blob: ea9789f7d498873516c677b4bbc37b225ab54510 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/disk_cache/memory/mem_backend_impl.h"
#include <algorithm>
#include <functional>
#include <memory>
#include <utility>
#include "base/bind.h"
#include "base/logging.h"
#include "base/system/sys_info.h"
#include "base/task/post_task.h"
#include "base/threading/sequenced_task_runner_handle.h"
#include "base/trace_event/memory_usage_estimator.h"
#include "base/trace_event/process_memory_dump.h"
#include "net/base/net_errors.h"
#include "net/disk_cache/cache_util.h"
#include "net/disk_cache/memory/mem_entry_impl.h"
using base::Time;
namespace disk_cache {
namespace {
const int kDefaultInMemoryCacheSize = 10 * 1024 * 1024;
const int kDefaultEvictionSize = kDefaultInMemoryCacheSize / 10;
bool CheckLRUListOrder(const base::LinkedList<MemEntryImpl>& lru_list) {
// TODO(gavinp): Check MemBackendImpl::current_size_ here as well.
base::Time previous_last_use_time;
for (base::LinkNode<MemEntryImpl>* node = lru_list.head();
node != lru_list.end(); node = node->next()) {
if (node->value()->GetLastUsed() < previous_last_use_time)
return false;
previous_last_use_time = node->value()->GetLastUsed();
}
return true;
}
// Returns the next entry after |node| in |lru_list| that's not a child
// of |node|. This is useful when dooming, since dooming a parent entry
// will also doom its children.
base::LinkNode<MemEntryImpl>* NextSkippingChildren(
const base::LinkedList<MemEntryImpl>& lru_list,
base::LinkNode<MemEntryImpl>* node) {
MemEntryImpl* cur = node->value();
do {
node = node->next();
} while (node != lru_list.end() && node->value()->parent() == cur);
return node;
}
} // namespace
MemBackendImpl::MemBackendImpl(net::NetLog* net_log)
: Backend(net::MEMORY_CACHE),
max_size_(0),
current_size_(0),
net_log_(net_log),
memory_pressure_listener_(
FROM_HERE,
base::BindRepeating(&MemBackendImpl::OnMemoryPressure,
base::Unretained(this))) {}
MemBackendImpl::~MemBackendImpl() {
DCHECK(CheckLRUListOrder(lru_list_));
while (!entries_.empty())
entries_.begin()->second->Doom();
if (!post_cleanup_callback_.is_null())
base::SequencedTaskRunnerHandle::Get()->PostTask(
FROM_HERE, std::move(post_cleanup_callback_));
}
// static
std::unique_ptr<MemBackendImpl> MemBackendImpl::CreateBackend(
int64_t max_bytes,
net::NetLog* net_log) {
std::unique_ptr<MemBackendImpl> cache(
std::make_unique<MemBackendImpl>(net_log));
if (cache->SetMaxSize(max_bytes) && cache->Init())
return cache;
LOG(ERROR) << "Unable to create cache";
return nullptr;
}
bool MemBackendImpl::Init() {
if (max_size_)
return true;
int64_t total_memory = base::SysInfo::AmountOfPhysicalMemory();
if (total_memory <= 0) {
max_size_ = kDefaultInMemoryCacheSize;
return true;
}
// We want to use up to 2% of the computer's memory, with a limit of 50 MB,
// reached on system with more than 2.5 GB of RAM.
total_memory = total_memory * 2 / 100;
if (total_memory > kDefaultInMemoryCacheSize * 5)
max_size_ = kDefaultInMemoryCacheSize * 5;
else
max_size_ = static_cast<int32_t>(total_memory);
return true;
}
bool MemBackendImpl::SetMaxSize(int64_t max_bytes) {
if (max_bytes < 0 || max_bytes > std::numeric_limits<int>::max())
return false;
// Zero size means use the default.
if (!max_bytes)
return true;
max_size_ = max_bytes;
return true;
}
int64_t MemBackendImpl::MaxFileSize() const {
return max_size_ / 8;
}
void MemBackendImpl::OnEntryInserted(MemEntryImpl* entry) {
lru_list_.Append(entry);
}
void MemBackendImpl::OnEntryUpdated(MemEntryImpl* entry) {
DCHECK(CheckLRUListOrder(lru_list_));
// LinkedList<>::RemoveFromList() removes |entry| from |lru_list_|.
entry->RemoveFromList();
lru_list_.Append(entry);
}
void MemBackendImpl::OnEntryDoomed(MemEntryImpl* entry) {
DCHECK(CheckLRUListOrder(lru_list_));
if (entry->type() == MemEntryImpl::PARENT_ENTRY)
entries_.erase(entry->key());
// LinkedList<>::RemoveFromList() removes |entry| from |lru_list_|.
entry->RemoveFromList();
}
void MemBackendImpl::ModifyStorageSize(int32_t delta) {
current_size_ += delta;
if (delta > 0)
EvictIfNeeded();
}
bool MemBackendImpl::HasExceededStorageSize() const {
return current_size_ > max_size_;
}
void MemBackendImpl::SetPostCleanupCallback(base::OnceClosure cb) {
DCHECK(post_cleanup_callback_.is_null());
post_cleanup_callback_ = std::move(cb);
}
int32_t MemBackendImpl::GetEntryCount() const {
return static_cast<int32_t>(entries_.size());
}
EntryResult MemBackendImpl::OpenOrCreateEntry(const std::string& key,
net::RequestPriority priority,
EntryResultCallback callback) {
EntryResult result = OpenEntry(key, priority, EntryResultCallback());
if (result.net_error() == net::OK)
return result;
// Key was not opened, try creating it instead.
return CreateEntry(key, priority, EntryResultCallback());
}
EntryResult MemBackendImpl::OpenEntry(const std::string& key,
net::RequestPriority request_priority,
EntryResultCallback callback) {
auto it = entries_.find(key);
if (it == entries_.end())
return EntryResult::MakeError(net::ERR_FAILED);
it->second->Open();
return EntryResult::MakeOpened(it->second);
}
EntryResult MemBackendImpl::CreateEntry(const std::string& key,
net::RequestPriority request_priority,
EntryResultCallback callback) {
std::pair<EntryMap::iterator, bool> create_result =
entries_.insert(EntryMap::value_type(key, nullptr));
const bool did_insert = create_result.second;
if (!did_insert)
return EntryResult::MakeError(net::ERR_FAILED);
MemEntryImpl* cache_entry =
new MemEntryImpl(weak_factory_.GetWeakPtr(), key, net_log_);
create_result.first->second = cache_entry;
return EntryResult::MakeCreated(cache_entry);
}
net::Error MemBackendImpl::DoomEntry(const std::string& key,
net::RequestPriority priority,
CompletionOnceCallback callback) {
auto it = entries_.find(key);
if (it == entries_.end())
return net::ERR_FAILED;
it->second->Doom();
return net::OK;
}
net::Error MemBackendImpl::DoomAllEntries(CompletionOnceCallback callback) {
return DoomEntriesBetween(Time(), Time(), std::move(callback));
}
net::Error MemBackendImpl::DoomEntriesBetween(Time initial_time,
Time end_time,
CompletionOnceCallback callback) {
if (end_time.is_null())
end_time = Time::Max();
DCHECK_GE(end_time, initial_time);
base::LinkNode<MemEntryImpl>* node = lru_list_.head();
while (node != lru_list_.end() && node->value()->GetLastUsed() < initial_time)
node = node->next();
while (node != lru_list_.end() && node->value()->GetLastUsed() < end_time) {
MemEntryImpl* to_doom = node->value();
node = NextSkippingChildren(lru_list_, node);
to_doom->Doom();
}
return net::OK;
}
net::Error MemBackendImpl::DoomEntriesSince(Time initial_time,
CompletionOnceCallback callback) {
return DoomEntriesBetween(initial_time, Time::Max(), std::move(callback));
}
int64_t MemBackendImpl::CalculateSizeOfAllEntries(
Int64CompletionOnceCallback callback) {
return current_size_;
}
int64_t MemBackendImpl::CalculateSizeOfEntriesBetween(
base::Time initial_time,
base::Time end_time,
Int64CompletionOnceCallback callback) {
if (end_time.is_null())
end_time = Time::Max();
DCHECK_GE(end_time, initial_time);
int size = 0;
base::LinkNode<MemEntryImpl>* node = lru_list_.head();
while (node != lru_list_.end() && node->value()->GetLastUsed() < initial_time)
node = node->next();
while (node != lru_list_.end() && node->value()->GetLastUsed() < end_time) {
MemEntryImpl* entry = node->value();
size += entry->GetStorageSize();
node = node->next();
}
return size;
}
class MemBackendImpl::MemIterator final : public Backend::Iterator {
public:
explicit MemIterator(base::WeakPtr<MemBackendImpl> backend)
: backend_(backend) {}
EntryResult OpenNextEntry(EntryResultCallback callback) override {
if (!backend_)
return EntryResult::MakeError(net::ERR_FAILED);
if (!backend_keys_) {
backend_keys_ = std::make_unique<Strings>(backend_->entries_.size());
for (const auto& iter : backend_->entries_)
backend_keys_->push_back(iter.first);
current_ = backend_keys_->begin();
} else {
current_++;
}
while (true) {
if (current_ == backend_keys_->end()) {
backend_keys_.reset();
return EntryResult::MakeError(net::ERR_FAILED);
}
const auto& entry_iter = backend_->entries_.find(*current_);
if (entry_iter == backend_->entries_.end()) {
// The key is no longer in the cache, move on to the next key.
current_++;
continue;
}
entry_iter->second->Open();
return EntryResult::MakeOpened(entry_iter->second);
}
}
private:
using Strings = std::vector<std::string>;
base::WeakPtr<MemBackendImpl> backend_;
std::unique_ptr<Strings> backend_keys_;
Strings::iterator current_;
};
std::unique_ptr<Backend::Iterator> MemBackendImpl::CreateIterator() {
return std::unique_ptr<Backend::Iterator>(
new MemIterator(weak_factory_.GetWeakPtr()));
}
void MemBackendImpl::OnExternalCacheHit(const std::string& key) {
auto it = entries_.find(key);
if (it != entries_.end())
it->second->UpdateStateOnUse(MemEntryImpl::ENTRY_WAS_NOT_MODIFIED);
}
size_t MemBackendImpl::DumpMemoryStats(
base::trace_event::ProcessMemoryDump* pmd,
const std::string& parent_absolute_name) const {
base::trace_event::MemoryAllocatorDump* dump =
pmd->CreateAllocatorDump(parent_absolute_name + "/memory_backend");
// Entries in lru_list_ will be counted by EMU but not in entries_ since
// they're pointers.
size_t size = base::trace_event::EstimateMemoryUsage(lru_list_) +
base::trace_event::EstimateMemoryUsage(entries_);
dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameSize,
base::trace_event::MemoryAllocatorDump::kUnitsBytes, size);
dump->AddScalar("mem_backend_size",
base::trace_event::MemoryAllocatorDump::kUnitsBytes,
current_size_);
dump->AddScalar("mem_backend_max_size",
base::trace_event::MemoryAllocatorDump::kUnitsBytes,
max_size_);
return size;
}
void MemBackendImpl::EvictIfNeeded() {
if (current_size_ <= max_size_)
return;
int target_size = std::max(0, max_size_ - kDefaultEvictionSize);
EvictTill(target_size);
}
void MemBackendImpl::EvictTill(int target_size) {
base::LinkNode<MemEntryImpl>* entry = lru_list_.head();
while (current_size_ > target_size && entry != lru_list_.end()) {
MemEntryImpl* to_doom = entry->value();
entry = NextSkippingChildren(lru_list_, entry);
if (!to_doom->InUse())
to_doom->Doom();
}
}
void MemBackendImpl::OnMemoryPressure(
base::MemoryPressureListener::MemoryPressureLevel memory_pressure_level) {
switch (memory_pressure_level) {
case base::MemoryPressureListener::MEMORY_PRESSURE_LEVEL_NONE:
break;
case base::MemoryPressureListener::MEMORY_PRESSURE_LEVEL_MODERATE:
EvictTill(max_size_ / 2);
break;
case base::MemoryPressureListener::MEMORY_PRESSURE_LEVEL_CRITICAL:
EvictTill(max_size_ / 10);
break;
}
}
} // namespace disk_cache