blob: c4ae9cdb748ebb12db597b584df5a0c49cfba72a [file] [log] [blame]
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/log/file_net_log_observer.h"
#include <string>
#include <vector>
#include "base/bind.h"
#include "base/files/file.h"
#include "base/files/file_path.h"
#include "base/files/file_util.h"
#include "base/files/scoped_file.h"
#include "base/files/scoped_temp_dir.h"
#include "base/json/json_reader.h"
#include "base/json/json_writer.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_util.h"
#include "base/strings/stringprintf.h"
#include "base/task/thread_pool/thread_pool_instance.h"
#include "base/threading/thread.h"
#include "base/values.h"
#include "build/build_config.h"
#include "net/base/test_completion_callback.h"
#include "net/log/net_log_entry.h"
#include "net/log/net_log_event_type.h"
#include "net/log/net_log_source.h"
#include "net/log/net_log_source_type.h"
#include "net/log/net_log_util.h"
#include "net/log/net_log_values.h"
#include "net/log/test_net_log.h"
#include "net/test/test_with_task_environment.h"
#include "net/url_request/url_request.h"
#include "net/url_request/url_request_context.h"
#include "net/url_request/url_request_test_util.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace net {
namespace {
// Indicates the number of event files used in test cases.
const int kTotalNumFiles = 10;
// Used to set the total file size maximum in test cases where the file size
// doesn't matter.
const int kLargeFileSize = 100000000;
// Used to set the size of events to be sent to the observer in test cases
// where event size doesn't matter.
const size_t kDummyEventSize = 150;
// Adds |num_entries| to |logger|. The "inverse" of this is VerifyEventsInLog().
void AddEntries(FileNetLogObserver* logger,
int num_entries,
size_t entry_size) {
// Get base size of event.
const int kDummyId = 0;
NetLogSource source(NetLogSourceType::HTTP2_SESSION, kDummyId);
NetLogEntry base_entry(NetLogEventType::PAC_JAVASCRIPT_ERROR, source,
NetLogEventPhase::BEGIN, base::TimeTicks::Now(),
NetLogParamsWithString("message", ""));
base::Value value = base_entry.ToValue();
std::string json;
base::JSONWriter::Write(value, &json);
size_t base_entry_size = json.size();
// The maximum value of base::TimeTicks::Now() will be the maximum value of
// int64_t, and if the maximum number of digits are included, the
// |base_entry_size| could be up to 136 characters. Check that the event
// format does not include additional padding.
DCHECK_LE(base_entry_size, 136u);
// |entry_size| should be at least as big as the largest possible base
// entry.
EXPECT_GE(entry_size, 136u);
// |entry_size| cannot be smaller than the minimum event size.
EXPECT_GE(entry_size, base_entry_size);
for (int i = 0; i < num_entries; i++) {
source = NetLogSource(NetLogSourceType::HTTP2_SESSION, i);
std::string id = base::NumberToString(i);
// String size accounts for the number of digits in id so that all events
// are the same size.
std::string message =
std::string(entry_size - base_entry_size - id.size() + 1, 'x');
NetLogEntry entry(NetLogEventType::PAC_JAVASCRIPT_ERROR, source,
NetLogEventPhase::BEGIN, base::TimeTicks::Now(),
NetLogParamsWithString("message", message));
logger->OnAddEntry(entry);
}
}
// ParsedNetLog holds the parsed contents of a NetLog file (constants, events,
// and polled data).
struct ParsedNetLog {
::testing::AssertionResult InitFromFileContents(const std::string& input);
const base::Value* GetEvent(size_t i) const;
// Initializes the ParsedNetLog by parsing a JSON file.
// Owner for the Value tree and a dictionary for the entire netlog.
base::Value root;
// The constants dictionary.
const base::Value* constants = nullptr;
// The events list.
const base::Value* events = nullptr;
// The optional polled data (may be nullptr).
const base::Value* polled_data = nullptr;
};
::testing::AssertionResult ParsedNetLog::InitFromFileContents(
const std::string& input) {
if (input.empty()) {
return ::testing::AssertionFailure() << "input is empty";
}
base::JSONReader::ValueWithError parsed_json =
base::JSONReader::ReadAndReturnValueWithError(input);
if (!parsed_json.value) {
return ::testing::AssertionFailure() << parsed_json.error_message;
}
root = std::move(*parsed_json.value);
if (!root.is_dict()) {
return ::testing::AssertionFailure() << "Not a dictionary";
}
events = root.FindPath("events");
if (!events || !events->is_list()) {
return ::testing::AssertionFailure() << "No events list";
}
constants = root.FindDictPath("constants");
if (!constants) {
return ::testing::AssertionFailure() << "No constants dictionary";
}
// Polled data is optional (ignore success).
polled_data = root.FindDictPath("polledData");
return ::testing::AssertionSuccess();
}
// Returns the event at index |i|, or nullptr if there is none.
const base::Value* ParsedNetLog::GetEvent(size_t i) const {
if (!events || i >= events->GetList().size())
return nullptr;
const base::Value& value = events->GetList()[i];
if (!value.is_dict())
return nullptr;
return &value;
}
// Creates a ParsedNetLog by reading a NetLog from a file. Returns nullptr on
// failure.
std::unique_ptr<ParsedNetLog> ReadNetLogFromDisk(
const base::FilePath& log_path) {
std::string input;
if (!base::ReadFileToString(log_path, &input)) {
ADD_FAILURE() << "Failed reading file: " << log_path.value();
return nullptr;
}
std::unique_ptr<ParsedNetLog> result = std::make_unique<ParsedNetLog>();
::testing::AssertionResult init_result = result->InitFromFileContents(input);
EXPECT_TRUE(init_result);
if (!init_result)
return nullptr;
return result;
}
// Checks that |log| contains events as emitted by AddEntries() above.
// |num_events_emitted| corresponds to |num_entries| of AddEntries(). Whereas
// |num_events_saved| is the expected number of events that have actually been
// written to the log (post-truncation).
void VerifyEventsInLog(const ParsedNetLog* log,
size_t num_events_emitted,
size_t num_events_saved) {
ASSERT_TRUE(log);
ASSERT_LE(num_events_saved, num_events_emitted);
ASSERT_EQ(num_events_saved, log->events->GetList().size());
// The last |num_events_saved| should all be sequential, with the last one
// being numbered |num_events_emitted - 1|.
for (size_t i = 0; i < num_events_saved; ++i) {
const base::Value* event = log->GetEvent(i);
ASSERT_TRUE(event);
size_t expected_source_id = num_events_emitted - num_events_saved + i;
const base::Value* id_value = event->FindPath("source.id");
ASSERT_TRUE(id_value);
int actual_id = id_value->GetInt();
ASSERT_EQ(static_cast<int>(expected_source_id), actual_id);
}
}
// Helper that checks whether |dict| has a string property at |key| having
// |value|.
void ExpectDictionaryContainsProperty(const base::Value* dict,
const std::string& key,
const std::string& value) {
ASSERT_TRUE(dict);
ASSERT_TRUE(dict->is_dict());
const std::string* actual_value = dict->FindStringPath(key);
ASSERT_EQ(value, *actual_value);
}
// Used for tests that are common to both bounded and unbounded modes of the
// the FileNetLogObserver. The param is true if bounded mode is used.
class FileNetLogObserverTest : public ::testing::TestWithParam<bool>,
public WithTaskEnvironment {
public:
void SetUp() override {
ASSERT_TRUE(temp_dir_.CreateUniqueTempDir());
log_path_ = temp_dir_.GetPath().AppendASCII("net-log.json");
}
void TearDown() override {
logger_.reset();
// FileNetLogObserver destructor might post to message loop.
RunUntilIdle();
}
bool IsBounded() const { return GetParam(); }
void CreateAndStartObserving(std::unique_ptr<base::Value> constants) {
if (IsBounded()) {
logger_ = FileNetLogObserver::CreateBoundedForTests(
log_path_, kLargeFileSize, kTotalNumFiles, std::move(constants));
} else {
logger_ =
FileNetLogObserver::CreateUnbounded(log_path_, std::move(constants));
}
logger_->StartObserving(&net_log_, NetLogCaptureMode::kDefault);
}
void CreateAndStartObservingPreExisting(
std::unique_ptr<base::Value> constants) {
ASSERT_TRUE(scratch_dir_.CreateUniqueTempDir());
base::File file(log_path_,
base::File::FLAG_CREATE | base::File::FLAG_WRITE);
EXPECT_TRUE(file.IsValid());
// Stick in some nonsense to make sure the file gets cleared properly
file.Write(0, "not json", 8);
if (IsBounded()) {
logger_ = FileNetLogObserver::CreateBoundedPreExisting(
scratch_dir_.GetPath(), std::move(file), kLargeFileSize,
std::move(constants));
} else {
logger_ = FileNetLogObserver::CreateUnboundedPreExisting(
std::move(file), std::move(constants));
}
logger_->StartObserving(&net_log_, NetLogCaptureMode::kDefault);
}
bool LogFileExists() {
// The log files are written by a sequenced task runner. Drain all the
// scheduled tasks to ensure that the file writing ones have run before
// checking if they exist.
base::ThreadPoolInstance::Get()->FlushForTesting();
return base::PathExists(log_path_);
}
protected:
TestNetLog net_log_;
std::unique_ptr<FileNetLogObserver> logger_;
base::ScopedTempDir temp_dir_;
base::ScopedTempDir scratch_dir_; // used for bounded + preexisting
base::FilePath log_path_;
};
// Used for tests that are exclusive to the bounded mode of FileNetLogObserver.
class FileNetLogObserverBoundedTest : public ::testing::Test,
public WithTaskEnvironment {
public:
void SetUp() override {
ASSERT_TRUE(temp_dir_.CreateUniqueTempDir());
log_path_ = temp_dir_.GetPath().AppendASCII("net-log.json");
}
void TearDown() override {
logger_.reset();
// FileNetLogObserver destructor might post to message loop.
RunUntilIdle();
}
void CreateAndStartObserving(std::unique_ptr<base::Value> constants,
uint64_t total_file_size,
int num_files) {
logger_ = FileNetLogObserver::CreateBoundedForTests(
log_path_, total_file_size, num_files, std::move(constants));
logger_->StartObserving(&net_log_, NetLogCaptureMode::kDefault);
}
// Returns the path for an internally directory created for bounded logs (this
// needs to be kept in sync with the implementation).
base::FilePath GetInprogressDirectory() const {
return log_path_.AddExtension(FILE_PATH_LITERAL(".inprogress"));
}
base::FilePath GetEventFilePath(int index) const {
return GetInprogressDirectory().AppendASCII(
"event_file_" + base::NumberToString(index) + ".json");
}
base::FilePath GetEndNetlogPath() const {
return GetInprogressDirectory().AppendASCII("end_netlog.json");
}
base::FilePath GetConstantsPath() const {
return GetInprogressDirectory().AppendASCII("constants.json");
}
protected:
TestNetLog net_log_;
std::unique_ptr<FileNetLogObserver> logger_;
base::FilePath log_path_;
private:
base::ScopedTempDir temp_dir_;
};
// Instantiates each FileNetLogObserverTest to use bounded and unbounded modes.
INSTANTIATE_TEST_SUITE_P(All,
FileNetLogObserverTest,
::testing::Values(true, false));
// Tests deleting a FileNetLogObserver without first calling StopObserving().
TEST_P(FileNetLogObserverTest, ObserverDestroyedWithoutStopObserving) {
CreateAndStartObserving(nullptr);
// Send dummy event
AddEntries(logger_.get(), 1, kDummyEventSize);
// The log files should have been started.
ASSERT_TRUE(LogFileExists());
logger_.reset();
// When the logger is re-set without having called StopObserving(), the
// partially written log files are deleted.
ASSERT_FALSE(LogFileExists());
}
// Same but with pre-existing file.
TEST_P(FileNetLogObserverTest,
ObserverDestroyedWithoutStopObservingPreExisting) {
CreateAndStartObservingPreExisting(nullptr);
// Send dummy event
AddEntries(logger_.get(), 1, kDummyEventSize);
// The log files should have been started.
ASSERT_TRUE(LogFileExists());
// Should also have the scratch dir, if bounded. (Can be checked since
// LogFileExists flushed the thread pool).
if (IsBounded()) {
ASSERT_TRUE(base::PathExists(scratch_dir_.GetPath()));
}
logger_.reset();
// Unlike in the non-preexisting case, the output file isn't deleted here,
// since the process running the observer likely won't have the sandbox
// permission to do so.
ASSERT_TRUE(LogFileExists());
if (IsBounded()) {
ASSERT_FALSE(base::PathExists(scratch_dir_.GetPath()));
}
}
// Tests calling StopObserving() with a null closure.
TEST_P(FileNetLogObserverTest, StopObservingNullClosure) {
CreateAndStartObserving(nullptr);
// Send dummy event
AddEntries(logger_.get(), 1, kDummyEventSize);
// The log files should have been started.
ASSERT_TRUE(LogFileExists());
logger_->StopObserving(nullptr, base::OnceClosure());
logger_.reset();
// Since the logger was explicitly stopped, its files should still exist.
ASSERT_TRUE(LogFileExists());
}
// Tests creating a FileNetLogObserver using an invalid (can't be written to)
// path.
TEST_P(FileNetLogObserverTest, InitLogWithInvalidPath) {
// Use a path to a non-existent directory.
log_path_ = temp_dir_.GetPath().AppendASCII("bogus").AppendASCII("path");
CreateAndStartObserving(nullptr);
// Send dummy event
AddEntries(logger_.get(), 1, kDummyEventSize);
// No log files should have been written, as the log writer will not create
// missing directories.
ASSERT_FALSE(LogFileExists());
logger_->StopObserving(nullptr, base::OnceClosure());
logger_.reset();
// There should still be no files.
ASSERT_FALSE(LogFileExists());
}
TEST_P(FileNetLogObserverTest, GeneratesValidJSONWithNoEvents) {
TestClosure closure;
CreateAndStartObserving(nullptr);
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
// Verify the written log.
std::unique_ptr<ParsedNetLog> log = ReadNetLogFromDisk(log_path_);
ASSERT_TRUE(log);
ASSERT_EQ(0u, log->events->GetList().size());
}
TEST_P(FileNetLogObserverTest, GeneratesValidJSONWithOneEvent) {
TestClosure closure;
CreateAndStartObserving(nullptr);
// Send dummy event.
AddEntries(logger_.get(), 1, kDummyEventSize);
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
// Verify the written log.
std::unique_ptr<ParsedNetLog> log = ReadNetLogFromDisk(log_path_);
ASSERT_TRUE(log);
ASSERT_EQ(1u, log->events->GetList().size());
}
TEST_P(FileNetLogObserverTest, GeneratesValidJSONWithOneEventPreExisting) {
TestClosure closure;
CreateAndStartObservingPreExisting(nullptr);
// Send dummy event.
AddEntries(logger_.get(), 1, kDummyEventSize);
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
// Verify the written log.
std::unique_ptr<ParsedNetLog> log = ReadNetLogFromDisk(log_path_);
ASSERT_TRUE(log);
ASSERT_EQ(1u, log->events->GetList().size());
}
TEST_P(FileNetLogObserverTest, PreExistingFileBroken) {
// Test that pre-existing output file not being successfully open is
// tolerated.
ASSERT_TRUE(scratch_dir_.CreateUniqueTempDir());
base::File file;
EXPECT_FALSE(file.IsValid());
if (IsBounded())
logger_ = FileNetLogObserver::CreateBoundedPreExisting(
scratch_dir_.GetPath(), std::move(file), kLargeFileSize, nullptr);
else
logger_ = FileNetLogObserver::CreateUnboundedPreExisting(std::move(file),
nullptr);
logger_->StartObserving(&net_log_, NetLogCaptureMode::kDefault);
// Send dummy event.
AddEntries(logger_.get(), 1, kDummyEventSize);
TestClosure closure;
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
}
TEST_P(FileNetLogObserverTest, CustomConstants) {
TestClosure closure;
const char kConstantKey[] = "magic";
const char kConstantString[] = "poney";
std::unique_ptr<base::Value> constants(
new base::Value(base::Value::Type::DICTIONARY));
constants->SetStringPath(kConstantKey, kConstantString);
CreateAndStartObserving(std::move(constants));
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
// Verify the written log.
std::unique_ptr<ParsedNetLog> log = ReadNetLogFromDisk(log_path_);
ASSERT_TRUE(log);
// Check that custom constant was correctly printed.
ExpectDictionaryContainsProperty(log->constants, kConstantKey,
kConstantString);
}
TEST_P(FileNetLogObserverTest, GeneratesValidJSONWithPolledData) {
TestClosure closure;
CreateAndStartObserving(nullptr);
// Create dummy polled data
const char kDummyPolledDataPath[] = "dummy_path";
const char kDummyPolledDataString[] = "dummy_info";
std::unique_ptr<base::Value> dummy_polled_data(
new base::Value(base::Value::Type::DICTIONARY));
dummy_polled_data->SetStringPath(kDummyPolledDataPath,
kDummyPolledDataString);
logger_->StopObserving(std::move(dummy_polled_data), closure.closure());
closure.WaitForResult();
// Verify the written log.
std::unique_ptr<ParsedNetLog> log = ReadNetLogFromDisk(log_path_);
ASSERT_TRUE(log);
ASSERT_EQ(0u, log->events->GetList().size());
// Make sure additional information is present and validate it.
ASSERT_TRUE(log->polled_data);
ExpectDictionaryContainsProperty(log->polled_data, kDummyPolledDataPath,
kDummyPolledDataString);
}
// Adds events concurrently from several different threads. The exact order of
// events seen by this test is non-deterministic.
TEST_P(FileNetLogObserverTest, AddEventsFromMultipleThreads) {
const size_t kNumThreads = 10;
std::vector<std::unique_ptr<base::Thread>> threads(kNumThreads);
#if defined(OS_FUCHSIA)
// TODO(https://crbug.com/959245): Diagnosting logging to determine where
// this test sometimes hangs.
LOG(ERROR) << "Create and start threads.";
#endif
// Start all the threads. Waiting for them to start is to hopefuly improve
// the odds of hitting interesting races once events start being added.
for (size_t i = 0; i < threads.size(); ++i) {
threads[i] = std::make_unique<base::Thread>(
base::StringPrintf("WorkerThread%i", static_cast<int>(i)));
threads[i]->Start();
threads[i]->WaitUntilThreadStarted();
}
#if defined(OS_FUCHSIA)
LOG(ERROR) << "Create and start observing.";
#endif
CreateAndStartObserving(nullptr);
const size_t kNumEventsAddedPerThread = 200;
#if defined(OS_FUCHSIA)
LOG(ERROR) << "Posting tasks.";
#endif
// Add events in parallel from all the threads.
for (size_t i = 0; i < kNumThreads; ++i) {
threads[i]->task_runner()->PostTask(
FROM_HERE, base::BindOnce(&AddEntries, base::Unretained(logger_.get()),
kNumEventsAddedPerThread, kDummyEventSize));
}
#if defined(OS_FUCHSIA)
LOG(ERROR) << "Joining all threads.";
#endif
// Join all the threads.
threads.clear();
#if defined(OS_FUCHSIA)
LOG(ERROR) << "Stop observing.";
#endif
// Stop observing.
TestClosure closure;
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
#if defined(OS_FUCHSIA)
LOG(ERROR) << "Read log from disk and verify.";
#endif
// Verify the written log.
std::unique_ptr<ParsedNetLog> log = ReadNetLogFromDisk(log_path_);
ASSERT_TRUE(log);
// Check that the expected number of events were written to disk.
EXPECT_EQ(kNumEventsAddedPerThread * kNumThreads,
log->events->GetList().size());
#if defined(OS_FUCHSIA)
LOG(ERROR) << "Teardown.";
#endif
}
// Sends enough events to the observer to completely fill one file, but not
// write any events to an additional file. Checks the file bounds.
TEST_F(FileNetLogObserverBoundedTest, EqualToOneFile) {
// The total size of the events is equal to the size of one file.
// |kNumEvents| * |kEventSize| = |kTotalFileSize| / |kTotalNumEvents|
const int kTotalFileSize = 5000;
const int kNumEvents = 2;
const int kEventSize = 250;
TestClosure closure;
CreateAndStartObserving(nullptr, kTotalFileSize, kTotalNumFiles);
AddEntries(logger_.get(), kNumEvents, kEventSize);
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
// Verify the written log.
std::unique_ptr<ParsedNetLog> log = ReadNetLogFromDisk(log_path_);
ASSERT_TRUE(log);
VerifyEventsInLog(log.get(), kNumEvents, kNumEvents);
}
// Sends enough events to fill one file, and partially fill a second file.
// Checks the file bounds and writing to a new file.
TEST_F(FileNetLogObserverBoundedTest, OneEventOverOneFile) {
// The total size of the events is greater than the size of one file, and
// less than the size of two files. The total size of all events except one
// is equal to the size of one file, so the last event will be the only event
// in the second file.
// (|kNumEvents| - 1) * kEventSize = |kTotalFileSize| / |kTotalNumEvents|
const int kTotalFileSize = 6000;
const int kNumEvents = 4;
const int kEventSize = 200;
TestClosure closure;
CreateAndStartObserving(nullptr, kTotalFileSize, kTotalNumFiles);
AddEntries(logger_.get(), kNumEvents, kEventSize);
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
// Verify the written log.
std::unique_ptr<ParsedNetLog> log = ReadNetLogFromDisk(log_path_);
ASSERT_TRUE(log);
VerifyEventsInLog(log.get(), kNumEvents, kNumEvents);
}
// Sends enough events to the observer to completely fill two files.
TEST_F(FileNetLogObserverBoundedTest, EqualToTwoFiles) {
// The total size of the events is equal to the total size of two files.
// |kNumEvents| * |kEventSize| = 2 * |kTotalFileSize| / |kTotalNumEvents|
const int kTotalFileSize = 6000;
const int kNumEvents = 6;
const int kEventSize = 200;
TestClosure closure;
CreateAndStartObserving(nullptr, kTotalFileSize, kTotalNumFiles);
AddEntries(logger_.get(), kNumEvents, kEventSize);
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
// Verify the written log.
std::unique_ptr<ParsedNetLog> log = ReadNetLogFromDisk(log_path_);
ASSERT_TRUE(log);
VerifyEventsInLog(log.get(), kNumEvents, kNumEvents);
}
// Sends exactly enough events to the observer to completely fill all files,
// so that all events fit into the event files and no files need to be
// overwritten.
TEST_F(FileNetLogObserverBoundedTest, FillAllFilesNoOverwriting) {
// The total size of events is equal to the total size of all files.
// |kEventSize| * |kNumEvents| = |kTotalFileSize|
const int kTotalFileSize = 10000;
const int kEventSize = 200;
const int kFileSize = kTotalFileSize / kTotalNumFiles;
const int kNumEvents = kTotalNumFiles * ((kFileSize - 1) / kEventSize + 1);
TestClosure closure;
CreateAndStartObserving(nullptr, kTotalFileSize, kTotalNumFiles);
AddEntries(logger_.get(), kNumEvents, kEventSize);
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
// Verify the written log.
std::unique_ptr<ParsedNetLog> log = ReadNetLogFromDisk(log_path_);
ASSERT_TRUE(log);
VerifyEventsInLog(log.get(), kNumEvents, kNumEvents);
}
// Sends more events to the observer than will fill the WriteQueue, forcing the
// queue to drop an event. Checks that the queue drops the oldest event.
TEST_F(FileNetLogObserverBoundedTest, DropOldEventsFromWriteQueue) {
// The total size of events is greater than the WriteQueue's memory limit, so
// the oldest event must be dropped from the queue and not written to any
// file.
// |kNumEvents| * |kEventSize| > |kTotalFileSize| * 2
const int kTotalFileSize = 1000;
const int kNumEvents = 11;
const int kEventSize = 200;
const int kFileSize = kTotalFileSize / kTotalNumFiles;
TestClosure closure;
CreateAndStartObserving(nullptr, kTotalFileSize, kTotalNumFiles);
AddEntries(logger_.get(), kNumEvents, kEventSize);
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
// Verify the written log.
std::unique_ptr<ParsedNetLog> log = ReadNetLogFromDisk(log_path_);
ASSERT_TRUE(log);
VerifyEventsInLog(
log.get(), kNumEvents,
static_cast<size_t>(kTotalNumFiles * ((kFileSize - 1) / kEventSize + 1)));
}
// Sends twice as many events as will fill all files to the observer, so that
// all of the event files will be filled twice, and every file will be
// overwritten.
TEST_F(FileNetLogObserverBoundedTest, OverwriteAllFiles) {
// The total size of the events is much greater than twice the number of
// events that can fit in the event files, to make sure that the extra events
// are written to a file, not just dropped from the queue.
// |kNumEvents| * |kEventSize| >= 2 * |kTotalFileSize|
const int kTotalFileSize = 6000;
const int kNumEvents = 60;
const int kEventSize = 200;
const int kFileSize = kTotalFileSize / kTotalNumFiles;
TestClosure closure;
CreateAndStartObserving(nullptr, kTotalFileSize, kTotalNumFiles);
AddEntries(logger_.get(), kNumEvents, kEventSize);
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
// Check that the minimum number of events that should fit in event files
// have been written to all files.
int events_per_file = (kFileSize - 1) / kEventSize + 1;
int events_in_last_file = (kNumEvents - 1) % events_per_file + 1;
// Indicates the total number of events that should be written to all files.
int num_events_in_files =
(kTotalNumFiles - 1) * events_per_file + events_in_last_file;
// Verify the written log.
std::unique_ptr<ParsedNetLog> log = ReadNetLogFromDisk(log_path_);
ASSERT_TRUE(log);
VerifyEventsInLog(log.get(), kNumEvents,
static_cast<size_t>(num_events_in_files));
}
// Sends enough events to the observer to fill all event files, plus overwrite
// some files, without overwriting all of them. Checks that the FileWriter
// overwrites the file with the oldest events.
TEST_F(FileNetLogObserverBoundedTest, PartiallyOverwriteFiles) {
// The number of events sent to the observer is greater than the number of
// events that can fit into the event files, but the events can fit in less
// than twice the number of event files, so not every file will need to be
// overwritten.
// |kTotalFileSize| < |kNumEvents| * |kEventSize|
// |kNumEvents| * |kEventSize| <= (2 * |kTotalNumFiles| - 1) * |kFileSize|
const int kTotalFileSize = 6000;
const int kNumEvents = 50;
const int kEventSize = 200;
const int kFileSize = kTotalFileSize / kTotalNumFiles;
TestClosure closure;
CreateAndStartObserving(nullptr, kTotalFileSize, kTotalNumFiles);
AddEntries(logger_.get(), kNumEvents, kEventSize);
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
// Check that the minimum number of events that should fit in event files
// have been written to a file.
int events_per_file = (kFileSize - 1) / kEventSize + 1;
int events_in_last_file = kNumEvents % events_per_file;
if (!events_in_last_file)
events_in_last_file = events_per_file;
int num_events_in_files =
(kTotalNumFiles - 1) * events_per_file + events_in_last_file;
// Verify the written log.
std::unique_ptr<ParsedNetLog> log = ReadNetLogFromDisk(log_path_);
ASSERT_TRUE(log);
VerifyEventsInLog(log.get(), kNumEvents,
static_cast<size_t>(num_events_in_files));
}
// Start logging in bounded mode. Create directories in places where the logger
// expects to create files, in order to cause that file creation to fail.
//
// constants.json -- succeess
// event_file_0.json -- fails to open
// end_netlog.json -- fails to open
TEST_F(FileNetLogObserverBoundedTest, SomeFilesFailToOpen) {
// The total size of events is equal to the total size of all files.
// |kEventSize| * |kNumEvents| = |kTotalFileSize|
const int kTotalFileSize = 10000;
const int kEventSize = 200;
const int kFileSize = kTotalFileSize / kTotalNumFiles;
const int kNumEvents = kTotalNumFiles * ((kFileSize - 1) / kEventSize + 1);
TestClosure closure;
// Create directories as a means to block files from being created by logger.
EXPECT_TRUE(base::CreateDirectory(GetEventFilePath(0)));
EXPECT_TRUE(base::CreateDirectory(GetEndNetlogPath()));
CreateAndStartObserving(nullptr, kTotalFileSize, kTotalNumFiles);
AddEntries(logger_.get(), kNumEvents, kEventSize);
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
// The written log is invalid (and hence can't be parsed). It is just the
// constants.
std::string log_contents;
ASSERT_TRUE(base::ReadFileToString(log_path_, &log_contents));
// TODO(eroman): Verify the partially written log file?
// Even though FileNetLogObserver didn't create the directory itself, it will
// unconditionally delete it. The name should be uncommon enough for this be
// to reasonable.
EXPECT_FALSE(base::PathExists(GetInprogressDirectory()));
}
// Start logging in bounded mode. Create a file at the path where the logger
// expects to create its inprogress directory to store event files. This will
// cause logging to completely break. open it.
TEST_F(FileNetLogObserverBoundedTest, InprogressDirectoryBlocked) {
// The total size of events is equal to the total size of all files.
// |kEventSize| * |kNumEvents| = |kTotalFileSize|
const int kTotalFileSize = 10000;
const int kEventSize = 200;
const int kFileSize = kTotalFileSize / kTotalNumFiles;
const int kNumEvents = kTotalNumFiles * ((kFileSize - 1) / kEventSize + 1);
TestClosure closure;
// By creating a file where a directory should be, it will not be possible to
// write any event files.
EXPECT_TRUE(base::WriteFile(GetInprogressDirectory(), "x", 1));
CreateAndStartObserving(nullptr, kTotalFileSize, kTotalNumFiles);
AddEntries(logger_.get(), kNumEvents, kEventSize);
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
// There will be a log file at the final output, however it will be empty
// since nothing was written to the .inprogress directory.
std::string log_contents;
ASSERT_TRUE(base::ReadFileToString(log_path_, &log_contents));
EXPECT_EQ("", log_contents);
// FileNetLogObserver unconditionally deletes the inprogress path (even though
// it didn't actually create this file and it was a file instead of a
// directory).
// TODO(eroman): Should it only delete if it is a file?
EXPECT_FALSE(base::PathExists(GetInprogressDirectory()));
}
// Start logging in bounded mode. Create a file with the same name as the 0th
// events file. This will prevent any events from being written.
TEST_F(FileNetLogObserverBoundedTest, BlockEventsFile0) {
// The total size of events is equal to the total size of all files.
// |kEventSize| * |kNumEvents| = |kTotalFileSize|
const int kTotalFileSize = 10000;
const int kEventSize = 200;
const int kFileSize = kTotalFileSize / kTotalNumFiles;
const int kNumEvents = kTotalNumFiles * ((kFileSize - 1) / kEventSize + 1);
TestClosure closure;
// Block the 0th events file.
EXPECT_TRUE(base::CreateDirectory(GetEventFilePath(0)));
CreateAndStartObserving(nullptr, kTotalFileSize, kTotalNumFiles);
AddEntries(logger_.get(), kNumEvents, kEventSize);
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
// Verify the written log.
std::unique_ptr<ParsedNetLog> log = ReadNetLogFromDisk(log_path_);
ASSERT_TRUE(log);
ASSERT_EQ(0u, log->events->GetList().size());
}
// Make sure that when using bounded mode with a pre-existing output file,
// a separate in-progress directory can be specified.
TEST_F(FileNetLogObserverBoundedTest, PreExistingUsesSpecifiedDir) {
base::ScopedTempDir scratch_dir;
ASSERT_TRUE(scratch_dir.CreateUniqueTempDir());
base::File file(log_path_, base::File::FLAG_CREATE | base::File::FLAG_WRITE);
ASSERT_TRUE(file.IsValid());
// Stick in some nonsense to make sure the file gets cleared properly
file.Write(0, "not json", 8);
logger_ = FileNetLogObserver::CreateBoundedPreExisting(
scratch_dir.GetPath(), std::move(file), kLargeFileSize, nullptr);
logger_->StartObserving(&net_log_, NetLogCaptureMode::kDefault);
base::ThreadPoolInstance::Get()->FlushForTesting();
EXPECT_TRUE(base::PathExists(log_path_));
EXPECT_TRUE(
base::PathExists(scratch_dir.GetPath().AppendASCII("constants.json")));
EXPECT_FALSE(base::PathExists(GetInprogressDirectory()));
TestClosure closure;
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
// Now the scratch dir should be gone, too.
EXPECT_FALSE(base::PathExists(scratch_dir.GetPath()));
EXPECT_FALSE(base::PathExists(GetInprogressDirectory()));
}
// Creates a bounded log with a very large total size and verifies that events
// are not dropped. This is a regression test for https://crbug.com/959929 in
// which the WriteQueue size was calculated by the possibly overflowed
// expression |total_file_size * 2|.
TEST_F(FileNetLogObserverBoundedTest, LargeWriteQueueSize) {
TestClosure closure;
// This is a large value such that multiplying it by 2 will overflow to a much
// smaller value (5).
uint64_t total_file_size = 0x8000000000000005;
CreateAndStartObserving(nullptr, total_file_size, kTotalNumFiles);
// Send 3 dummy events. This isn't a lot of data, however if WriteQueue was
// initialized using the overflowed value of |total_file_size * 2| (which is
// 5), then the effective limit would prevent any events from being written.
AddEntries(logger_.get(), 3, kDummyEventSize);
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
// Verify the written log.
std::unique_ptr<ParsedNetLog> log = ReadNetLogFromDisk(log_path_);
ASSERT_TRUE(log);
ASSERT_EQ(3u, log->events->GetList().size());
}
void AddEntriesViaNetLog(NetLog* net_log, int num_entries) {
for (int i = 0; i < num_entries; i++) {
net_log->AddGlobalEntry(NetLogEventType::PAC_JAVASCRIPT_ERROR);
}
}
TEST_P(FileNetLogObserverTest, AddEventsFromMultipleThreadsWithStopObserving) {
const size_t kNumThreads = 10;
std::vector<std::unique_ptr<base::Thread>> threads(kNumThreads);
// Start all the threads. Waiting for them to start is to hopefully improve
// the odds of hitting interesting races once events start being added.
for (size_t i = 0; i < threads.size(); ++i) {
threads[i] = std::make_unique<base::Thread>(
base::StringPrintf("WorkerThread%i", static_cast<int>(i)));
threads[i]->Start();
threads[i]->WaitUntilThreadStarted();
}
CreateAndStartObserving(nullptr);
const size_t kNumEventsAddedPerThread = 200;
// Add events in parallel from all the threads.
for (size_t i = 0; i < kNumThreads; ++i) {
threads[i]->task_runner()->PostTask(
FROM_HERE,
base::BindOnce(&AddEntriesViaNetLog, base::Unretained(&net_log_),
kNumEventsAddedPerThread));
}
// Stop observing.
TestClosure closure;
logger_->StopObserving(nullptr, closure.closure());
closure.WaitForResult();
// Join all the threads.
threads.clear();
ASSERT_TRUE(LogFileExists());
}
TEST_P(FileNetLogObserverTest,
AddEventsFromMultipleThreadsWithoutStopObserving) {
const size_t kNumThreads = 10;
std::vector<std::unique_ptr<base::Thread>> threads(kNumThreads);
// Start all the threads. Waiting for them to start is to hopefully improve
// the odds of hitting interesting races once events start being added.
for (size_t i = 0; i < threads.size(); ++i) {
threads[i] = std::make_unique<base::Thread>(
base::StringPrintf("WorkerThread%i", static_cast<int>(i)));
threads[i]->Start();
threads[i]->WaitUntilThreadStarted();
}
CreateAndStartObserving(nullptr);
const size_t kNumEventsAddedPerThread = 200;
// Add events in parallel from all the threads.
for (size_t i = 0; i < kNumThreads; ++i) {
threads[i]->task_runner()->PostTask(
FROM_HERE,
base::BindOnce(&AddEntriesViaNetLog, base::Unretained(&net_log_),
kNumEventsAddedPerThread));
}
// Destroy logger.
logger_.reset();
// Join all the threads.
threads.clear();
// The log file doesn't exist since StopObserving() was not called.
ASSERT_FALSE(LogFileExists());
}
} // namespace
} // namespace net