| // Copyright (c) 2012 The Chromium Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style license that can be |
| // found in the LICENSE file. |
| |
| #include "sql/connection.h" |
| |
| #include <string.h> |
| |
| #include "base/bind.h" |
| #include "base/debug/dump_without_crashing.h" |
| #include "base/files/file_path.h" |
| #include "base/files/file_util.h" |
| #include "base/format_macros.h" |
| #include "base/json/json_file_value_serializer.h" |
| #include "base/lazy_instance.h" |
| #include "base/logging.h" |
| #include "base/message_loop/message_loop.h" |
| #include "base/metrics/histogram.h" |
| #include "base/metrics/sparse_histogram.h" |
| #include "base/strings/string_split.h" |
| #include "base/strings/string_util.h" |
| #include "base/strings/stringprintf.h" |
| #include "base/strings/utf_string_conversions.h" |
| #include "base/synchronization/lock.h" |
| #include "base/trace_event/memory_dump_manager.h" |
| #include "base/trace_event/process_memory_dump.h" |
| #include "sql/statement.h" |
| #include "third_party/sqlite/sqlite3.h" |
| |
| #if defined(OS_IOS) && defined(USE_SYSTEM_SQLITE) |
| #include "third_party/sqlite/src/ext/icu/sqliteicu.h" |
| #endif |
| |
| namespace { |
| |
| // Spin for up to a second waiting for the lock to clear when setting |
| // up the database. |
| // TODO(shess): Better story on this. http://crbug.com/56559 |
| const int kBusyTimeoutSeconds = 1; |
| |
| class ScopedBusyTimeout { |
| public: |
| explicit ScopedBusyTimeout(sqlite3* db) |
| : db_(db) { |
| } |
| ~ScopedBusyTimeout() { |
| sqlite3_busy_timeout(db_, 0); |
| } |
| |
| int SetTimeout(base::TimeDelta timeout) { |
| DCHECK_LT(timeout.InMilliseconds(), INT_MAX); |
| return sqlite3_busy_timeout(db_, |
| static_cast<int>(timeout.InMilliseconds())); |
| } |
| |
| private: |
| sqlite3* db_; |
| }; |
| |
| // Helper to "safely" enable writable_schema. No error checking |
| // because it is reasonable to just forge ahead in case of an error. |
| // If turning it on fails, then most likely nothing will work, whereas |
| // if turning it off fails, it only matters if some code attempts to |
| // continue working with the database and tries to modify the |
| // sqlite_master table (none of our code does this). |
| class ScopedWritableSchema { |
| public: |
| explicit ScopedWritableSchema(sqlite3* db) |
| : db_(db) { |
| sqlite3_exec(db_, "PRAGMA writable_schema=1", NULL, NULL, NULL); |
| } |
| ~ScopedWritableSchema() { |
| sqlite3_exec(db_, "PRAGMA writable_schema=0", NULL, NULL, NULL); |
| } |
| |
| private: |
| sqlite3* db_; |
| }; |
| |
| // Helper to wrap the sqlite3_backup_*() step of Raze(). Return |
| // SQLite error code from running the backup step. |
| int BackupDatabase(sqlite3* src, sqlite3* dst, const char* db_name) { |
| DCHECK_NE(src, dst); |
| sqlite3_backup* backup = sqlite3_backup_init(dst, db_name, src, db_name); |
| if (!backup) { |
| // Since this call only sets things up, this indicates a gross |
| // error in SQLite. |
| DLOG(FATAL) << "Unable to start sqlite3_backup(): " << sqlite3_errmsg(dst); |
| return sqlite3_errcode(dst); |
| } |
| |
| // -1 backs up the entire database. |
| int rc = sqlite3_backup_step(backup, -1); |
| int pages = sqlite3_backup_pagecount(backup); |
| sqlite3_backup_finish(backup); |
| |
| // If successful, exactly one page should have been backed up. If |
| // this breaks, check this function to make sure assumptions aren't |
| // being broken. |
| if (rc == SQLITE_DONE) |
| DCHECK_EQ(pages, 1); |
| |
| return rc; |
| } |
| |
| // Be very strict on attachment point. SQLite can handle a much wider |
| // character set with appropriate quoting, but Chromium code should |
| // just use clean names to start with. |
| bool ValidAttachmentPoint(const char* attachment_point) { |
| for (size_t i = 0; attachment_point[i]; ++i) { |
| if (!((attachment_point[i] >= '0' && attachment_point[i] <= '9') || |
| (attachment_point[i] >= 'a' && attachment_point[i] <= 'z') || |
| (attachment_point[i] >= 'A' && attachment_point[i] <= 'Z') || |
| attachment_point[i] == '_')) { |
| return false; |
| } |
| } |
| return true; |
| } |
| |
| void RecordSqliteMemory10Min() { |
| const int64 used = sqlite3_memory_used(); |
| UMA_HISTOGRAM_COUNTS("Sqlite.MemoryKB.TenMinutes", used / 1024); |
| } |
| |
| void RecordSqliteMemoryHour() { |
| const int64 used = sqlite3_memory_used(); |
| UMA_HISTOGRAM_COUNTS("Sqlite.MemoryKB.OneHour", used / 1024); |
| } |
| |
| void RecordSqliteMemoryDay() { |
| const int64 used = sqlite3_memory_used(); |
| UMA_HISTOGRAM_COUNTS("Sqlite.MemoryKB.OneDay", used / 1024); |
| } |
| |
| void RecordSqliteMemoryWeek() { |
| const int64 used = sqlite3_memory_used(); |
| UMA_HISTOGRAM_COUNTS("Sqlite.MemoryKB.OneWeek", used / 1024); |
| } |
| |
| // SQLite automatically calls sqlite3_initialize() lazily, but |
| // sqlite3_initialize() uses double-checked locking and thus can have |
| // data races. |
| // |
| // TODO(shess): Another alternative would be to have |
| // sqlite3_initialize() called as part of process bring-up. If this |
| // is changed, remove the dynamic_annotations dependency in sql.gyp. |
| base::LazyInstance<base::Lock>::Leaky |
| g_sqlite_init_lock = LAZY_INSTANCE_INITIALIZER; |
| void InitializeSqlite() { |
| base::AutoLock lock(g_sqlite_init_lock.Get()); |
| static bool first_call = true; |
| if (first_call) { |
| sqlite3_initialize(); |
| |
| // Schedule callback to record memory footprint histograms at 10m, 1h, and |
| // 1d. There may not be a message loop in tests. |
| if (base::MessageLoop::current()) { |
| base::MessageLoop::current()->PostDelayedTask( |
| FROM_HERE, base::Bind(&RecordSqliteMemory10Min), |
| base::TimeDelta::FromMinutes(10)); |
| base::MessageLoop::current()->PostDelayedTask( |
| FROM_HERE, base::Bind(&RecordSqliteMemoryHour), |
| base::TimeDelta::FromHours(1)); |
| base::MessageLoop::current()->PostDelayedTask( |
| FROM_HERE, base::Bind(&RecordSqliteMemoryDay), |
| base::TimeDelta::FromDays(1)); |
| base::MessageLoop::current()->PostDelayedTask( |
| FROM_HERE, base::Bind(&RecordSqliteMemoryWeek), |
| base::TimeDelta::FromDays(7)); |
| } |
| |
| first_call = false; |
| } |
| } |
| |
| // Helper to get the sqlite3_file* associated with the "main" database. |
| int GetSqlite3File(sqlite3* db, sqlite3_file** file) { |
| *file = NULL; |
| int rc = sqlite3_file_control(db, NULL, SQLITE_FCNTL_FILE_POINTER, file); |
| if (rc != SQLITE_OK) |
| return rc; |
| |
| // TODO(shess): NULL in file->pMethods has been observed on android_dbg |
| // content_unittests, even though it should not be possible. |
| // http://crbug.com/329982 |
| if (!*file || !(*file)->pMethods) |
| return SQLITE_ERROR; |
| |
| return rc; |
| } |
| |
| // Convenience to get the sqlite3_file* and the size for the "main" database. |
| int GetSqlite3FileAndSize(sqlite3* db, |
| sqlite3_file** file, sqlite3_int64* db_size) { |
| int rc = GetSqlite3File(db, file); |
| if (rc != SQLITE_OK) |
| return rc; |
| |
| return (*file)->pMethods->xFileSize(*file, db_size); |
| } |
| |
| // This should match UMA_HISTOGRAM_MEDIUM_TIMES(). |
| base::HistogramBase* GetMediumTimeHistogram(const std::string& name) { |
| return base::Histogram::FactoryTimeGet( |
| name, |
| base::TimeDelta::FromMilliseconds(10), |
| base::TimeDelta::FromMinutes(3), |
| 50, |
| base::HistogramBase::kUmaTargetedHistogramFlag); |
| } |
| |
| std::string AsUTF8ForSQL(const base::FilePath& path) { |
| #if defined(OS_WIN) |
| return base::WideToUTF8(path.value()); |
| #elif defined(OS_POSIX) |
| return path.value(); |
| #endif |
| } |
| |
| } // namespace |
| |
| namespace sql { |
| |
| // static |
| Connection::ErrorIgnorerCallback* Connection::current_ignorer_cb_ = NULL; |
| |
| // static |
| bool Connection::ShouldIgnoreSqliteError(int error) { |
| if (!current_ignorer_cb_) |
| return false; |
| return current_ignorer_cb_->Run(error); |
| } |
| |
| // static |
| bool Connection::ShouldIgnoreSqliteCompileError(int error) { |
| // Put this first in case tests need to see that the check happened. |
| if (ShouldIgnoreSqliteError(error)) |
| return true; |
| |
| // Trim extended error codes. |
| int basic_error = error & 0xff; |
| |
| // These errors relate more to the runtime context of the system than to |
| // errors with a SQL statement or with the schema, so they aren't generally |
| // interesting to flag. This list is not comprehensive. |
| return basic_error == SQLITE_BUSY || |
| basic_error == SQLITE_NOTADB || |
| basic_error == SQLITE_CORRUPT; |
| } |
| |
| bool Connection::OnMemoryDump(const base::trace_event::MemoryDumpArgs& args, |
| base::trace_event::ProcessMemoryDump* pmd) { |
| if (args.level_of_detail == |
| base::trace_event::MemoryDumpLevelOfDetail::LIGHT || |
| !db_) { |
| return true; |
| } |
| |
| // The high water mark is not tracked for the following usages. |
| int cache_size, dummy_int; |
| sqlite3_db_status(db_, SQLITE_DBSTATUS_CACHE_USED, &cache_size, &dummy_int, |
| 0 /* resetFlag */); |
| int schema_size; |
| sqlite3_db_status(db_, SQLITE_DBSTATUS_SCHEMA_USED, &schema_size, &dummy_int, |
| 0 /* resetFlag */); |
| int statement_size; |
| sqlite3_db_status(db_, SQLITE_DBSTATUS_STMT_USED, &statement_size, &dummy_int, |
| 0 /* resetFlag */); |
| |
| std::string name = base::StringPrintf( |
| "sqlite/%s_connection/%p", |
| histogram_tag_.empty() ? "Unknown" : histogram_tag_.c_str(), this); |
| base::trace_event::MemoryAllocatorDump* dump = pmd->CreateAllocatorDump(name); |
| dump->AddScalar(base::trace_event::MemoryAllocatorDump::kNameSize, |
| base::trace_event::MemoryAllocatorDump::kUnitsBytes, |
| cache_size + schema_size + statement_size); |
| dump->AddScalar("cache_size", |
| base::trace_event::MemoryAllocatorDump::kUnitsBytes, |
| cache_size); |
| dump->AddScalar("schema_size", |
| base::trace_event::MemoryAllocatorDump::kUnitsBytes, |
| schema_size); |
| dump->AddScalar("statement_size", |
| base::trace_event::MemoryAllocatorDump::kUnitsBytes, |
| statement_size); |
| return true; |
| } |
| |
| void Connection::ReportDiagnosticInfo(int extended_error, Statement* stmt) { |
| AssertIOAllowed(); |
| |
| std::string debug_info; |
| const int error = (extended_error & 0xFF); |
| if (error == SQLITE_CORRUPT) { |
| debug_info = CollectCorruptionInfo(); |
| } else { |
| debug_info = CollectErrorInfo(extended_error, stmt); |
| } |
| |
| if (!debug_info.empty() && RegisterIntentToUpload()) { |
| char debug_buf[2000]; |
| base::strlcpy(debug_buf, debug_info.c_str(), arraysize(debug_buf)); |
| base::debug::Alias(&debug_buf); |
| |
| base::debug::DumpWithoutCrashing(); |
| } |
| } |
| |
| // static |
| void Connection::SetErrorIgnorer(Connection::ErrorIgnorerCallback* cb) { |
| CHECK(current_ignorer_cb_ == NULL); |
| current_ignorer_cb_ = cb; |
| } |
| |
| // static |
| void Connection::ResetErrorIgnorer() { |
| CHECK(current_ignorer_cb_); |
| current_ignorer_cb_ = NULL; |
| } |
| |
| bool StatementID::operator<(const StatementID& other) const { |
| if (number_ != other.number_) |
| return number_ < other.number_; |
| return strcmp(str_, other.str_) < 0; |
| } |
| |
| Connection::StatementRef::StatementRef(Connection* connection, |
| sqlite3_stmt* stmt, |
| bool was_valid) |
| : connection_(connection), |
| stmt_(stmt), |
| was_valid_(was_valid) { |
| if (connection) |
| connection_->StatementRefCreated(this); |
| } |
| |
| Connection::StatementRef::~StatementRef() { |
| if (connection_) |
| connection_->StatementRefDeleted(this); |
| Close(false); |
| } |
| |
| void Connection::StatementRef::Close(bool forced) { |
| if (stmt_) { |
| // Call to AssertIOAllowed() cannot go at the beginning of the function |
| // because Close() is called unconditionally from destructor to clean |
| // connection_. And if this is inactive statement this won't cause any |
| // disk access and destructor most probably will be called on thread |
| // not allowing disk access. |
| // TODO(paivanof@gmail.com): This should move to the beginning |
| // of the function. http://crbug.com/136655. |
| AssertIOAllowed(); |
| sqlite3_finalize(stmt_); |
| stmt_ = NULL; |
| } |
| connection_ = NULL; // The connection may be getting deleted. |
| |
| // Forced close is expected to happen from a statement error |
| // handler. In that case maintain the sense of |was_valid_| which |
| // previously held for this ref. |
| was_valid_ = was_valid_ && forced; |
| } |
| |
| Connection::Connection() |
| : db_(NULL), |
| page_size_(0), |
| cache_size_(0), |
| exclusive_locking_(false), |
| restrict_to_user_(false), |
| transaction_nesting_(0), |
| needs_rollback_(false), |
| in_memory_(false), |
| poisoned_(false), |
| mmap_disabled_(false), |
| mmap_enabled_(false), |
| total_changes_at_last_release_(0), |
| stats_histogram_(NULL), |
| commit_time_histogram_(NULL), |
| autocommit_time_histogram_(NULL), |
| update_time_histogram_(NULL), |
| query_time_histogram_(NULL), |
| clock_(new TimeSource()) { |
| base::trace_event::MemoryDumpManager::GetInstance()->RegisterDumpProvider( |
| this, "sql::Connection", nullptr); |
| } |
| |
| Connection::~Connection() { |
| base::trace_event::MemoryDumpManager::GetInstance()->UnregisterDumpProvider( |
| this); |
| Close(); |
| } |
| |
| void Connection::RecordEvent(Events event, size_t count) { |
| for (size_t i = 0; i < count; ++i) { |
| UMA_HISTOGRAM_ENUMERATION("Sqlite.Stats", event, EVENT_MAX_VALUE); |
| } |
| |
| if (stats_histogram_) { |
| for (size_t i = 0; i < count; ++i) { |
| stats_histogram_->Add(event); |
| } |
| } |
| } |
| |
| void Connection::RecordCommitTime(const base::TimeDelta& delta) { |
| RecordUpdateTime(delta); |
| UMA_HISTOGRAM_MEDIUM_TIMES("Sqlite.CommitTime", delta); |
| if (commit_time_histogram_) |
| commit_time_histogram_->AddTime(delta); |
| } |
| |
| void Connection::RecordAutoCommitTime(const base::TimeDelta& delta) { |
| RecordUpdateTime(delta); |
| UMA_HISTOGRAM_MEDIUM_TIMES("Sqlite.AutoCommitTime", delta); |
| if (autocommit_time_histogram_) |
| autocommit_time_histogram_->AddTime(delta); |
| } |
| |
| void Connection::RecordUpdateTime(const base::TimeDelta& delta) { |
| RecordQueryTime(delta); |
| UMA_HISTOGRAM_MEDIUM_TIMES("Sqlite.UpdateTime", delta); |
| if (update_time_histogram_) |
| update_time_histogram_->AddTime(delta); |
| } |
| |
| void Connection::RecordQueryTime(const base::TimeDelta& delta) { |
| UMA_HISTOGRAM_MEDIUM_TIMES("Sqlite.QueryTime", delta); |
| if (query_time_histogram_) |
| query_time_histogram_->AddTime(delta); |
| } |
| |
| void Connection::RecordTimeAndChanges( |
| const base::TimeDelta& delta, bool read_only) { |
| if (read_only) { |
| RecordQueryTime(delta); |
| } else { |
| const int changes = sqlite3_changes(db_); |
| if (sqlite3_get_autocommit(db_)) { |
| RecordAutoCommitTime(delta); |
| RecordEvent(EVENT_CHANGES_AUTOCOMMIT, changes); |
| } else { |
| RecordUpdateTime(delta); |
| RecordEvent(EVENT_CHANGES, changes); |
| } |
| } |
| } |
| |
| bool Connection::Open(const base::FilePath& path) { |
| if (!histogram_tag_.empty()) { |
| int64_t size_64 = 0; |
| if (base::GetFileSize(path, &size_64)) { |
| size_t sample = static_cast<size_t>(size_64 / 1024); |
| std::string full_histogram_name = "Sqlite.SizeKB." + histogram_tag_; |
| base::HistogramBase* histogram = |
| base::Histogram::FactoryGet( |
| full_histogram_name, 1, 1000000, 50, |
| base::HistogramBase::kUmaTargetedHistogramFlag); |
| if (histogram) |
| histogram->Add(sample); |
| } |
| } |
| |
| return OpenInternal(AsUTF8ForSQL(path), RETRY_ON_POISON); |
| } |
| |
| bool Connection::OpenInMemory() { |
| in_memory_ = true; |
| return OpenInternal(":memory:", NO_RETRY); |
| } |
| |
| bool Connection::OpenTemporary() { |
| return OpenInternal("", NO_RETRY); |
| } |
| |
| void Connection::CloseInternal(bool forced) { |
| // TODO(shess): Calling "PRAGMA journal_mode = DELETE" at this point |
| // will delete the -journal file. For ChromiumOS or other more |
| // embedded systems, this is probably not appropriate, whereas on |
| // desktop it might make some sense. |
| |
| // sqlite3_close() needs all prepared statements to be finalized. |
| |
| // Release cached statements. |
| statement_cache_.clear(); |
| |
| // With cached statements released, in-use statements will remain. |
| // Closing the database while statements are in use is an API |
| // violation, except for forced close (which happens from within a |
| // statement's error handler). |
| DCHECK(forced || open_statements_.empty()); |
| |
| // Deactivate any outstanding statements so sqlite3_close() works. |
| for (StatementRefSet::iterator i = open_statements_.begin(); |
| i != open_statements_.end(); ++i) |
| (*i)->Close(forced); |
| open_statements_.clear(); |
| |
| if (db_) { |
| // Call to AssertIOAllowed() cannot go at the beginning of the function |
| // because Close() must be called from destructor to clean |
| // statement_cache_, it won't cause any disk access and it most probably |
| // will happen on thread not allowing disk access. |
| // TODO(paivanof@gmail.com): This should move to the beginning |
| // of the function. http://crbug.com/136655. |
| AssertIOAllowed(); |
| |
| int rc = sqlite3_close(db_); |
| if (rc != SQLITE_OK) { |
| UMA_HISTOGRAM_SPARSE_SLOWLY("Sqlite.CloseFailure", rc); |
| DLOG(FATAL) << "sqlite3_close failed: " << GetErrorMessage(); |
| } |
| } |
| db_ = NULL; |
| } |
| |
| void Connection::Close() { |
| // If the database was already closed by RazeAndClose(), then no |
| // need to close again. Clear the |poisoned_| bit so that incorrect |
| // API calls are caught. |
| if (poisoned_) { |
| poisoned_ = false; |
| return; |
| } |
| |
| CloseInternal(false); |
| } |
| |
| void Connection::Preload() { |
| AssertIOAllowed(); |
| |
| if (!db_) { |
| DLOG_IF(FATAL, !poisoned_) << "Cannot preload null db"; |
| return; |
| } |
| |
| // Use local settings if provided, otherwise use documented defaults. The |
| // actual results could be fetching via PRAGMA calls. |
| const int page_size = page_size_ ? page_size_ : 1024; |
| sqlite3_int64 preload_size = page_size * (cache_size_ ? cache_size_ : 2000); |
| if (preload_size < 1) |
| return; |
| |
| sqlite3_file* file = NULL; |
| sqlite3_int64 file_size = 0; |
| int rc = GetSqlite3FileAndSize(db_, &file, &file_size); |
| if (rc != SQLITE_OK) |
| return; |
| |
| // Don't preload more than the file contains. |
| if (preload_size > file_size) |
| preload_size = file_size; |
| |
| scoped_ptr<char[]> buf(new char[page_size]); |
| for (sqlite3_int64 pos = 0; pos < preload_size; pos += page_size) { |
| rc = file->pMethods->xRead(file, buf.get(), page_size, pos); |
| |
| // TODO(shess): Consider calling OnSqliteError(). |
| if (rc != SQLITE_OK) |
| return; |
| } |
| } |
| |
| // SQLite keeps unused pages associated with a connection in a cache. It asks |
| // the cache for pages by an id, and if the page is present and the database is |
| // unchanged, it considers the content of the page valid and doesn't read it |
| // from disk. When memory-mapped I/O is enabled, on read SQLite uses page |
| // structures created from the memory map data before consulting the cache. On |
| // write SQLite creates a new in-memory page structure, copies the data from the |
| // memory map, and later writes it, releasing the updated page back to the |
| // cache. |
| // |
| // This means that in memory-mapped mode, the contents of the cached pages are |
| // not re-used for reads, but they are re-used for writes if the re-written page |
| // is still in the cache. The implementation of sqlite3_db_release_memory() as |
| // of SQLite 3.8.7.4 frees all pages from pcaches associated with the |
| // connection, so it should free these pages. |
| // |
| // Unfortunately, the zero page is also freed. That page is never accessed |
| // using memory-mapped I/O, and the cached copy can be re-used after verifying |
| // the file change counter on disk. Also, fresh pages from cache receive some |
| // pager-level initialization before they can be used. Since the information |
| // involved will immediately be accessed in various ways, it is unclear if the |
| // additional overhead is material, or just moving processor cache effects |
| // around. |
| // |
| // TODO(shess): It would be better to release the pages immediately when they |
| // are no longer needed. This would basically happen after SQLite commits a |
| // transaction. I had implemented a pcache wrapper to do this, but it involved |
| // layering violations, and it had to be setup before any other sqlite call, |
| // which was brittle. Also, for large files it would actually make sense to |
| // maintain the existing pcache behavior for blocks past the memory-mapped |
| // segment. I think drh would accept a reasonable implementation of the overall |
| // concept for upstreaming to SQLite core. |
| // |
| // TODO(shess): Another possibility would be to set the cache size small, which |
| // would keep the zero page around, plus some pre-initialized pages, and SQLite |
| // can manage things. The downside is that updates larger than the cache would |
| // spill to the journal. That could be compensated by setting cache_spill to |
| // false. The downside then is that it allows open-ended use of memory for |
| // large transactions. |
| // |
| // TODO(shess): The TrimMemory() trick of bouncing the cache size would also |
| // work. There could be two prepared statements, one for cache_size=1 one for |
| // cache_size=goal. |
| void Connection::ReleaseCacheMemoryIfNeeded(bool implicit_change_performed) { |
| DCHECK(is_open()); |
| |
| // If memory-mapping is not enabled, the page cache helps performance. |
| if (!mmap_enabled_) |
| return; |
| |
| // On caller request, force the change comparison to fail. Done before the |
| // transaction-nesting test so that the signal can carry to transaction |
| // commit. |
| if (implicit_change_performed) |
| --total_changes_at_last_release_; |
| |
| // Cached pages may be re-used within the same transaction. |
| if (transaction_nesting()) |
| return; |
| |
| // If no changes have been made, skip flushing. This allows the first page of |
| // the database to remain in cache across multiple reads. |
| const int total_changes = sqlite3_total_changes(db_); |
| if (total_changes == total_changes_at_last_release_) |
| return; |
| |
| total_changes_at_last_release_ = total_changes; |
| sqlite3_db_release_memory(db_); |
| } |
| |
| base::FilePath Connection::DbPath() const { |
| if (!is_open()) |
| return base::FilePath(); |
| |
| const char* path = sqlite3_db_filename(db_, "main"); |
| const base::StringPiece db_path(path); |
| #if defined(OS_WIN) |
| return base::FilePath(base::UTF8ToWide(db_path)); |
| #elif defined(OS_POSIX) |
| return base::FilePath(db_path); |
| #else |
| NOTREACHED(); |
| return base::FilePath(); |
| #endif |
| } |
| |
| // Data is persisted in a file shared between databases in the same directory. |
| // The "sqlite-diag" file contains a dictionary with the version number, and an |
| // array of histogram tags for databases which have been dumped. |
| bool Connection::RegisterIntentToUpload() const { |
| static const char* kVersionKey = "version"; |
| static const char* kDiagnosticDumpsKey = "DiagnosticDumps"; |
| static int kVersion = 1; |
| |
| AssertIOAllowed(); |
| |
| if (histogram_tag_.empty()) |
| return false; |
| |
| if (!is_open()) |
| return false; |
| |
| if (in_memory_) |
| return false; |
| |
| const base::FilePath db_path = DbPath(); |
| if (db_path.empty()) |
| return false; |
| |
| // Put the collection of diagnostic data next to the databases. In most |
| // cases, this is the profile directory, but safe-browsing stores a Cookies |
| // file in the directory above the profile directory. |
| base::FilePath breadcrumb_path( |
| db_path.DirName().Append(FILE_PATH_LITERAL("sqlite-diag"))); |
| |
| // Lock against multiple updates to the diagnostics file. This code should |
| // seldom be called in the first place, and when called it should seldom be |
| // called for multiple databases, and when called for multiple databases there |
| // is _probably_ something systemic wrong with the user's system. So the lock |
| // should never be contended, but when it is the database experience is |
| // already bad. |
| base::AutoLock lock(g_sqlite_init_lock.Get()); |
| |
| scoped_ptr<base::Value> root; |
| if (!base::PathExists(breadcrumb_path)) { |
| scoped_ptr<base::DictionaryValue> root_dict(new base::DictionaryValue()); |
| root_dict->SetInteger(kVersionKey, kVersion); |
| |
| scoped_ptr<base::ListValue> dumps(new base::ListValue); |
| dumps->AppendString(histogram_tag_); |
| root_dict->Set(kDiagnosticDumpsKey, dumps.Pass()); |
| |
| root = root_dict.Pass(); |
| } else { |
| // Failure to read a valid dictionary implies that something is going wrong |
| // on the system. |
| JSONFileValueDeserializer deserializer(breadcrumb_path); |
| scoped_ptr<base::Value> read_root( |
| deserializer.Deserialize(nullptr, nullptr)); |
| if (!read_root.get()) |
| return false; |
| scoped_ptr<base::DictionaryValue> root_dict = |
| base::DictionaryValue::From(read_root.Pass()); |
| if (!root_dict) |
| return false; |
| |
| // Don't upload if the version is missing or newer. |
| int version = 0; |
| if (!root_dict->GetInteger(kVersionKey, &version) || version > kVersion) |
| return false; |
| |
| base::ListValue* dumps = nullptr; |
| if (!root_dict->GetList(kDiagnosticDumpsKey, &dumps)) |
| return false; |
| |
| const size_t size = dumps->GetSize(); |
| for (size_t i = 0; i < size; ++i) { |
| std::string s; |
| |
| // Don't upload if the value isn't a string, or indicates a prior upload. |
| if (!dumps->GetString(i, &s) || s == histogram_tag_) |
| return false; |
| } |
| |
| // Record intention to proceed with upload. |
| dumps->AppendString(histogram_tag_); |
| root = root_dict.Pass(); |
| } |
| |
| const base::FilePath breadcrumb_new = |
| breadcrumb_path.AddExtension(FILE_PATH_LITERAL("new")); |
| base::DeleteFile(breadcrumb_new, false); |
| |
| // No upload if the breadcrumb file cannot be updated. |
| // TODO(shess): Consider ImportantFileWriter::WriteFileAtomically() to land |
| // the data on disk. For now, losing the data is not a big problem, so the |
| // sync overhead would probably not be worth it. |
| JSONFileValueSerializer serializer(breadcrumb_new); |
| if (!serializer.Serialize(*root)) |
| return false; |
| if (!base::PathExists(breadcrumb_new)) |
| return false; |
| if (!base::ReplaceFile(breadcrumb_new, breadcrumb_path, nullptr)) { |
| base::DeleteFile(breadcrumb_new, false); |
| return false; |
| } |
| |
| return true; |
| } |
| |
| std::string Connection::CollectErrorInfo(int error, Statement* stmt) const { |
| // Buffer for accumulating debugging info about the error. Place |
| // more-relevant information earlier, in case things overflow the |
| // fixed-size reporting buffer. |
| std::string debug_info; |
| |
| // The error message from the failed operation. |
| base::StringAppendF(&debug_info, "db error: %d/%s\n", |
| GetErrorCode(), GetErrorMessage()); |
| |
| // TODO(shess): |error| and |GetErrorCode()| should always be the same, but |
| // reading code does not entirely convince me. Remove if they turn out to be |
| // the same. |
| if (error != GetErrorCode()) |
| base::StringAppendF(&debug_info, "reported error: %d\n", error); |
| |
| // System error information. Interpretation of Windows errors is different |
| // from posix. |
| #if defined(OS_WIN) |
| base::StringAppendF(&debug_info, "LastError: %d\n", GetLastErrno()); |
| #elif defined(OS_POSIX) |
| base::StringAppendF(&debug_info, "errno: %d\n", GetLastErrno()); |
| #else |
| NOTREACHED(); // Add appropriate log info. |
| #endif |
| |
| if (stmt) { |
| base::StringAppendF(&debug_info, "statement: %s\n", |
| stmt->GetSQLStatement()); |
| } else { |
| base::StringAppendF(&debug_info, "statement: NULL\n"); |
| } |
| |
| // SQLITE_ERROR often indicates some sort of mismatch between the statement |
| // and the schema, possibly due to a failed schema migration. |
| if (error == SQLITE_ERROR) { |
| const char* kVersionSql = "SELECT value FROM meta WHERE key = 'version'"; |
| sqlite3_stmt* s; |
| int rc = sqlite3_prepare_v2(db_, kVersionSql, -1, &s, nullptr); |
| if (rc == SQLITE_OK) { |
| rc = sqlite3_step(s); |
| if (rc == SQLITE_ROW) { |
| base::StringAppendF(&debug_info, "version: %d\n", |
| sqlite3_column_int(s, 0)); |
| } else if (rc == SQLITE_DONE) { |
| debug_info += "version: none\n"; |
| } else { |
| base::StringAppendF(&debug_info, "version: error %d\n", rc); |
| } |
| sqlite3_finalize(s); |
| } else { |
| base::StringAppendF(&debug_info, "version: prepare error %d\n", rc); |
| } |
| |
| debug_info += "schema:\n"; |
| |
| // sqlite_master has columns: |
| // type - "index" or "table". |
| // name - name of created element. |
| // tbl_name - name of element, or target table in case of index. |
| // rootpage - root page of the element in database file. |
| // sql - SQL to create the element. |
| // In general, the |sql| column is sufficient to derive the other columns. |
| // |rootpage| is not interesting for debugging, without the contents of the |
| // database. The COALESCE is because certain automatic elements will have a |
| // |name| but no |sql|, |
| const char* kSchemaSql = "SELECT COALESCE(sql, name) FROM sqlite_master"; |
| rc = sqlite3_prepare_v2(db_, kSchemaSql, -1, &s, nullptr); |
| if (rc == SQLITE_OK) { |
| while ((rc = sqlite3_step(s)) == SQLITE_ROW) { |
| base::StringAppendF(&debug_info, "%s\n", sqlite3_column_text(s, 0)); |
| } |
| if (rc != SQLITE_DONE) |
| base::StringAppendF(&debug_info, "error %d\n", rc); |
| sqlite3_finalize(s); |
| } else { |
| base::StringAppendF(&debug_info, "prepare error %d\n", rc); |
| } |
| } |
| |
| return debug_info; |
| } |
| |
| // TODO(shess): Since this is only called in an error situation, it might be |
| // prudent to rewrite in terms of SQLite API calls, and mark the function const. |
| std::string Connection::CollectCorruptionInfo() { |
| AssertIOAllowed(); |
| |
| // If the file cannot be accessed it is unlikely that an integrity check will |
| // turn up actionable information. |
| const base::FilePath db_path = DbPath(); |
| int64 db_size = -1; |
| if (!base::GetFileSize(db_path, &db_size) || db_size < 0) |
| return std::string(); |
| |
| // Buffer for accumulating debugging info about the error. Place |
| // more-relevant information earlier, in case things overflow the |
| // fixed-size reporting buffer. |
| std::string debug_info; |
| base::StringAppendF(&debug_info, "SQLITE_CORRUPT, db size %" PRId64 "\n", |
| db_size); |
| |
| // Only check files up to 8M to keep things from blocking too long. |
| const int64 kMaxIntegrityCheckSize = 8192 * 1024; |
| if (db_size > kMaxIntegrityCheckSize) { |
| debug_info += "integrity_check skipped due to size\n"; |
| } else { |
| std::vector<std::string> messages; |
| |
| // TODO(shess): FullIntegrityCheck() splits into a vector while this joins |
| // into a string. Probably should be refactored. |
| const base::TimeTicks before = base::TimeTicks::Now(); |
| FullIntegrityCheck(&messages); |
| base::StringAppendF( |
| &debug_info, |
| "integrity_check %" PRId64 " ms, %" PRIuS " records:\n", |
| (base::TimeTicks::Now() - before).InMilliseconds(), |
| messages.size()); |
| |
| // SQLite returns up to 100 messages by default, trim deeper to |
| // keep close to the 2000-character size limit for dumping. |
| const size_t kMaxMessages = 20; |
| for (size_t i = 0; i < kMaxMessages && i < messages.size(); ++i) { |
| base::StringAppendF(&debug_info, "%s\n", messages[i].c_str()); |
| } |
| } |
| |
| return debug_info; |
| } |
| |
| size_t Connection::GetAppropriateMmapSize() { |
| AssertIOAllowed(); |
| |
| // TODO(shess): Using sql::MetaTable seems indicated, but mixing |
| // sql::MetaTable and direct access seems error-prone. It might make sense to |
| // simply integrate sql::MetaTable functionality into sql::Connection. |
| |
| #if defined(OS_IOS) |
| // iOS SQLite does not support memory mapping. |
| return 0; |
| #endif |
| |
| // If the database doesn't have a place to track progress, assume the worst. |
| // This will happen when new databases are created. |
| if (!DoesTableExist("meta")) { |
| RecordOneEvent(EVENT_MMAP_META_MISSING); |
| return 0; |
| } |
| |
| // Key into meta table to get status from a previous run. The value |
| // represents how much data in bytes has successfully been read from the |
| // database. |kMmapFailure| indicates that there was a read error and the |
| // database should not be memory-mapped, while |kMmapSuccess| indicates that |
| // the entire file was read at some point and can be memory-mapped without |
| // constraint. |
| const char* kMmapStatusKey = "mmap_status"; |
| static const sqlite3_int64 kMmapFailure = -2; |
| static const sqlite3_int64 kMmapSuccess = -1; |
| |
| // Start reading from 0 unless status is found in meta table. |
| sqlite3_int64 mmap_ofs = 0; |
| |
| // Retrieve the current status. It is fine for the status to be missing |
| // entirely, but any error prevents memory-mapping. |
| { |
| const char* kMmapStatusSql = "SELECT value FROM meta WHERE key = ?"; |
| Statement s(GetUniqueStatement(kMmapStatusSql)); |
| s.BindString(0, kMmapStatusKey); |
| if (s.Step()) { |
| mmap_ofs = s.ColumnInt64(0); |
| } else if (!s.Succeeded()) { |
| RecordOneEvent(EVENT_MMAP_META_FAILURE_READ); |
| return 0; |
| } |
| } |
| |
| // Database read failed in the past, don't memory map. |
| if (mmap_ofs == kMmapFailure) { |
| RecordOneEvent(EVENT_MMAP_FAILED); |
| return 0; |
| } else if (mmap_ofs != kMmapSuccess) { |
| // Continue reading from previous offset. |
| DCHECK_GE(mmap_ofs, 0); |
| |
| // TODO(shess): Could this reading code be shared with Preload()? It would |
| // require locking twice (this code wouldn't be able to access |db_size| so |
| // the helper would have to return amount read). |
| |
| // Read more of the database looking for errors. The VFS interface is used |
| // to assure that the reads are valid for SQLite. |g_reads_allowed| is used |
| // to limit checking to 20MB per run of Chromium. |
| sqlite3_file* file = NULL; |
| sqlite3_int64 db_size = 0; |
| if (SQLITE_OK != GetSqlite3FileAndSize(db_, &file, &db_size)) { |
| RecordOneEvent(EVENT_MMAP_VFS_FAILURE); |
| return 0; |
| } |
| |
| // Read the data left, or |g_reads_allowed|, whichever is smaller. |
| // |g_reads_allowed| limits the total amount of I/O to spend verifying data |
| // in a single Chromium run. |
| sqlite3_int64 amount = db_size - mmap_ofs; |
| if (amount < 0) |
| amount = 0; |
| if (amount > 0) { |
| base::AutoLock lock(g_sqlite_init_lock.Get()); |
| static sqlite3_int64 g_reads_allowed = 20 * 1024 * 1024; |
| if (g_reads_allowed < amount) |
| amount = g_reads_allowed; |
| g_reads_allowed -= amount; |
| } |
| |
| // |amount| can be <= 0 if |g_reads_allowed| ran out of quota, or if the |
| // database was truncated after a previous pass. |
| if (amount <= 0 && mmap_ofs < db_size) { |
| DCHECK_EQ(0, amount); |
| RecordOneEvent(EVENT_MMAP_SUCCESS_NO_PROGRESS); |
| } else { |
| static const int kPageSize = 4096; |
| char buf[kPageSize]; |
| while (amount > 0) { |
| int rc = file->pMethods->xRead(file, buf, sizeof(buf), mmap_ofs); |
| if (rc == SQLITE_OK) { |
| mmap_ofs += sizeof(buf); |
| amount -= sizeof(buf); |
| } else if (rc == SQLITE_IOERR_SHORT_READ) { |
| // Reached EOF for a database with page size < |kPageSize|. |
| mmap_ofs = db_size; |
| break; |
| } else { |
| // TODO(shess): Consider calling OnSqliteError(). |
| mmap_ofs = kMmapFailure; |
| break; |
| } |
| } |
| |
| // Log these events after update to distinguish meta update failure. |
| Events event; |
| if (mmap_ofs >= db_size) { |
| mmap_ofs = kMmapSuccess; |
| event = EVENT_MMAP_SUCCESS_NEW; |
| } else if (mmap_ofs > 0) { |
| event = EVENT_MMAP_SUCCESS_PARTIAL; |
| } else { |
| DCHECK_EQ(kMmapFailure, mmap_ofs); |
| event = EVENT_MMAP_FAILED_NEW; |
| } |
| |
| const char* kMmapUpdateStatusSql = "REPLACE INTO meta VALUES (?, ?)"; |
| Statement s(GetUniqueStatement(kMmapUpdateStatusSql)); |
| s.BindString(0, kMmapStatusKey); |
| s.BindInt64(1, mmap_ofs); |
| if (!s.Run()) { |
| RecordOneEvent(EVENT_MMAP_META_FAILURE_UPDATE); |
| return 0; |
| } |
| |
| RecordOneEvent(event); |
| } |
| } |
| |
| if (mmap_ofs == kMmapFailure) |
| return 0; |
| if (mmap_ofs == kMmapSuccess) |
| return 256 * 1024 * 1024; |
| return mmap_ofs; |
| } |
| |
| void Connection::TrimMemory(bool aggressively) { |
| if (!db_) |
| return; |
| |
| // TODO(shess): investigate using sqlite3_db_release_memory() when possible. |
| int original_cache_size; |
| { |
| Statement sql_get_original(GetUniqueStatement("PRAGMA cache_size")); |
| if (!sql_get_original.Step()) { |
| DLOG(WARNING) << "Could not get cache size " << GetErrorMessage(); |
| return; |
| } |
| original_cache_size = sql_get_original.ColumnInt(0); |
| } |
| int shrink_cache_size = aggressively ? 1 : (original_cache_size / 2); |
| |
| // Force sqlite to try to reduce page cache usage. |
| const std::string sql_shrink = |
| base::StringPrintf("PRAGMA cache_size=%d", shrink_cache_size); |
| if (!Execute(sql_shrink.c_str())) |
| DLOG(WARNING) << "Could not shrink cache size: " << GetErrorMessage(); |
| |
| // Restore cache size. |
| const std::string sql_restore = |
| base::StringPrintf("PRAGMA cache_size=%d", original_cache_size); |
| if (!Execute(sql_restore.c_str())) |
| DLOG(WARNING) << "Could not restore cache size: " << GetErrorMessage(); |
| } |
| |
| // Create an in-memory database with the existing database's page |
| // size, then backup that database over the existing database. |
| bool Connection::Raze() { |
| AssertIOAllowed(); |
| |
| if (!db_) { |
| DLOG_IF(FATAL, !poisoned_) << "Cannot raze null db"; |
| return false; |
| } |
| |
| if (transaction_nesting_ > 0) { |
| DLOG(FATAL) << "Cannot raze within a transaction"; |
| return false; |
| } |
| |
| sql::Connection null_db; |
| if (!null_db.OpenInMemory()) { |
| DLOG(FATAL) << "Unable to open in-memory database."; |
| return false; |
| } |
| |
| if (page_size_) { |
| // Enforce SQLite restrictions on |page_size_|. |
| DCHECK(!(page_size_ & (page_size_ - 1))) |
| << " page_size_ " << page_size_ << " is not a power of two."; |
| const int kSqliteMaxPageSize = 32768; // from sqliteLimit.h |
| DCHECK_LE(page_size_, kSqliteMaxPageSize); |
| const std::string sql = |
| base::StringPrintf("PRAGMA page_size=%d", page_size_); |
| if (!null_db.Execute(sql.c_str())) |
| return false; |
| } |
| |
| #if defined(OS_ANDROID) |
| // Android compiles with SQLITE_DEFAULT_AUTOVACUUM. Unfortunately, |
| // in-memory databases do not respect this define. |
| // TODO(shess): Figure out a way to set this without using platform |
| // specific code. AFAICT from sqlite3.c, the only way to do it |
| // would be to create an actual filesystem database, which is |
| // unfortunate. |
| if (!null_db.Execute("PRAGMA auto_vacuum = 1")) |
| return false; |
| #endif |
| |
| // The page size doesn't take effect until a database has pages, and |
| // at this point the null database has none. Changing the schema |
| // version will create the first page. This will not affect the |
| // schema version in the resulting database, as SQLite's backup |
| // implementation propagates the schema version from the original |
| // connection to the new version of the database, incremented by one |
| // so that other readers see the schema change and act accordingly. |
| if (!null_db.Execute("PRAGMA schema_version = 1")) |
| return false; |
| |
| // SQLite tracks the expected number of database pages in the first |
| // page, and if it does not match the total retrieved from a |
| // filesystem call, treats the database as corrupt. This situation |
| // breaks almost all SQLite calls. "PRAGMA writable_schema" can be |
| // used to hint to SQLite to soldier on in that case, specifically |
| // for purposes of recovery. [See SQLITE_CORRUPT_BKPT case in |
| // sqlite3.c lockBtree().] |
| // TODO(shess): With this, "PRAGMA auto_vacuum" and "PRAGMA |
| // page_size" can be used to query such a database. |
| ScopedWritableSchema writable_schema(db_); |
| |
| const char* kMain = "main"; |
| int rc = BackupDatabase(null_db.db_, db_, kMain); |
| UMA_HISTOGRAM_SPARSE_SLOWLY("Sqlite.RazeDatabase",rc); |
| |
| // The destination database was locked. |
| if (rc == SQLITE_BUSY) { |
| return false; |
| } |
| |
| // SQLITE_NOTADB can happen if page 1 of db_ exists, but is not |
| // formatted correctly. SQLITE_IOERR_SHORT_READ can happen if db_ |
| // isn't even big enough for one page. Either way, reach in and |
| // truncate it before trying again. |
| // TODO(shess): Maybe it would be worthwhile to just truncate from |
| // the get-go? |
| if (rc == SQLITE_NOTADB || rc == SQLITE_IOERR_SHORT_READ) { |
| sqlite3_file* file = NULL; |
| rc = GetSqlite3File(db_, &file); |
| if (rc != SQLITE_OK) { |
| DLOG(FATAL) << "Failure getting file handle."; |
| return false; |
| } |
| |
| rc = file->pMethods->xTruncate(file, 0); |
| if (rc != SQLITE_OK) { |
| UMA_HISTOGRAM_SPARSE_SLOWLY("Sqlite.RazeDatabaseTruncate",rc); |
| DLOG(FATAL) << "Failed to truncate file."; |
| return false; |
| } |
| |
| rc = BackupDatabase(null_db.db_, db_, kMain); |
| UMA_HISTOGRAM_SPARSE_SLOWLY("Sqlite.RazeDatabase2",rc); |
| |
| if (rc != SQLITE_DONE) { |
| DLOG(FATAL) << "Failed retrying Raze()."; |
| } |
| } |
| |
| // The entire database should have been backed up. |
| if (rc != SQLITE_DONE) { |
| // TODO(shess): Figure out which other cases can happen. |
| DLOG(FATAL) << "Unable to copy entire null database."; |
| return false; |
| } |
| |
| return true; |
| } |
| |
| bool Connection::RazeWithTimout(base::TimeDelta timeout) { |
| if (!db_) { |
| DLOG_IF(FATAL, !poisoned_) << "Cannot raze null db"; |
| return false; |
| } |
| |
| ScopedBusyTimeout busy_timeout(db_); |
| busy_timeout.SetTimeout(timeout); |
| return Raze(); |
| } |
| |
| bool Connection::RazeAndClose() { |
| if (!db_) { |
| DLOG_IF(FATAL, !poisoned_) << "Cannot raze null db"; |
| return false; |
| } |
| |
| // Raze() cannot run in a transaction. |
| RollbackAllTransactions(); |
| |
| bool result = Raze(); |
| |
| CloseInternal(true); |
| |
| // Mark the database so that future API calls fail appropriately, |
| // but don't DCHECK (because after calling this function they are |
| // expected to fail). |
| poisoned_ = true; |
| |
| return result; |
| } |
| |
| void Connection::Poison() { |
| if (!db_) { |
| DLOG_IF(FATAL, !poisoned_) << "Cannot poison null db"; |
| return; |
| } |
| |
| RollbackAllTransactions(); |
| CloseInternal(true); |
| |
| // Mark the database so that future API calls fail appropriately, |
| // but don't DCHECK (because after calling this function they are |
| // expected to fail). |
| poisoned_ = true; |
| } |
| |
| // TODO(shess): To the extent possible, figure out the optimal |
| // ordering for these deletes which will prevent other connections |
| // from seeing odd behavior. For instance, it may be necessary to |
| // manually lock the main database file in a SQLite-compatible fashion |
| // (to prevent other processes from opening it), then delete the |
| // journal files, then delete the main database file. Another option |
| // might be to lock the main database file and poison the header with |
| // junk to prevent other processes from opening it successfully (like |
| // Gears "SQLite poison 3" trick). |
| // |
| // static |
| bool Connection::Delete(const base::FilePath& path) { |
| base::ThreadRestrictions::AssertIOAllowed(); |
| |
| base::FilePath journal_path(path.value() + FILE_PATH_LITERAL("-journal")); |
| base::FilePath wal_path(path.value() + FILE_PATH_LITERAL("-wal")); |
| |
| std::string journal_str = AsUTF8ForSQL(journal_path); |
| std::string wal_str = AsUTF8ForSQL(wal_path); |
| std::string path_str = AsUTF8ForSQL(path); |
| |
| // Make sure sqlite3_initialize() is called before anything else. |
| InitializeSqlite(); |
| |
| sqlite3_vfs* vfs = sqlite3_vfs_find(NULL); |
| CHECK(vfs); |
| CHECK(vfs->xDelete); |
| CHECK(vfs->xAccess); |
| |
| // We only work with unix, win32 and mojo filesystems. If you're trying to |
| // use this code with any other VFS, you're not in a good place. |
| CHECK(strncmp(vfs->zName, "unix", 4) == 0 || |
| strncmp(vfs->zName, "win32", 5) == 0 || |
| strcmp(vfs->zName, "mojo") == 0); |
| |
| vfs->xDelete(vfs, journal_str.c_str(), 0); |
| vfs->xDelete(vfs, wal_str.c_str(), 0); |
| vfs->xDelete(vfs, path_str.c_str(), 0); |
| |
| int journal_exists = 0; |
| vfs->xAccess(vfs, journal_str.c_str(), SQLITE_ACCESS_EXISTS, |
| &journal_exists); |
| |
| int wal_exists = 0; |
| vfs->xAccess(vfs, wal_str.c_str(), SQLITE_ACCESS_EXISTS, |
| &wal_exists); |
| |
| int path_exists = 0; |
| vfs->xAccess(vfs, path_str.c_str(), SQLITE_ACCESS_EXISTS, |
| &path_exists); |
| |
| return !journal_exists && !wal_exists && !path_exists; |
| } |
| |
| bool Connection::BeginTransaction() { |
| if (needs_rollback_) { |
| DCHECK_GT(transaction_nesting_, 0); |
| |
| // When we're going to rollback, fail on this begin and don't actually |
| // mark us as entering the nested transaction. |
| return false; |
| } |
| |
| bool success = true; |
| if (!transaction_nesting_) { |
| needs_rollback_ = false; |
| |
| Statement begin(GetCachedStatement(SQL_FROM_HERE, "BEGIN TRANSACTION")); |
| RecordOneEvent(EVENT_BEGIN); |
| if (!begin.Run()) |
| return false; |
| } |
| transaction_nesting_++; |
| return success; |
| } |
| |
| void Connection::RollbackTransaction() { |
| if (!transaction_nesting_) { |
| DLOG_IF(FATAL, !poisoned_) << "Rolling back a nonexistent transaction"; |
| return; |
| } |
| |
| transaction_nesting_--; |
| |
| if (transaction_nesting_ > 0) { |
| // Mark the outermost transaction as needing rollback. |
| needs_rollback_ = true; |
| return; |
| } |
| |
| DoRollback(); |
| } |
| |
| bool Connection::CommitTransaction() { |
| if (!transaction_nesting_) { |
| DLOG_IF(FATAL, !poisoned_) << "Committing a nonexistent transaction"; |
| return false; |
| } |
| transaction_nesting_--; |
| |
| if (transaction_nesting_ > 0) { |
| // Mark any nested transactions as failing after we've already got one. |
| return !needs_rollback_; |
| } |
| |
| if (needs_rollback_) { |
| DoRollback(); |
| return false; |
| } |
| |
| Statement commit(GetCachedStatement(SQL_FROM_HERE, "COMMIT")); |
| |
| // Collect the commit time manually, sql::Statement would register it as query |
| // time only. |
| const base::TimeTicks before = Now(); |
| bool ret = commit.RunWithoutTimers(); |
| const base::TimeDelta delta = Now() - before; |
| |
| RecordCommitTime(delta); |
| RecordOneEvent(EVENT_COMMIT); |
| |
| // Release dirty cache pages after the transaction closes. |
| ReleaseCacheMemoryIfNeeded(false); |
| |
| return ret; |
| } |
| |
| void Connection::RollbackAllTransactions() { |
| if (transaction_nesting_ > 0) { |
| transaction_nesting_ = 0; |
| DoRollback(); |
| } |
| } |
| |
| bool Connection::AttachDatabase(const base::FilePath& other_db_path, |
| const char* attachment_point) { |
| DCHECK(ValidAttachmentPoint(attachment_point)); |
| |
| Statement s(GetUniqueStatement("ATTACH DATABASE ? AS ?")); |
| #if OS_WIN |
| s.BindString16(0, other_db_path.value()); |
| #else |
| s.BindString(0, other_db_path.value()); |
| #endif |
| s.BindString(1, attachment_point); |
| return s.Run(); |
| } |
| |
| bool Connection::DetachDatabase(const char* attachment_point) { |
| DCHECK(ValidAttachmentPoint(attachment_point)); |
| |
| Statement s(GetUniqueStatement("DETACH DATABASE ?")); |
| s.BindString(0, attachment_point); |
| return s.Run(); |
| } |
| |
| // TODO(shess): Consider changing this to execute exactly one statement. If a |
| // caller wishes to execute multiple statements, that should be explicit, and |
| // perhaps tucked into an explicit transaction with rollback in case of error. |
| int Connection::ExecuteAndReturnErrorCode(const char* sql) { |
| AssertIOAllowed(); |
| if (!db_) { |
| DLOG_IF(FATAL, !poisoned_) << "Illegal use of connection without a db"; |
| return SQLITE_ERROR; |
| } |
| DCHECK(sql); |
| |
| RecordOneEvent(EVENT_EXECUTE); |
| int rc = SQLITE_OK; |
| while ((rc == SQLITE_OK) && *sql) { |
| sqlite3_stmt *stmt = NULL; |
| const char *leftover_sql; |
| |
| const base::TimeTicks before = Now(); |
| rc = sqlite3_prepare_v2(db_, sql, -1, &stmt, &leftover_sql); |
| sql = leftover_sql; |
| |
| // Stop if an error is encountered. |
| if (rc != SQLITE_OK) |
| break; |
| |
| // This happens if |sql| originally only contained comments or whitespace. |
| // TODO(shess): Audit to see if this can become a DCHECK(). Having |
| // extraneous comments and whitespace in the SQL statements increases |
| // runtime cost and can easily be shifted out to the C++ layer. |
| if (!stmt) |
| continue; |
| |
| // Save for use after statement is finalized. |
| const bool read_only = !!sqlite3_stmt_readonly(stmt); |
| |
| RecordOneEvent(Connection::EVENT_STATEMENT_RUN); |
| while ((rc = sqlite3_step(stmt)) == SQLITE_ROW) { |
| // TODO(shess): Audit to see if this can become a DCHECK. I think PRAGMA |
| // is the only legitimate case for this. |
| RecordOneEvent(Connection::EVENT_STATEMENT_ROWS); |
| } |
| |
| // sqlite3_finalize() returns SQLITE_OK if the most recent sqlite3_step() |
| // returned SQLITE_DONE or SQLITE_ROW, otherwise the error code. |
| rc = sqlite3_finalize(stmt); |
| if (rc == SQLITE_OK) |
| RecordOneEvent(Connection::EVENT_STATEMENT_SUCCESS); |
| |
| // sqlite3_exec() does this, presumably to avoid spinning the parser for |
| // trailing whitespace. |
| // TODO(shess): Audit to see if this can become a DCHECK. |
| while (base::IsAsciiWhitespace(*sql)) { |
| sql++; |
| } |
| |
| const base::TimeDelta delta = Now() - before; |
| RecordTimeAndChanges(delta, read_only); |
| } |
| |
| // Most calls to Execute() modify the database. The main exceptions would be |
| // calls such as CREATE TABLE IF NOT EXISTS which could modify the database |
| // but sometimes don't. |
| ReleaseCacheMemoryIfNeeded(true); |
| |
| return rc; |
| } |
| |
| bool Connection::Execute(const char* sql) { |
| if (!db_) { |
| DLOG_IF(FATAL, !poisoned_) << "Illegal use of connection without a db"; |
| return false; |
| } |
| |
| int error = ExecuteAndReturnErrorCode(sql); |
| if (error != SQLITE_OK) |
| error = OnSqliteError(error, NULL, sql); |
| |
| // This needs to be a FATAL log because the error case of arriving here is |
| // that there's a malformed SQL statement. This can arise in development if |
| // a change alters the schema but not all queries adjust. This can happen |
| // in production if the schema is corrupted. |
| if (error == SQLITE_ERROR) |
| DLOG(FATAL) << "SQL Error in " << sql << ", " << GetErrorMessage(); |
| return error == SQLITE_OK; |
| } |
| |
| bool Connection::ExecuteWithTimeout(const char* sql, base::TimeDelta timeout) { |
| if (!db_) { |
| DLOG_IF(FATAL, !poisoned_) << "Illegal use of connection without a db"; |
| return false; |
| } |
| |
| ScopedBusyTimeout busy_timeout(db_); |
| busy_timeout.SetTimeout(timeout); |
| return Execute(sql); |
| } |
| |
| bool Connection::HasCachedStatement(const StatementID& id) const { |
| return statement_cache_.find(id) != statement_cache_.end(); |
| } |
| |
| scoped_refptr<Connection::StatementRef> Connection::GetCachedStatement( |
| const StatementID& id, |
| const char* sql) { |
| CachedStatementMap::iterator i = statement_cache_.find(id); |
| if (i != statement_cache_.end()) { |
| // Statement is in the cache. It should still be active (we're the only |
| // one invalidating cached statements, and we'll remove it from the cache |
| // if we do that. Make sure we reset it before giving out the cached one in |
| // case it still has some stuff bound. |
| DCHECK(i->second->is_valid()); |
| sqlite3_reset(i->second->stmt()); |
| return i->second; |
| } |
| |
| scoped_refptr<StatementRef> statement = GetUniqueStatement(sql); |
| if (statement->is_valid()) |
| statement_cache_[id] = statement; // Only cache valid statements. |
| return statement; |
| } |
| |
| scoped_refptr<Connection::StatementRef> Connection::GetUniqueStatement( |
| const char* sql) { |
| AssertIOAllowed(); |
| |
| // Return inactive statement. |
| if (!db_) |
| return new StatementRef(NULL, NULL, poisoned_); |
| |
| sqlite3_stmt* stmt = NULL; |
| int rc = sqlite3_prepare_v2(db_, sql, -1, &stmt, NULL); |
| if (rc != SQLITE_OK) { |
| // This is evidence of a syntax error in the incoming SQL. |
| if (!ShouldIgnoreSqliteCompileError(rc)) |
| DLOG(FATAL) << "SQL compile error " << GetErrorMessage(); |
| |
| // It could also be database corruption. |
| OnSqliteError(rc, NULL, sql); |
| return new StatementRef(NULL, NULL, false); |
| } |
| return new StatementRef(this, stmt, true); |
| } |
| |
| // TODO(shess): Unify this with GetUniqueStatement(). The only difference that |
| // seems legitimate is not passing |this| to StatementRef. |
| scoped_refptr<Connection::StatementRef> Connection::GetUntrackedStatement( |
| const char* sql) const { |
| // Return inactive statement. |
| if (!db_) |
| return new StatementRef(NULL, NULL, poisoned_); |
| |
| sqlite3_stmt* stmt = NULL; |
| int rc = sqlite3_prepare_v2(db_, sql, -1, &stmt, NULL); |
| if (rc != SQLITE_OK) { |
| // This is evidence of a syntax error in the incoming SQL. |
| if (!ShouldIgnoreSqliteCompileError(rc)) |
| DLOG(FATAL) << "SQL compile error " << GetErrorMessage(); |
| return new StatementRef(NULL, NULL, false); |
| } |
| return new StatementRef(NULL, stmt, true); |
| } |
| |
| std::string Connection::GetSchema() const { |
| // The ORDER BY should not be necessary, but relying on organic |
| // order for something like this is questionable. |
| const char* kSql = |
| "SELECT type, name, tbl_name, sql " |
| "FROM sqlite_master ORDER BY 1, 2, 3, 4"; |
| Statement statement(GetUntrackedStatement(kSql)); |
| |
| std::string schema; |
| while (statement.Step()) { |
| schema += statement.ColumnString(0); |
| schema += '|'; |
| schema += statement.ColumnString(1); |
| schema += '|'; |
| schema += statement.ColumnString(2); |
| schema += '|'; |
| schema += statement.ColumnString(3); |
| schema += '\n'; |
| } |
| |
| return schema; |
| } |
| |
| bool Connection::IsSQLValid(const char* sql) { |
| AssertIOAllowed(); |
| if (!db_) { |
| DLOG_IF(FATAL, !poisoned_) << "Illegal use of connection without a db"; |
| return false; |
| } |
| |
| sqlite3_stmt* stmt = NULL; |
| if (sqlite3_prepare_v2(db_, sql, -1, &stmt, NULL) != SQLITE_OK) |
| return false; |
| |
| sqlite3_finalize(stmt); |
| return true; |
| } |
| |
| bool Connection::DoesTableExist(const char* table_name) const { |
| return DoesTableOrIndexExist(table_name, "table"); |
| } |
| |
| bool Connection::DoesIndexExist(const char* index_name) const { |
| return DoesTableOrIndexExist(index_name, "index"); |
| } |
| |
| bool Connection::DoesTableOrIndexExist( |
| const char* name, const char* type) const { |
| const char* kSql = |
| "SELECT name FROM sqlite_master WHERE type=? AND name=? COLLATE NOCASE"; |
| Statement statement(GetUntrackedStatement(kSql)); |
| |
| // This can happen if the database is corrupt and the error is being ignored |
| // for testing purposes. |
| if (!statement.is_valid()) |
| return false; |
| |
| statement.BindString(0, type); |
| statement.BindString(1, name); |
| |
| return statement.Step(); // Table exists if any row was returned. |
| } |
| |
| bool Connection::DoesColumnExist(const char* table_name, |
| const char* column_name) const { |
| std::string sql("PRAGMA TABLE_INFO("); |
| sql.append(table_name); |
| sql.append(")"); |
| |
| Statement statement(GetUntrackedStatement(sql.c_str())); |
| |
| // This can happen if the database is corrupt and the error is being ignored |
| // for testing purposes. |
| if (!statement.is_valid()) |
| return false; |
| |
| while (statement.Step()) { |
| if (base::EqualsCaseInsensitiveASCII(statement.ColumnString(1), |
| column_name)) |
| return true; |
| } |
| return false; |
| } |
| |
| int64_t Connection::GetLastInsertRowId() const { |
| if (!db_) { |
| DLOG_IF(FATAL, !poisoned_) << "Illegal use of connection without a db"; |
| return 0; |
| } |
| return sqlite3_last_insert_rowid(db_); |
| } |
| |
| int Connection::GetLastChangeCount() const { |
| if (!db_) { |
| DLOG_IF(FATAL, !poisoned_) << "Illegal use of connection without a db"; |
| return 0; |
| } |
| return sqlite3_changes(db_); |
| } |
| |
| int Connection::GetErrorCode() const { |
| if (!db_) |
| return SQLITE_ERROR; |
| return sqlite3_errcode(db_); |
| } |
| |
| int Connection::GetLastErrno() const { |
| if (!db_) |
| return -1; |
| |
| int err = 0; |
| if (SQLITE_OK != sqlite3_file_control(db_, NULL, SQLITE_LAST_ERRNO, &err)) |
| return -2; |
| |
| return err; |
| } |
| |
| const char* Connection::GetErrorMessage() const { |
| if (!db_) |
| return "sql::Connection has no connection."; |
| return sqlite3_errmsg(db_); |
| } |
| |
| bool Connection::OpenInternal(const std::string& file_name, |
| Connection::Retry retry_flag) { |
| AssertIOAllowed(); |
| |
| if (db_) { |
| DLOG(FATAL) << "sql::Connection is already open."; |
| return false; |
| } |
| |
| // Make sure sqlite3_initialize() is called before anything else. |
| InitializeSqlite(); |
| |
| // Setup the stats histograms immediately rather than allocating lazily. |
| // Connections which won't exercise all of these probably shouldn't exist. |
| if (!histogram_tag_.empty()) { |
| stats_histogram_ = |
| base::LinearHistogram::FactoryGet( |
| "Sqlite.Stats." + histogram_tag_, |
| 1, EVENT_MAX_VALUE, EVENT_MAX_VALUE + 1, |
| base::HistogramBase::kUmaTargetedHistogramFlag); |
| |
| // The timer setup matches UMA_HISTOGRAM_MEDIUM_TIMES(). 3 minutes is an |
| // unreasonable time for any single operation, so there is not much value to |
| // knowing if it was 3 minutes or 5 minutes. In reality at that point |
| // things are entirely busted. |
| commit_time_histogram_ = |
| GetMediumTimeHistogram("Sqlite.CommitTime." + histogram_tag_); |
| |
| autocommit_time_histogram_ = |
| GetMediumTimeHistogram("Sqlite.AutoCommitTime." + histogram_tag_); |
| |
| update_time_histogram_ = |
| GetMediumTimeHistogram("Sqlite.UpdateTime." + histogram_tag_); |
| |
| query_time_histogram_ = |
| GetMediumTimeHistogram("Sqlite.QueryTime." + histogram_tag_); |
| } |
| |
| // If |poisoned_| is set, it means an error handler called |
| // RazeAndClose(). Until regular Close() is called, the caller |
| // should be treating the database as open, but is_open() currently |
| // only considers the sqlite3 handle's state. |
| // TODO(shess): Revise is_open() to consider poisoned_, and review |
| // to see if any non-testing code even depends on it. |
| DLOG_IF(FATAL, poisoned_) << "sql::Connection is already open."; |
| poisoned_ = false; |
| |
| int err = sqlite3_open(file_name.c_str(), &db_); |
| if (err != SQLITE_OK) { |
| // Extended error codes cannot be enabled until a handle is |
| // available, fetch manually. |
| err = sqlite3_extended_errcode(db_); |
| |
| // Histogram failures specific to initial open for debugging |
| // purposes. |
| UMA_HISTOGRAM_SPARSE_SLOWLY("Sqlite.OpenFailure", err); |
| |
| OnSqliteError(err, NULL, "-- sqlite3_open()"); |
| bool was_poisoned = poisoned_; |
| Close(); |
| |
| if (was_poisoned && retry_flag == RETRY_ON_POISON) |
| return OpenInternal(file_name, NO_RETRY); |
| return false; |
| } |
| |
| // TODO(shess): OS_WIN support? |
| #if defined(OS_POSIX) |
| if (restrict_to_user_) { |
| DCHECK_NE(file_name, std::string(":memory")); |
| base::FilePath file_path(file_name); |
| int mode = 0; |
| // TODO(shess): Arguably, failure to retrieve and change |
| // permissions should be fatal if the file exists. |
| if (base::GetPosixFilePermissions(file_path, &mode)) { |
| mode &= base::FILE_PERMISSION_USER_MASK; |
| base::SetPosixFilePermissions(file_path, mode); |
| |
| // SQLite sets the permissions on these files from the main |
| // database on create. Set them here in case they already exist |
| // at this point. Failure to set these permissions should not |
| // be fatal unless the file doesn't exist. |
| base::FilePath journal_path(file_name + FILE_PATH_LITERAL("-journal")); |
| base::FilePath wal_path(file_name + FILE_PATH_LITERAL("-wal")); |
| base::SetPosixFilePermissions(journal_path, mode); |
| base::SetPosixFilePermissions(wal_path, mode); |
| } |
| } |
| #endif // defined(OS_POSIX) |
| |
| // SQLite uses a lookaside buffer to improve performance of small mallocs. |
| // Chromium already depends on small mallocs being efficient, so we disable |
| // this to avoid the extra memory overhead. |
| // This must be called immediatly after opening the database before any SQL |
| // statements are run. |
| sqlite3_db_config(db_, SQLITE_DBCONFIG_LOOKASIDE, NULL, 0, 0); |
| |
| // Enable extended result codes to provide more color on I/O errors. |
| // Not having extended result codes is not a fatal problem, as |
| // Chromium code does not attempt to handle I/O errors anyhow. The |
| // current implementation always returns SQLITE_OK, the DCHECK is to |
| // quickly notify someone if SQLite changes. |
| err = sqlite3_extended_result_codes(db_, 1); |
| DCHECK_EQ(err, SQLITE_OK) << "Could not enable extended result codes"; |
| |
| // sqlite3_open() does not actually read the database file (unless a |
| // hot journal is found). Successfully executing this pragma on an |
| // existing database requires a valid header on page 1. |
| // TODO(shess): For now, just probing to see what the lay of the |
| // land is. If it's mostly SQLITE_NOTADB, then the database should |
| // be razed. |
| err = ExecuteAndReturnErrorCode("PRAGMA auto_vacuum"); |
| if (err != SQLITE_OK) |
| UMA_HISTOGRAM_SPARSE_SLOWLY("Sqlite.OpenProbeFailure", err); |
| |
| #if defined(OS_IOS) && defined(USE_SYSTEM_SQLITE) |
| // The version of SQLite shipped with iOS doesn't enable ICU, which includes |
| // REGEXP support. Add it in dynamically. |
| err = sqlite3IcuInit(db_); |
| DCHECK_EQ(err, SQLITE_OK) << "Could not enable ICU support"; |
| #endif // OS_IOS && USE_SYSTEM_SQLITE |
| |
| // If indicated, lock up the database before doing anything else, so |
| // that the following code doesn't have to deal with locking. |
| // TODO(shess): This code is brittle. Find the cases where code |
| // doesn't request |exclusive_locking_| and audit that it does the |
| // right thing with SQLITE_BUSY, and that it doesn't make |
| // assumptions about who might change things in the database. |
| // http://crbug.com/56559 |
| if (exclusive_locking_) { |
| // TODO(shess): This should probably be a failure. Code which |
| // requests exclusive locking but doesn't get it is almost certain |
| // to be ill-tested. |
| ignore_result(Execute("PRAGMA locking_mode=EXCLUSIVE")); |
| } |
| |
| // http://www.sqlite.org/pragma.html#pragma_journal_mode |
| // DELETE (default) - delete -journal file to commit. |
| // TRUNCATE - truncate -journal file to commit. |
| // PERSIST - zero out header of -journal file to commit. |
| // TRUNCATE should be faster than DELETE because it won't need directory |
| // changes for each transaction. PERSIST may break the spirit of using |
| // secure_delete. |
| ignore_result(Execute("PRAGMA journal_mode = TRUNCATE")); |
| |
| const base::TimeDelta kBusyTimeout = |
| base::TimeDelta::FromSeconds(kBusyTimeoutSeconds); |
| |
| if (page_size_ != 0) { |
| // Enforce SQLite restrictions on |page_size_|. |
| DCHECK(!(page_size_ & (page_size_ - 1))) |
| << " page_size_ " << page_size_ << " is not a power of two."; |
| const int kSqliteMaxPageSize = 32768; // from sqliteLimit.h |
| DCHECK_LE(page_size_, kSqliteMaxPageSize); |
| const std::string sql = |
| base::StringPrintf("PRAGMA page_size=%d", page_size_); |
| ignore_result(ExecuteWithTimeout(sql.c_str(), kBusyTimeout)); |
| } |
| |
| if (cache_size_ != 0) { |
| const std::string sql = |
| base::StringPrintf("PRAGMA cache_size=%d", cache_size_); |
| ignore_result(ExecuteWithTimeout(sql.c_str(), kBusyTimeout)); |
| } |
| |
| if (!ExecuteWithTimeout("PRAGMA secure_delete=ON", kBusyTimeout)) { |
| bool was_poisoned = poisoned_; |
| Close(); |
| if (was_poisoned && retry_flag == RETRY_ON_POISON) |
| return OpenInternal(file_name, NO_RETRY); |
| return false; |
| } |
| |
| // Set a reasonable chunk size for larger files. This reduces churn from |
| // remapping memory on size changes. It also reduces filesystem |
| // fragmentation. |
| // TODO(shess): It may make sense to have this be hinted by the client. |
| // Database sizes seem to be bimodal, some clients have consistently small |
| // databases (<20k) while other clients have a broad distribution of sizes |
| // (hundreds of kilobytes to many megabytes). |
| sqlite3_file* file = NULL; |
| sqlite3_int64 db_size = 0; |
| int rc = GetSqlite3FileAndSize(db_, &file, &db_size); |
| if (rc == SQLITE_OK && db_size > 16 * 1024) { |
| int chunk_size = 4 * 1024; |
| if (db_size > 128 * 1024) |
| chunk_size = 32 * 1024; |
| sqlite3_file_control(db_, NULL, SQLITE_FCNTL_CHUNK_SIZE, &chunk_size); |
| } |
| |
| // Enable memory-mapped access. The explicit-disable case is because SQLite |
| // can be built to default-enable mmap. GetAppropriateMmapSize() calculates a |
| // safe range to memory-map based on past regular I/O. This value will be |
| // capped by SQLITE_MAX_MMAP_SIZE, which could be different between 32-bit and |
| // 64-bit platforms. |
| size_t mmap_size = mmap_disabled_ ? 0 : GetAppropriateMmapSize(); |
| std::string mmap_sql = |
| base::StringPrintf("PRAGMA mmap_size = %" PRIuS, mmap_size); |
| ignore_result(Execute(mmap_sql.c_str())); |
| |
| // Determine if memory-mapping has actually been enabled. The Execute() above |
| // can succeed without changing the amount mapped. |
| mmap_enabled_ = false; |
| { |
| Statement s(GetUniqueStatement("PRAGMA mmap_size")); |
| if (s.Step() && s.ColumnInt64(0) > 0) |
| mmap_enabled_ = true; |
| } |
| |
| return true; |
| } |
| |
| void Connection::DoRollback() { |
| Statement rollback(GetCachedStatement(SQL_FROM_HERE, "ROLLBACK")); |
| |
| // Collect the rollback time manually, sql::Statement would register it as |
| // query time only. |
| const base::TimeTicks before = Now(); |
| rollback.RunWithoutTimers(); |
| const base::TimeDelta delta = Now() - before; |
| |
| RecordUpdateTime(delta); |
| RecordOneEvent(EVENT_ROLLBACK); |
| |
| // The cache may have been accumulating dirty pages for commit. Note that in |
| // some cases sql::Transaction can fire rollback after a database is closed. |
| if (is_open()) |
| ReleaseCacheMemoryIfNeeded(false); |
| |
| needs_rollback_ = false; |
| } |
| |
| void Connection::StatementRefCreated(StatementRef* ref) { |
| DCHECK(open_statements_.find(ref) == open_statements_.end()); |
| open_statements_.insert(ref); |
| } |
| |
| void Connection::StatementRefDeleted(StatementRef* ref) { |
| StatementRefSet::iterator i = open_statements_.find(ref); |
| if (i == open_statements_.end()) |
| DLOG(FATAL) << "Could not find statement"; |
| else |
| open_statements_.erase(i); |
| } |
| |
| void Connection::set_histogram_tag(const std::string& tag) { |
| DCHECK(!is_open()); |
| histogram_tag_ = tag; |
| } |
| |
| void Connection::AddTaggedHistogram(const std::string& name, |
| size_t sample) const { |
| if (histogram_tag_.empty()) |
| return; |
| |
| // TODO(shess): The histogram macros create a bit of static storage |
| // for caching the histogram object. This code shouldn't execute |
| // often enough for such caching to be crucial. If it becomes an |
| // issue, the object could be cached alongside histogram_prefix_. |
| std::string full_histogram_name = name + "." + histogram_tag_; |
| base::HistogramBase* histogram = |
| base::SparseHistogram::FactoryGet( |
| full_histogram_name, |
| base::HistogramBase::kUmaTargetedHistogramFlag); |
| if (histogram) |
| histogram->Add(sample); |
| } |
| |
| int Connection::OnSqliteError(int err, sql::Statement *stmt, const char* sql) { |
| UMA_HISTOGRAM_SPARSE_SLOWLY("Sqlite.Error", err); |
| AddTaggedHistogram("Sqlite.Error", err); |
| |
| // Always log the error. |
| if (!sql && stmt) |
| sql = stmt->GetSQLStatement(); |
| if (!sql) |
| sql = "-- unknown"; |
| |
| std::string id = histogram_tag_; |
| if (id.empty()) |
| id = DbPath().BaseName().AsUTF8Unsafe(); |
| LOG(ERROR) << id << " sqlite error " << err |
| << ", errno " << GetLastErrno() |
| << ": " << GetErrorMessage() |
| << ", sql: " << sql; |
| |
| if (!error_callback_.is_null()) { |
| // Fire from a copy of the callback in case of reentry into |
| // re/set_error_callback(). |
| // TODO(shess): <http://crbug.com/254584> |
| ErrorCallback(error_callback_).Run(err, stmt); |
| return err; |
| } |
| |
| // The default handling is to assert on debug and to ignore on release. |
| if (!ShouldIgnoreSqliteError(err)) |
| DLOG(FATAL) << GetErrorMessage(); |
| return err; |
| } |
| |
| bool Connection::FullIntegrityCheck(std::vector<std::string>* messages) { |
| return IntegrityCheckHelper("PRAGMA integrity_check", messages); |
| } |
| |
| bool Connection::QuickIntegrityCheck() { |
| std::vector<std::string> messages; |
| if (!IntegrityCheckHelper("PRAGMA quick_check", &messages)) |
| return false; |
| return messages.size() == 1 && messages[0] == "ok"; |
| } |
| |
| // TODO(shess): Allow specifying maximum results (default 100 lines). |
| bool Connection::IntegrityCheckHelper( |
| const char* pragma_sql, |
| std::vector<std::string>* messages) { |
| messages->clear(); |
| |
| // This has the side effect of setting SQLITE_RecoveryMode, which |
| // allows SQLite to process through certain cases of corruption. |
| // Failing to set this pragma probably means that the database is |
| // beyond recovery. |
| const char kWritableSchema[] = "PRAGMA writable_schema = ON"; |
| if (!Execute(kWritableSchema)) |
| return false; |
| |
| bool ret = false; |
| { |
| sql::Statement stmt(GetUniqueStatement(pragma_sql)); |
| |
| // The pragma appears to return all results (up to 100 by default) |
| // as a single string. This doesn't appear to be an API contract, |
| // it could return separate lines, so loop _and_ split. |
| while (stmt.Step()) { |
| std::string result(stmt.ColumnString(0)); |
| *messages = base::SplitString(result, "\n", base::TRIM_WHITESPACE, |
| base::SPLIT_WANT_ALL); |
| } |
| ret = stmt.Succeeded(); |
| } |
| |
| // Best effort to put things back as they were before. |
| const char kNoWritableSchema[] = "PRAGMA writable_schema = OFF"; |
| ignore_result(Execute(kNoWritableSchema)); |
| |
| return ret; |
| } |
| |
| base::TimeTicks TimeSource::Now() { |
| return base::TimeTicks::Now(); |
| } |
| |
| } // namespace sql |