies.release()); |
| return noErr; |
| } |
| |
| // Stores the constructed certificate chain |cert_chain| into |
| // |*verify_result|. |cert_chain| must not be empty. |
| void CopyCertChainToVerifyResult(CFArrayRef cert_chain, |
| CertVerifyResult* verify_result) { |
| DCHECK_LT(0, CFArrayGetCount(cert_chain)); |
| |
| SecCertificateRef verified_cert = NULL; |
| std::vector<SecCertificateRef> verified_chain; |
| for (CFIndex i = 0, count = CFArrayGetCount(cert_chain); i < count; ++i) { |
| SecCertificateRef chain_cert = reinterpret_cast<SecCertificateRef>( |
| const_cast<void*>(CFArrayGetValueAtIndex(cert_chain, i))); |
| if (i == 0) { |
| verified_cert = chain_cert; |
| } else { |
| verified_chain.push_back(chain_cert); |
| } |
| } |
| if (!verified_cert) { |
| NOTREACHED(); |
| verify_result->cert_status |= CERT_STATUS_INVALID; |
| return; |
| } |
| |
| scoped_refptr<X509Certificate> verified_cert_with_chain = |
| x509_util::CreateX509CertificateFromSecCertificate(verified_cert, |
| verified_chain); |
| if (verified_cert_with_chain) |
| verify_result->verified_cert = std::move(verified_cert_with_chain); |
| else |
| verify_result->cert_status |= CERT_STATUS_INVALID; |
| } |
| |
| // Returns true if the certificate uses MD2, MD4, MD5, or SHA1, and false |
| // otherwise. A return of false also includes the case where the signature |
| // algorithm couldn't be conclusively labeled as weak. |
| bool CertUsesWeakHash(SecCertificateRef cert_handle) { |
| x509_util::CSSMCachedCertificate cached_cert; |
| OSStatus status = cached_cert.Init(cert_handle); |
| if (status) |
| return false; |
| |
| x509_util::CSSMFieldValue signature_field; |
| status = |
| cached_cert.GetField(&CSSMOID_X509V1SignatureAlgorithm, &signature_field); |
| if (status || !signature_field.field()) |
| return false; |
| |
| const CSSM_X509_ALGORITHM_IDENTIFIER* sig_algorithm = |
| signature_field.GetAs<CSSM_X509_ALGORITHM_IDENTIFIER>(); |
| if (!sig_algorithm) |
| return false; |
| |
| const CSSM_OID* alg_oid = &sig_algorithm->algorithm; |
| |
| return (x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_MD2WithRSA) || |
| x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_MD4WithRSA) || |
| x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_MD5WithRSA) || |
| x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_SHA1WithRSA) || |
| x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_SHA1WithRSA_OIW) || |
| x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_SHA1WithDSA) || |
| x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_SHA1WithDSA_CMS) || |
| x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_SHA1WithDSA_JDK) || |
| x509_util::CSSMOIDEqual(alg_oid, &CSSMOID_ECDSA_WithSHA1)); |
| } |
| |
| // Returns true if the intermediates (excluding trusted certificates) use a |
| // weak hashing algorithm, but the target does not use a weak hash. |
| bool IsWeakChainBasedOnHashingAlgorithms( |
| CFArrayRef cert_chain, |
| CSSM_TP_APPLE_EVIDENCE_INFO* chain_info) { |
| DCHECK_LT(0, CFArrayGetCount(cert_chain)); |
| |
| bool intermediates_contain_weak_hash = false; |
| bool leaf_uses_weak_hash = false; |
| |
| for (CFIndex i = 0, count = CFArrayGetCount(cert_chain); i < count; ++i) { |
| SecCertificateRef chain_cert = reinterpret_cast<SecCertificateRef>( |
| const_cast<void*>(CFArrayGetValueAtIndex(cert_chain, i))); |
| |
| if ((chain_info[i].StatusBits & CSSM_CERT_STATUS_IS_IN_ANCHORS) || |
| (chain_info[i].StatusBits & CSSM_CERT_STATUS_IS_ROOT)) { |
| // The current certificate is either in the user's trusted store or is |
| // a root (self-signed) certificate. Ignore the signature algorithm for |
| // these certificates, as it is meaningless for security. We allow |
| // self-signed certificates (i == 0 & IS_ROOT), since we accept that |
| // any security assertions by such a cert are inherently meaningless. |
| continue; |
| } |
| |
| if (CertUsesWeakHash(chain_cert)) { |
| if (i == 0) { |
| leaf_uses_weak_hash = true; |
| } else { |
| intermediates_contain_weak_hash = true; |
| } |
| } |
| } |
| |
| return !leaf_uses_weak_hash && intermediates_contain_weak_hash; |
| } |
| |
| // Checks if |*cert| has a Certificate Policies extension containing either |
| // of |ev_policy_oid| or anyPolicy. |
| bool HasPolicyOrAnyPolicy(const ParsedCertificate* cert, |
| const der::Input& ev_policy_oid) { |
| if (!cert->has_policy_oids()) |
| return false; |
| |
| for (const der::Input& policy_oid : cert->policy_oids()) { |
| if (policy_oid == ev_policy_oid || policy_oid == AnyPolicy()) |
| return true; |
| } |
| return false; |
| } |
| |
| // Looks for known EV policy OIDs in |cert_input|, if one is found it will be |
| // stored in |*ev_policy_oid| as a DER-encoded OID value (no tag or length). |
| void GetCandidateEVPolicy(const X509Certificate* cert_input, |
| std::string* ev_policy_oid) { |
| ev_policy_oid->clear(); |
| |
| scoped_refptr<ParsedCertificate> cert(ParsedCertificate::Create( |
| bssl::UpRef(cert_input->cert_buffer()), {}, nullptr)); |
| if (!cert) |
| return; |
| |
| if (!cert->has_policy_oids()) |
| return; |
| |
| EVRootCAMetadata* metadata = EVRootCAMetadata::GetInstance(); |
| for (const der::Input& policy_oid : cert->policy_oids()) { |
| if (metadata->IsEVPolicyOID(policy_oid)) { |
| *ev_policy_oid = policy_oid.AsString(); |
| |
| // De-prioritize the CA/Browser forum Extended Validation policy |
| // (2.23.140.1.1). See crbug.com/705285. |
| if (!EVRootCAMetadata::IsCaBrowserForumEvOid(policy_oid)) |
| break; |
| } |
| } |
| } |
| |
| // Checks that the certificate chain of |cert| has policies consistent with |
| // |ev_policy_oid_string|. The leaf is not checked, as it is assumed that is |
| // where the policy came from. |
| bool CheckCertChainEV(const X509Certificate* cert, |
| const std::string& ev_policy_oid_string) { |
| der::Input ev_policy_oid(&ev_policy_oid_string); |
| const std::vector<bssl::UniquePtr<CRYPTO_BUFFER>>& cert_chain = |
| cert->intermediate_buffers(); |
| |
| // Root should have matching policy in EVRootCAMetadata. |
| if (cert_chain.empty()) |
| return false; |
| SHA256HashValue fingerprint = |
| X509Certificate::CalculateFingerprint256(cert_chain.back().get()); |
| EVRootCAMetadata* metadata = EVRootCAMetadata::GetInstance(); |
| if (!metadata->HasEVPolicyOID(fingerprint, ev_policy_oid)) |
| return false; |
| |
| // Intermediates should have Certificate Policies extension with the EV policy |
| // or AnyPolicy. |
| for (size_t i = 0; i < cert_chain.size() - 1; ++i) { |
| scoped_refptr<ParsedCertificate> intermediate_cert( |
| ParsedCertificate::Create(bssl::UpRef(cert_chain[i].get()), {}, |
| nullptr)); |
| if (!intermediate_cert) |
| return false; |
| if (!HasPolicyOrAnyPolicy(intermediate_cert.get(), ev_policy_oid)) |
| return false; |
| } |
| |
| return true; |
| } |
| |
| void AppendPublicKeyHashesAndUpdateKnownRoot(CFArrayRef chain, |
| HashValueVector* hashes, |
| bool* known_root) { |
| // Walk the chain in reverse, to optimize for IsKnownRoot checks. |
| for (CFIndex i = CFArrayGetCount(chain); i > 0; i--) { |
| SecCertificateRef cert = reinterpret_cast<SecCertificateRef>( |
| const_cast<void*>(CFArrayGetValueAtIndex(chain, i - 1))); |
| |
| CSSM_DATA cert_data; |
| OSStatus err = SecCertificateGetData(cert, &cert_data); |
| DCHECK_EQ(err, noErr); |
| base::StringPiece der_bytes(reinterpret_cast<const char*>(cert_data.Data), |
| cert_data.Length); |
| base::StringPiece spki_bytes; |
| if (!asn1::ExtractSPKIFromDERCert(der_bytes, &spki_bytes)) |
| continue; |
| |
| HashValue sha256(HASH_VALUE_SHA256); |
| CC_SHA256(spki_bytes.data(), spki_bytes.size(), sha256.data()); |
| hashes->push_back(sha256); |
| |
| if (!*known_root) { |
| *known_root = |
| GetNetTrustAnchorHistogramIdForSPKI(sha256) != 0 || IsKnownRoot(cert); |
| } |
| } |
| // Reverse the hash array, to maintain the leaf-first ordering. |
| std::reverse(hashes->begin(), hashes->end()); |
| } |
| |
| void UpdateDebugData(SecTrustResultType trust_result, |
| OSStatus cssm_result, |
| CFIndex chain_length, |
| const CSSM_TP_APPLE_EVIDENCE_INFO* chain_info, |
| base::SupportsUserData* debug_data) { |
| std::vector<CertVerifyProcMac::ResultDebugData::CertEvidenceInfo> |
| status_chain; |
| for (CFIndex i = 0; i < chain_length; ++i) { |
| CertVerifyProcMac::ResultDebugData::CertEvidenceInfo info; |
| info.status_bits = chain_info[i].StatusBits; |
| for (uint32_t status_code_index = 0; |
| status_code_index < chain_info[i].NumStatusCodes; |
| ++status_code_index) { |
| info.status_codes.push_back(chain_info[i].StatusCodes[status_code_index]); |
| } |
| status_chain.push_back(std::move(info)); |
| } |
| CertVerifyProcMac::ResultDebugData::Create( |
| trust_result, cssm_result, std::move(status_chain), debug_data); |
| } |
| |
| enum CRLSetResult { |
| kCRLSetOk, |
| kCRLSetRevoked, |
| kCRLSetUnknown, |
| }; |
| |
| // CheckRevocationWithCRLSet attempts to check each element of |cert_list| |
| // against |crl_set|. It returns: |
| // kCRLSetRevoked: if any element of the chain is known to have been revoked. |
| // kCRLSetUnknown: if there is no fresh information about the leaf |
| // certificate in the chain or if the CRLSet has expired. |
| // |
| // Only the leaf certificate is considered for coverage because some |
| // intermediates have CRLs with no revocations (after filtering) and |
| // those CRLs are pruned from the CRLSet at generation time. This means |
| // that some EV sites would otherwise take the hit of an OCSP lookup for |
| // no reason. |
| // kCRLSetOk: otherwise. |
| CRLSetResult CheckRevocationWithCRLSet(CFArrayRef chain, CRLSet* crl_set) { |
| if (CFArrayGetCount(chain) == 0) |
| return kCRLSetOk; |
| |
| // error is set to true if any errors are found. It causes such chains to be |
| // considered as not covered. |
| bool error = false; |
| // last_covered is set to the coverage state of the previous certificate. The |
| // certificates are iterated over backwards thus, after the iteration, |
| // |last_covered| contains the coverage state of the leaf certificate. |
| bool last_covered = false; |
| |
| // We iterate from the root certificate down to the leaf, keeping track of |
| // the issuer's SPKI at each step. |
| std::string issuer_spki_hash; |
| for (CFIndex i = CFArrayGetCount(chain); i > 0; i--) { |
| SecCertificateRef cert = reinterpret_cast<SecCertificateRef>( |
| const_cast<void*>(CFArrayGetValueAtIndex(chain, i - 1))); |
| |
| CSSM_DATA cert_data; |
| OSStatus err = SecCertificateGetData(cert, &cert_data); |
| if (err != noErr) { |
| NOTREACHED(); |
| error = true; |
| continue; |
| } |
| base::StringPiece der_bytes(reinterpret_cast<const char*>(cert_data.Data), |
| cert_data.Length); |
| base::StringPiece spki, subject; |
| if (!asn1::ExtractSPKIFromDERCert(der_bytes, &spki) || |
| !asn1::ExtractSubjectFromDERCert(der_bytes, &subject)) { |
| NOTREACHED(); |
| error = true; |
| continue; |
| } |
| |
| const std::string spki_hash = crypto::SHA256HashString(spki); |
| x509_util::CSSMCachedCertificate cached_cert; |
| if (cached_cert.Init(cert) != CSSM_OK) { |
| NOTREACHED(); |
| error = true; |
| continue; |
| } |
| x509_util::CSSMFieldValue serial_number; |
| err = cached_cert.GetField(&CSSMOID_X509V1SerialNumber, &serial_number); |
| if (err || !serial_number.field()) { |
| NOTREACHED(); |
| error = true; |
| continue; |
| } |
| |
| base::StringPiece serial( |
| reinterpret_cast<const char*>(serial_number.field()->Data), |
| serial_number.field()->Length); |
| |
| CRLSet::Result result = crl_set->CheckSPKI(spki_hash); |
| |
| if (result != CRLSet::REVOKED) |
| result = crl_set->CheckSubject(subject, spki_hash); |
| if (result != CRLSet::REVOKED && !issuer_spki_hash.empty()) |
| result = crl_set->CheckSerial(serial, issuer_spki_hash); |
| |
| issuer_spki_hash = spki_hash; |
| |
| switch (result) { |
| case CRLSet::REVOKED: |
| return kCRLSetRevoked; |
| case CRLSet::UNKNOWN: |
| last_covered = false; |
| continue; |
| case CRLSet::GOOD: |
| last_covered = true; |
| continue; |
| default: |
| NOTREACHED(); |
| error = true; |
| continue; |
| } |
| } |
| |
| if (error || !last_covered || crl_set->IsExpired()) |
| return kCRLSetUnknown; |
| return kCRLSetOk; |
| } |
| |
| // Builds and evaluates a SecTrustRef for the certificate chain contained |
| // in |cert_array|, using the verification policies in |trust_policies|. On |
| // success, returns OK, and updates |trust_ref|, |trust_result|, |
| // |verified_chain|, and |chain_info| with the verification results. On |
| // failure, no output parameters are modified. |
| // |
| // WARNING: Beginning with macOS 10.13, if |trust_result| is equal to |
| // kSecTrustResultInvalid, any further accesses via SecTrust APIs to |trust_ref| |
| // may invalidate |chain_info|. |
| // |
| // Note: An OK return does not mean that |cert_array| is trusted, merely that |
| // verification was performed successfully. |
| // |
| // This function should only be called while the Mac Security Services lock is |
| // held. |
| int BuildAndEvaluateSecTrustRef(CFArrayRef cert_array, |
| CFArrayRef trust_policies, |
| CFDataRef ocsp_response_ref, |
| CFArrayRef sct_array_ref, |
| int flags, |
| CFArrayRef keychain_search_list, |
| ScopedCFTypeRef<SecTrustRef>* trust_ref, |
| SecTrustResultType* trust_result, |
| ScopedCFTypeRef<CFArrayRef>* verified_chain, |
| CSSM_TP_APPLE_EVIDENCE_INFO** chain_info) { |
| SecTrustRef tmp_trust = NULL; |
| OSStatus status = SecTrustCreateWithCertificates(cert_array, trust_policies, |
| &tmp_trust); |
| if (status) |
| return NetErrorFromOSStatus(status); |
| ScopedCFTypeRef<SecTrustRef> scoped_tmp_trust(tmp_trust); |
| |
| if (TestRootCerts::HasInstance()) { |
| status = TestRootCerts::GetInstance()->FixupSecTrustRef(tmp_trust); |
| if (status) |
| return NetErrorFromOSStatus(status); |
| } |
| |
| if (keychain_search_list) { |
| status = SecTrustSetKeychains(tmp_trust, keychain_search_list); |
| if (status) |
| return NetErrorFromOSStatus(status); |
| } |
| |
| if (ocsp_response_ref) { |
| status = SecTrustSetOCSPResponse(tmp_trust, ocsp_response_ref); |
| if (status) |
| return NetErrorFromOSStatus(status); |
| } |
| |
| if (sct_array_ref) { |
| if (__builtin_available(macOS 10.14.2, *)) { |
| status = SecTrustSetSignedCertificateTimestamps(tmp_trust, sct_array_ref); |
| if (status) |
| return NetErrorFromOSStatus(status); |
| } |
| } |
| |
| CSSM_APPLE_TP_ACTION_DATA tp_action_data; |
| memset(&tp_action_data, 0, sizeof(tp_action_data)); |
| tp_action_data.Version = CSSM_APPLE_TP_ACTION_VERSION; |
| // Allow CSSM to download any missing intermediate certificates if an |
| // authorityInfoAccess extension or issuerAltName extension is present. |
| tp_action_data.ActionFlags = CSSM_TP_ACTION_FETCH_CERT_FROM_NET | |
| CSSM_TP_ACTION_TRUST_SETTINGS; |
| |
| // Note: For EV certificates, the Apple TP will handle setting these flags |
| // as part of EV evaluation. |
| if (flags & CertVerifyProc::VERIFY_REV_CHECKING_ENABLED) { |
| // Require a positive result from an OCSP responder or a CRL (or both) |
| // for every certificate in the chain. The Apple TP automatically |
| // excludes the self-signed root from this requirement. If a certificate |
| // is missing both a crlDistributionPoints extension and an |
| // authorityInfoAccess extension with an OCSP responder URL, then we |
| // will get a kSecTrustResultRecoverableTrustFailure back from |
| // SecTrustEvaluate(), with a |
| // CSSMERR_APPLETP_INCOMPLETE_REVOCATION_CHECK error code. In that case, |
| // we'll set our own result to include |
| // CERT_STATUS_NO_REVOCATION_MECHANISM. If one or both extensions are |
| // present, and a check fails (server unavailable, OCSP retry later, |
| // signature mismatch), then we'll set our own result to include |
| // CERT_STATUS_UNABLE_TO_CHECK_REVOCATION. |
| tp_action_data.ActionFlags |= CSSM_TP_ACTION_REQUIRE_REV_PER_CERT; |
| |
| // Note, even if revocation checking is disabled, SecTrustEvaluate() will |
| // modify the OCSP options so as to attempt OCSP checking if it believes a |
| // certificate may chain to an EV root. However, because network fetches |
| // are disabled in CreateTrustPolicies() when revocation checking is |
| // disabled, these will only go against the local cache. |
| } |
| |
| ScopedCFTypeRef<CFDataRef> action_data_ref(CFDataCreate( |
| kCFAllocatorDefault, reinterpret_cast<UInt8*>(&tp_action_data), |
| sizeof(tp_action_data))); |
| if (!action_data_ref) |
| return ERR_OUT_OF_MEMORY; |
| status = SecTrustSetParameters(tmp_trust, CSSM_TP_ACTION_DEFAULT, |
| action_data_ref.get()); |
| if (status) |
| return NetErrorFromOSStatus(status); |
| |
| // Verify the certificate. A non-zero result from SecTrustGetResult() |
| // indicates that some fatal error occurred and the chain couldn't be |
| // processed, not that the chain contains no errors. We need to examine the |
| // output of SecTrustGetResult() to determine that. |
| SecTrustResultType tmp_trust_result; |
| status = SecTrustEvaluate(tmp_trust, &tmp_trust_result); |
| if (status) |
| return NetErrorFromOSStatus(status); |
| CFArrayRef tmp_verified_chain = NULL; |
| CSSM_TP_APPLE_EVIDENCE_INFO* tmp_chain_info; |
| // WARNING: Beginning with OS X 10.13, |tmp_chain_info| may be freed by any |
| // other accesses via SecTrust APIs to |tmp_trust|. |
| status = SecTrustGetResult(tmp_trust, &tmp_trust_result, &tmp_verified_chain, |
| &tmp_chain_info); |
| if (status) |
| return NetErrorFromOSStatus(status); |
| |
| trust_ref->swap(scoped_tmp_trust); |
| *trust_result = tmp_trust_result; |
| verified_chain->reset(tmp_verified_chain); |
| *chain_info = tmp_chain_info; |
| |
| return OK; |
| } |
| |
| // Runs path building & verification loop for |cert|, given |flags|. This is |
| // split into a separate function so verification can be repeated with different |
| // flags. This function does not handle EV. |
| int VerifyWithGivenFlags(X509Certificate* cert, |
| const std::string& hostname, |
| const std::string& ocsp_response, |
| const std::string& sct_list, |
| const int flags, |
| bool rev_checking_soft_fail, |
| CRLSet* crl_set, |
| CertVerifyResult* verify_result, |
| CRLSetResult* completed_chain_crl_result) { |
| ScopedCFTypeRef<CFArrayRef> trust_policies; |
| OSStatus status = CreateTrustPolicies(flags, &trust_policies); |
| if (status) |
| return NetErrorFromOSStatus(status); |
| |
| *completed_chain_crl_result = kCRLSetUnknown; |
| |
| ScopedCFTypeRef<CFDataRef> ocsp_response_ref; |
| if (!ocsp_response.empty()) { |
| ocsp_response_ref.reset( |
| CFDataCreate(kCFAllocatorDefault, |
| reinterpret_cast<const UInt8*>(ocsp_response.data()), |
| base::checked_cast<CFIndex>(ocsp_response.size()))); |
| if (!ocsp_response_ref) |
| return ERR_OUT_OF_MEMORY; |
| } |
| |
| ScopedCFTypeRef<CFMutableArrayRef> sct_array_ref; |
| if (!sct_list.empty()) { |
| if (__builtin_available(macOS 10.14.2, *)) { |
| std::vector<base::StringPiece> decoded_sct_list; |
| if (ct::DecodeSCTList(sct_list, &decoded_sct_list)) { |
| sct_array_ref.reset(CFArrayCreateMutable(kCFAllocatorDefault, |
| decoded_sct_list.size(), |
| &kCFTypeArrayCallBacks)); |
| if (!sct_array_ref) |
| return ERR_OUT_OF_MEMORY; |
| for (const auto& sct : decoded_sct_list) { |
| ScopedCFTypeRef<CFDataRef> sct_ref(CFDataCreate( |
| kCFAllocatorDefault, reinterpret_cast<const UInt8*>(sct.data()), |
| base::checked_cast<CFIndex>(sct.size()))); |
| if (!sct_ref) |
| return ERR_OUT_OF_MEMORY; |
| CFArrayAppendValue(sct_array_ref.get(), sct_ref.get()); |
| } |
| } |
| } |
| } |
| |
| // Serialize all calls that may use the Keychain, to work around various |
| // issues in OS X 10.6+ with multi-threaded access to Security.framework. |
| base::AutoLock lock(crypto::GetMacSecurityServicesLock()); |
| |
| ScopedCFTypeRef<SecTrustRef> trust_ref; |
| SecTrustResultType trust_result = kSecTrustResultDeny; |
| ScopedCFTypeRef<CFArrayRef> completed_chain; |
| CSSM_TP_APPLE_EVIDENCE_INFO* chain_info = NULL; |
| bool candidate_untrusted = true; |
| bool candidate_weak = false; |
| |
| // OS X lacks proper path discovery; it will take the input certs and never |
| // backtrack the graph attempting to discover valid paths. |
| // This can create issues in some situations: |
| // - When OS X changes the trust store, there may be a chain |
| // A -> B -> C -> D |
| // where OS X trusts D (on some versions) and trusts C (on some versions). |
| // If a server supplies a chain A, B, C (cross-signed by D), then this chain |
| // will successfully validate on systems that trust D, but fail for systems |
| // that trust C. If the server supplies a chain of A -> B, then it forces |
| // all clients to fetch C (via AIA) if they trust D, and not all clients |
| // (notably, Firefox and Android) will do this, thus breaking them. |
| // An example of this is the Verizon Business Services root - GTE CyberTrust |
| // and Baltimore CyberTrust roots represent old and new roots that cause |
| // issues depending on which version of OS X being used. |
| // |
| // - A server may be (misconfigured) to send an expired intermediate |
| // certificate. On platforms with path discovery, the graph traversal |
| // will back up to immediately before this intermediate, and then |
| // attempt an AIA fetch or retrieval from local store. However, OS X |
| // does not do this, and thus prevents access. While this is ostensibly |
| // a server misconfiguration issue, the fact that it works on other |
| // platforms is a jarring inconsistency for users. |
| // |
| // - When OS X trusts both C and D (simultaneously), it's possible that the |
| // version of C signed by D is signed using a weak algorithm (e.g. SHA-1), |
| // while the version of C in the trust store's signature doesn't matter. |
| // Since a 'strong' chain exists, it would be desirable to prefer this |
| // chain. |
| // |
| // - A variant of the above example, it may be that the version of B sent by |
| // the server is signed using a weak algorithm, but the version of B |
| // present in the AIA of A is signed using a strong algorithm. Since a |
| // 'strong' chain exists, it would be desirable to prefer this chain. |
| // |
| // - A user keychain may contain a less desirable intermediate or root. |
| // OS X gives the user keychains higher priority than the system keychain, |
| // so it may build a weak chain. |
| // |
| // Because of this, the code below first attempts to validate the peer's |
| // identity using the supplied chain. If it is not trusted (e.g. the OS only |
| // trusts C, but the version of C signed by D was sent, and D is not trusted), |
| // or if it contains a weak chain, it will begin lopping off certificates |
| // from the end of the chain and attempting to verify. If a stronger, trusted |
| // chain is found, it is used, otherwise, the algorithm continues until only |
| // the peer's certificate remains. |
| // |
| // If the loop does not find a trusted chain, the loop will be repeated with |
| // the keychain search order altered to give priority to the System Roots |
| // keychain. |
| // |
| // This does cause a performance hit for these users, but only in cases where |
| // OS X is building weaker chains than desired, or when it would otherwise |
| // fail the connection. |
| for (bool try_reordered_keychain : {false, true}) { |
| ScopedCFTypeRef<CFArrayRef> scoped_alternate_keychain_search_list; |
| if (TestKeychainSearchList::HasInstance()) { |
| // Unit tests need to be able to hermetically simulate situations where a |
| // user has an undesirable certificate in a per-user keychain. |
| // Adding/Removing a Keychain using SecKeychainCreate/SecKeychainDelete |
| // has global side effects, which would break other tests and processes |
| // running on the same machine, so instead tests may load pre-created |
| // keychains using SecKeychainOpen and then inject them through |
| // TestKeychainSearchList. |
| CFArrayRef keychain_search_list; |
| status = TestKeychainSearchList::GetInstance()->CopySearchList( |
| &keychain_search_list); |
| if (status) |
| return NetErrorFromOSStatus(status); |
| scoped_alternate_keychain_search_list.reset(keychain_search_list); |
| } |
| if (try_reordered_keychain) { |
| // If a TestKeychainSearchList is present, it will have already set |
| // |scoped_alternate_keychain_search_list|, which will be used as the |
| // basis for reordering the keychain. Otherwise, get the current keychain |
| // search list and use that. |
| if (!scoped_alternate_keychain_search_list) { |
| CFArrayRef keychain_search_list; |
| status = SecKeychainCopySearchList(&keychain_search_list); |
| if (status) |
| return NetErrorFromOSStatus(status); |
| scoped_alternate_keychain_search_list.reset(keychain_search_list); |
| } |
| CFMutableArrayRef mutable_keychain_search_list = CFArrayCreateMutableCopy( |
| kCFAllocatorDefault, |
| CFArrayGetCount(scoped_alternate_keychain_search_list.get()) + 1, |
| scoped_alternate_keychain_search_list.get()); |
| if (!mutable_keychain_search_list) |
| return ERR_OUT_OF_MEMORY; |
| scoped_alternate_keychain_search_list.reset(mutable_keychain_search_list); |
| |
| SecKeychainRef keychain; |
| // Get a reference to the System Roots keychain. The System Roots |
| // keychain is not normally present in the keychain search list, but is |
| // implicitly checked after the keychains in the search list. By |
| // including it directly, force it to be checked first. This is a gross |
| // hack, but the path is known to be valid on OS X 10.9-10.11. |
| status = SecKeychainOpen( |
| "/System/Library/Keychains/SystemRootCertificates.keychain", |
| &keychain); |
| if (status) |
| return NetErrorFromOSStatus(status); |
| ScopedCFTypeRef<SecKeychainRef> scoped_keychain(keychain); |
| |
| CFArrayInsertValueAtIndex(mutable_keychain_search_list, 0, keychain); |
| } |
| |
| ScopedCFTypeRef<CFMutableArrayRef> cert_array( |
| x509_util::CreateSecCertificateArrayForX509Certificate( |
| cert, x509_util::InvalidIntermediateBehavior::kIgnore)); |
| if (!cert_array) { |
| verify_result->cert_status |= CERT_STATUS_INVALID; |
| return ERR_CERT_INVALID; |
| } |
| |
| // Beginning with the certificate chain as supplied by the server, attempt |
| // to verify the chain. If a failure is encountered, trim a certificate |
| // from the end (so long as one remains) and retry, in the hope of forcing |
| // OS X to find a better path. |
| while (CFArrayGetCount(cert_array) > 0) { |
| ScopedCFTypeRef<SecTrustRef> temp_ref; |
| SecTrustResultType temp_trust_result = kSecTrustResultDeny; |
| ScopedCFTypeRef<CFArrayRef> temp_chain; |
| CSSM_TP_APPLE_EVIDENCE_INFO* temp_chain_info = NULL; |
| |
| int rv = BuildAndEvaluateSecTrustRef( |
| cert_array, trust_policies, ocsp_response_ref.get(), |
| sct_array_ref.get(), flags, |
| scoped_alternate_keychain_search_list.get(), &temp_ref, |
| &temp_trust_result, &temp_chain, &temp_chain_info); |
| if (rv != OK) |
| return rv; |
| |
| // Check to see if the path |temp_chain| has been revoked. This is less |
| // than ideal to perform after path building, rather than during, because |
| // there may be multiple paths to trust anchors, and only some of them |
| // are revoked. Ideally, CRLSets would be part of path building, which |
| // they are when using NSS (Linux) or CryptoAPI (Windows). |
| // |
| // The CRLSet checking is performed inside the loop in the hope that if a |
| // path is revoked, it's an older path, and the only reason it was built |
| // is because the server forced it (by supplying an older or less |
| // desirable intermediate) or because the user had installed a |
| // certificate in their Keychain forcing this path. However, this means |
| // its still possible for a CRLSet block of an intermediate to prevent |
| // access, even when there is a 'good' chain. To fully remedy this, a |
| // solution might be to have CRLSets contain enough knowledge about what |
| // the 'desired' path might be, but for the time being, the |
| // implementation is kept as 'simple' as it can be. |
| CRLSetResult crl_result = CheckRevocationWithCRLSet(temp_chain, crl_set); |
| bool untrusted = (temp_trust_result != kSecTrustResultUnspecified && |
| temp_trust_result != kSecTrustResultProceed) || |
| crl_result == kCRLSetRevoked; |
| bool weak_chain = false; |
| if (CFArrayGetCount(temp_chain) == 0) { |
| // If the chain is empty, it cannot be trusted or have recoverable |
| // errors. |
| DCHECK(untrusted); |
| DCHECK_NE(kSecTrustResultRecoverableTrustFailure, temp_trust_result); |
| } else { |
| weak_chain = |
| IsWeakChainBasedOnHashingAlgorithms(temp_chain, temp_chain_info); |
| } |
| // Set the result to the current chain if: |
| // - This is the first verification attempt. This ensures that if |
| // everything is awful (e.g. it may just be an untrusted cert), that |
| // what is reported is exactly what was sent by the server |
| // - If the current chain is trusted, and the old chain was not trusted, |
| // then prefer this chain. This ensures that if there is at least a |
| // valid path to a trust anchor, it's preferred over reporting an error. |
| // - If the current chain is trusted, and the old chain is trusted, but |
| // the old chain contained weak algorithms while the current chain only |
| // contains strong algorithms, then prefer the current chain over the |
| // old chain. |
| // |
| // Note: If the leaf certificate itself is weak, then the only |
| // consideration is whether or not there is a trusted chain. That's |
| // because no amount of path discovery will fix a weak leaf. |
| if (!trust_ref || (!untrusted && (candidate_untrusted || |
| (candidate_weak && !weak_chain)))) { |
| trust_ref = temp_ref; |
| trust_result = temp_trust_result; |
| completed_chain = temp_chain; |
| *completed_chain_crl_result = crl_result; |
| chain_info = temp_chain_info; |
| |
| candidate_untrusted = untrusted; |
| candidate_weak = weak_chain; |
| } |
| // Short-circuit when a current, trusted chain is found. |
| if (!untrusted && !weak_chain) |
| break; |
| // Trim a cert off the end of chain, but if the chain is longer that 10 |
| // certs, trim to at most 10 certs. |
| constexpr int kMaxTrimmedChainLength = 10; |
| if (CFArrayGetCount(cert_array) > kMaxTrimmedChainLength) { |
| CFArrayReplaceValues( |
| cert_array, |
| CFRangeMake(kMaxTrimmedChainLength, |
| CFArrayGetCount(cert_array) - kMaxTrimmedChainLength), |
| /*newValues=*/nullptr, /*newCount=*/0); |
| } else { |
| CFArrayRemoveValueAtIndex(cert_array, CFArrayGetCount(cert_array) - 1); |
| } |
| } |
| // Short-circuit when a current, trusted chain is found. |
| if (!candidate_untrusted && !candidate_weak) |
| break; |
| } |
| |
| if (flags & CertVerifyProc::VERIFY_REV_CHECKING_ENABLED) |
| verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED; |
| |
| if (*completed_chain_crl_result == kCRLSetRevoked) |
| verify_result->cert_status |= CERT_STATUS_REVOKED; |
| |
| if (CFArrayGetCount(completed_chain) > 0) { |
| CopyCertChainToVerifyResult(completed_chain, verify_result); |
| } |
| |
| // As of Security Update 2012-002/OS X 10.7.4, when an RSA key < 1024 bits |
| // is encountered, CSSM returns CSSMERR_TP_VERIFY_ACTION_FAILED and adds |
| // CSSMERR_CSP_UNSUPPORTED_KEY_SIZE as a certificate status. Avoid mapping |
| // the CSSMERR_TP_VERIFY_ACTION_FAILED to CERT_STATUS_INVALID if the only |
| // error was due to an unsupported key size. |
| bool policy_failed = false; |
| bool policy_fail_already_mapped = false; |
| bool weak_key_or_signature_algorithm = false; |
| |
| // As of macOS 10.13, if |trust_result| (from SecTrustGetResult) returns |
| // kSecTrustResultInvalid, subsequent invocations of SecTrust APIs may |
| // result in revalidating the SecTrust, invalidating the pointers such |
| // as |chain_info|. In releases earlier than 10.13, this call would have |
| // additional information, except that information is unused and |
| // irrelevant if the result was invalid, so the placeholder |
| // errSecInternalError is fine. |
| OSStatus cssm_result = errSecInternalError; |
| if (trust_result != kSecTrustResultInvalid) { |
| status = SecTrustGetCssmResultCode(trust_ref, &cssm_result); |
| if (status) |
| return NetErrorFromOSStatus(status); |
| } |
| |
| // Evaluate the results |
| switch (trust_result) { |
| case kSecTrustResultUnspecified: |
| case kSecTrustResultProceed: |
| // Certificate chain is valid and trusted ("unspecified" indicates that |
| // the user has not explicitly set a trust setting) |
| break; |
| |
| // According to SecTrust.h, kSecTrustResultConfirm isn't returned on 10.5+, |
| // and it is marked deprecated in the 10.9 SDK. |
| case kSecTrustResultDeny: |
| // Certificate chain is explicitly untrusted. |
| verify_result->cert_status |= CERT_STATUS_AUTHORITY_INVALID; |
| break; |
| |
| case kSecTrustResultFatalTrustFailure: |
| // Certificate chain has a failure that cannot be overridden by the user. |
| case kSecTrustResultRecoverableTrustFailure: |
| // Certificate chain has a failure that can be overridden by the user. |
| |
| // Prior to 10.13, a violation of key size restrictions would, at minimum, |
| // result in a TP_VERIFY_ACTION_FAILED error. In 10.13+, this error has |
| // different semantics, and weak keys can no longer be distinguished |
| // as such. |
| if (base::mac::IsAtMostOS10_12() && |
| cssm_result == CSSMERR_TP_VERIFY_ACTION_FAILED) { |
| policy_failed = true; |
| } else { |
| verify_result->cert_status |= CertStatusFromOSStatus(cssm_result); |
| } |
| |
| // Walk the chain of error codes in the CSSM_TP_APPLE_EVIDENCE_INFO |
| // structure which can catch multiple errors from each certificate. |
| for (CFIndex index = 0, chain_count = CFArrayGetCount(completed_chain); |
| index < chain_count; ++index) { |
| if (chain_info[index].StatusBits & CSSM_CERT_STATUS_EXPIRED || |
| chain_info[index].StatusBits & CSSM_CERT_STATUS_NOT_VALID_YET) |
| verify_result->cert_status |= CERT_STATUS_DATE_INVALID; |
| if (!IsCertStatusError(verify_result->cert_status) && |
| chain_info[index].NumStatusCodes == 0) { |
| LOG(WARNING) << "chain_info[" << index << "].NumStatusCodes is 0" |
| ", chain_info[" << index << "].StatusBits is " |
| << chain_info[index].StatusBits; |
| } |
| for (uint32_t status_code_index = 0; |
| status_code_index < chain_info[index].NumStatusCodes; |
| ++status_code_index) { |
| // As of OS X 10.9, attempting to verify a certificate chain that |
| // contains a weak signature algorithm (MD2, MD5) in an intermediate |
| // or leaf cert will be treated as a (recoverable) policy validation |
| // failure, with the status code CSSMERR_TP_INVALID_CERTIFICATE |
| // added to the Status Codes. Don't treat this code as an invalid |
| // certificate; instead, map it to a weak key. Any truly invalid |
| // certificates will have the major error (cssm_result) set to |
| // CSSMERR_TP_INVALID_CERTIFICATE, rather than |
| // CSSMERR_TP_VERIFY_ACTION_FAILED. |
| CertStatus mapped_status = 0; |
| if (policy_failed && |
| chain_info[index].StatusCodes[status_code_index] == |
| CSSMERR_TP_INVALID_CERTIFICATE) { |
| mapped_status = CERT_STATUS_WEAK_SIGNATURE_ALGORITHM; |
| weak_key_or_signature_algorithm = true; |
| policy_fail_already_mapped = true; |
| } else if (base::mac::IsOS10_12() && policy_failed && |
| (flags & CertVerifyProc::VERIFY_REV_CHECKING_ENABLED) && |
| chain_info[index].StatusCodes[status_code_index] == |
| CSSMERR_TP_VERIFY_ACTION_FAILED) { |
| // On early versions of 10.12, using |
| // kSecRevocationRequirePositiveResponse flag causes a |
| // CSSMERR_TP_VERIFY_ACTION_FAILED status if revocation couldn't be |
| // checked. (Note: even if the cert had no crlDistributionPoints or |
| // OCSP AIA.) This isn't needed on later 10.12 versions, but it |
| // should be mostly harmless. |
| mapped_status = CERT_STATUS_UNABLE_TO_CHECK_REVOCATION; |
| policy_fail_already_mapped = true; |
| } else { |
| mapped_status = CertStatusFromOSStatus( |
| chain_info[index].StatusCodes[status_code_index]); |
| if (mapped_status == CERT_STATUS_WEAK_KEY) { |
| weak_key_or_signature_algorithm = true; |
| policy_fail_already_mapped = true; |
| } |
| } |
| verify_result->cert_status |= mapped_status; |
| } |
| } |
| if (policy_failed && !policy_fail_already_mapped) { |
| // If CSSMERR_TP_VERIFY_ACTION_FAILED wasn't returned due to a weak |
| // key or problem checking revocation, map it back to an appropriate |
| // error code. |
| verify_result->cert_status |= CertStatusFromOSStatus(cssm_result); |
| } |
| if (!IsCertStatusError(verify_result->cert_status)) { |
| LOG(ERROR) << "cssm_result=" << cssm_result; |
| verify_result->cert_status |= CERT_STATUS_INVALID; |
| NOTREACHED(); |
| } |
| break; |
| |
| default: |
| verify_result->cert_status |= CertStatusFromOSStatus(cssm_result); |
| if (!IsCertStatusError(verify_result->cert_status)) { |
| LOG(WARNING) << "trust_result=" << trust_result; |
| verify_result->cert_status |= CERT_STATUS_INVALID; |
| } |
| break; |
| } |
| |
| // Hostname validation is handled by CertVerifyProc, so mask off any errors |
| // that SecTrustEvaluate may have set, as its results are not used. |
| verify_result->cert_status &= ~CERT_STATUS_COMMON_NAME_INVALID; |
| |
| if (rev_checking_soft_fail) { |
| verify_result->cert_status &= ~(CERT_STATUS_NO_REVOCATION_MECHANISM | |
| CERT_STATUS_UNABLE_TO_CHECK_REVOCATION); |
| } |
| |
| AppendPublicKeyHashesAndUpdateKnownRoot( |
| completed_chain, &verify_result->public_key_hashes, |
| &verify_result->is_issued_by_known_root); |
| |
| UpdateDebugData(trust_result, cssm_result, CFArrayGetCount(completed_chain), |
| chain_info, verify_result); |
| |
| if (IsCertStatusError(verify_result->cert_status)) |
| return MapCertStatusToNetError(verify_result->cert_status); |
| |
| return OK; |
| } |
| |
| } // namespace |
| |
| CertVerifyProcMac::ResultDebugData::CertEvidenceInfo::CertEvidenceInfo() = |
| default; |
| CertVerifyProcMac::ResultDebugData::CertEvidenceInfo::~CertEvidenceInfo() = |
| default; |
| CertVerifyProcMac::ResultDebugData::CertEvidenceInfo::CertEvidenceInfo( |
| const CertEvidenceInfo&) = default; |
| CertVerifyProcMac::ResultDebugData::CertEvidenceInfo::CertEvidenceInfo( |
| CertEvidenceInfo&&) = default; |
| |
| CertVerifyProcMac::ResultDebugData::ResultDebugData( |
| uint32_t trust_result, |
| int32_t result_code, |
| std::vector<CertEvidenceInfo> status_chain) |
| : trust_result_(trust_result), |
| result_code_(result_code), |
| status_chain_(std::move(status_chain)) {} |
| |
| CertVerifyProcMac::ResultDebugData::~ResultDebugData() = default; |
| |
| CertVerifyProcMac::ResultDebugData::ResultDebugData(const ResultDebugData&) = |
| default; |
| |
| // static |
| const CertVerifyProcMac::ResultDebugData* |
| CertVerifyProcMac::ResultDebugData::Get( |
| const base::SupportsUserData* debug_data) { |
| return static_cast<ResultDebugData*>( |
| debug_data->GetUserData(kResultDebugDataKey)); |
| } |
| |
| // static |
| void CertVerifyProcMac::ResultDebugData::Create( |
| uint32_t trust_result, |
| int32_t result_code, |
| std::vector<CertEvidenceInfo> status_chain, |
| base::SupportsUserData* debug_data) { |
| debug_data->SetUserData(kResultDebugDataKey, |
| std::make_unique<ResultDebugData>( |
| trust_result, result_code, status_chain)); |
| } |
| |
| std::unique_ptr<base::SupportsUserData::Data> |
| CertVerifyProcMac::ResultDebugData::Clone() { |
| return std::make_unique<ResultDebugData>(*this); |
| } |
| |
| CertVerifyProcMac::CertVerifyProcMac() = default; |
| |
| CertVerifyProcMac::~CertVerifyProcMac() = default; |
| |
| bool CertVerifyProcMac::SupportsAdditionalTrustAnchors() const { |
| return false; |
| } |
| |
| int CertVerifyProcMac::VerifyInternal( |
| X509Certificate* cert, |
| const std::string& hostname, |
| const std::string& ocsp_response, |
| const std::string& sct_list, |
| int flags, |
| CRLSet* crl_set, |
| const CertificateList& additional_trust_anchors, |
| CertVerifyResult* verify_result, |
| const NetLogWithSource& net_log) { |
| // Save the input state of |*verify_result|, which may be needed to re-do |
| // verification with different flags. |
| const CertVerifyResult input_verify_result(*verify_result); |
| |
| // Check for EV policy in leaf cert. |
| std::string candidate_ev_policy_oid; |
| GetCandidateEVPolicy(cert, &candidate_ev_policy_oid); |
| |
| CRLSetResult completed_chain_crl_result; |
| int rv = VerifyWithGivenFlags(cert, hostname, ocsp_response, sct_list, flags, |
| /*rev_checking_soft_fail=*/true, crl_set, |
| verify_result, &completed_chain_crl_result); |
| if (rv != OK) |
| return rv; |
| |
| if (!candidate_ev_policy_oid.empty() && |
| CheckCertChainEV(verify_result->verified_cert.get(), |
| candidate_ev_policy_oid)) { |
| // EV policies check out and the verification succeeded. See if revocation |
| // checking still needs to be done before it can be marked as EV. Even if |
| // the first verification had VERIFY_REV_CHECKING_ENABLED, verification |
| // must be repeated since the previous verification was done with soft-fail |
| // revocation checking. |
| if (completed_chain_crl_result == kCRLSetUnknown) { |
| // If this is an EV cert and it wasn't covered by CRLSets and revocation |
| // checking wasn't already on, try again with revocation forced on. |
| // |
| // Restore the input state of |*verify_result|, so that the |
| // re-verification starts with a clean slate. |
| CertVerifyResult ev_verify_result = input_verify_result; |
| int tmp_rv = VerifyWithGivenFlags( |
| verify_result->verified_cert.get(), hostname, ocsp_response, sct_list, |
| flags | VERIFY_REV_CHECKING_ENABLED, |
| /*rev_checking_soft_fail=*/false, crl_set, &ev_verify_result, |
| &completed_chain_crl_result); |
| if (tmp_rv == OK) { |
| // If EV re-verification succeeded, mark as EV and return those results. |
| *verify_result = ev_verify_result; |
| verify_result->cert_status |= CERT_STATUS_IS_EV; |
| } else if (tmp_rv == ERR_CERT_REVOKED) { |
| // This matches the historical behavior of cert_verify_proc_mac where a |
| // revoked result from the EV verification attempt results in revoked |
| // result overall. (Technically this may not be correct if there was a |
| // different non-revoked, non-EV path that could have been built.) |
| *verify_result = ev_verify_result; |
| return tmp_rv; |
| } else { |
| // If EV was attempted, set CERT_STATUS_REV_CHECKING_ENABLED even if the |
| // EV result wasn't used. This is a little weird but matches the |
| // behavior of the other verifiers. |
| verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED; |
| } |
| } else { |
| // EV cert and it was covered by CRLSets. |
| verify_result->cert_status |= CERT_STATUS_IS_EV; |
| } |
| } |
| |
| LogNameNormalizationMetrics(".Mac", verify_result->verified_cert.get(), |
| verify_result->is_issued_by_known_root); |
| |
| return OK; |
| } |
| |
| } // namespace net |
| |
| #pragma clang diagnostic pop // "-Wdeprecated-declarations" |