blob: afdca30de0d772d51261d9dfa7dbda242374e0bf [file] [log] [blame]
// Copyright (c) 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/android/keystore_openssl.h"
#include <jni.h>
#include <openssl/bn.h>
// This include is required to get the ECDSA_METHOD structure definition
// which isn't currently part of the OpenSSL official ABI. This should
// not be a concern for Chromium which always links against its own
// version of the library on Android.
#include <openssl/crypto/ecdsa/ecs_locl.h>
// And this one is needed for the EC_GROUP definition.
#include <openssl/crypto/ec/ec_lcl.h>
#include <openssl/dsa.h>
#include <openssl/ec.h>
#include <openssl/engine.h>
#include <openssl/evp.h>
#include <openssl/rsa.h>
#include "base/android/build_info.h"
#include "base/android/jni_android.h"
#include "base/android/scoped_java_ref.h"
#include "base/basictypes.h"
#include "base/lazy_instance.h"
#include "base/logging.h"
#include "crypto/openssl_util.h"
#include "net/android/keystore.h"
#include "net/ssl/ssl_client_cert_type.h"
// IMPORTANT NOTE: The following code will currently only work when used
// to implement client certificate support with OpenSSL. That's because
// only the signing operations used in this use case are implemented here.
//
// Generally speaking, OpenSSL provides many different ways to sign
// digests. This code doesn't support all these cases, only the ones that
// are required to sign the digest during the OpenSSL handshake for TLS.
//
// The OpenSSL EVP_PKEY type is a generic wrapper around key pairs.
// Internally, it can hold a pointer to a RSA, DSA or ECDSA structure,
// which model keypair implementations of each respective crypto
// algorithm.
//
// The RSA type has a 'method' field pointer to a vtable-like structure
// called a RSA_METHOD. This contains several function pointers that
// correspond to operations on RSA keys (e.g. decode/encode with public
// key, decode/encode with private key, signing, validation), as well as
// a few flags.
//
// For example, the RSA_sign() function will call "method->rsa_sign()" if
// method->rsa_sign is not NULL, otherwise, it will perform a regular
// signing operation using the other fields in the RSA structure (which
// are used to hold the typical modulus / exponent / parameters for the
// key pair).
//
// This source file thus defines a custom RSA_METHOD structure whose
// fields point to static methods used to implement the corresponding
// RSA operation using platform Android APIs.
//
// However, the platform APIs require a jobject JNI reference to work.
// It must be stored in the RSA instance, or made accessible when the
// custom RSA methods are called. This is done by using RSA_set_app_data()
// and RSA_get_app_data().
//
// One can thus _directly_ create a new EVP_PKEY that uses a custom RSA
// object with the following:
//
// RSA* rsa = RSA_new()
// RSA_set_method(&custom_rsa_method);
// RSA_set_app_data(rsa, jni_private_key);
//
// EVP_PKEY* pkey = EVP_PKEY_new();
// EVP_PKEY_assign_RSA(pkey, rsa);
//
// Note that because EVP_PKEY_assign_RSA() is used, instead of
// EVP_PKEY_set1_RSA(), the new EVP_PKEY now owns the RSA object, and
// will destroy it when it is itself destroyed.
//
// Unfortunately, such objects cannot be used with RSA_size(), which
// totally ignores the RSA_METHOD pointers. Instead, it is necessary
// to manually setup the modulus field (n) in the RSA object, with a
// value that matches the wrapped PrivateKey object. See GetRsaPkeyWrapper
// for full details.
//
// Similarly, custom DSA_METHOD and ECDSA_METHOD are defined by this source
// file, and appropriate field setups are performed to ensure that
// DSA_size() and ECDSA_size() work properly with the wrapper EVP_PKEY.
//
// Note that there is no need to define an OpenSSL ENGINE here. These
// are objects that can be used to expose custom methods (i.e. either
// RSA_METHOD, DSA_METHOD, ECDSA_METHOD, and a large number of other ones
// for types not related to this source file), and make them used by
// default for a lot of operations. Very fortunately, this is not needed
// here, which saves a lot of complexity.
using base::android::ScopedJavaGlobalRef;
namespace net {
namespace android {
namespace {
typedef crypto::ScopedOpenSSL<EVP_PKEY, EVP_PKEY_free> ScopedEVP_PKEY;
typedef crypto::ScopedOpenSSL<RSA, RSA_free> ScopedRSA;
typedef crypto::ScopedOpenSSL<DSA, DSA_free> ScopedDSA;
typedef crypto::ScopedOpenSSL<EC_KEY, EC_KEY_free> ScopedEC_KEY;
typedef crypto::ScopedOpenSSL<EC_GROUP, EC_GROUP_free> ScopedEC_GROUP;
// Custom RSA_METHOD that uses the platform APIs.
// Note that for now, only signing through RSA_sign() is really supported.
// all other method pointers are either stubs returning errors, or no-ops.
// See <openssl/rsa.h> for exact declaration of RSA_METHOD.
int RsaMethodPubEnc(int flen,
const unsigned char* from,
unsigned char* to,
RSA* rsa,
int padding) {
NOTIMPLEMENTED();
RSAerr(RSA_F_RSA_PUBLIC_ENCRYPT, RSA_R_RSA_OPERATIONS_NOT_SUPPORTED);
return -1;
}
int RsaMethodPubDec(int flen,
const unsigned char* from,
unsigned char* to,
RSA* rsa,
int padding) {
NOTIMPLEMENTED();
RSAerr(RSA_F_RSA_PUBLIC_DECRYPT, RSA_R_RSA_OPERATIONS_NOT_SUPPORTED);
return -1;
}
// See RSA_eay_private_encrypt in
// third_party/openssl/openssl/crypto/rsa/rsa_eay.c for the default
// implementation of this function.
int RsaMethodPrivEnc(int flen,
const unsigned char *from,
unsigned char *to,
RSA *rsa,
int padding) {
DCHECK_EQ(RSA_PKCS1_PADDING, padding);
if (padding != RSA_PKCS1_PADDING) {
// TODO(davidben): If we need to, we can implement RSA_NO_PADDING
// by using javax.crypto.Cipher and picking either the
// "RSA/ECB/NoPadding" or "RSA/ECB/PKCS1Padding" transformation as
// appropriate. I believe support for both of these was added in
// the same Android version as the "NONEwithRSA"
// java.security.Signature algorithm, so the same version checks
// for GetRsaLegacyKey should work.
RSAerr(RSA_F_RSA_PRIVATE_ENCRYPT, RSA_R_UNKNOWN_PADDING_TYPE);
return -1;
}
// Retrieve private key JNI reference.
jobject private_key = reinterpret_cast<jobject>(RSA_get_app_data(rsa));
if (!private_key) {
LOG(WARNING) << "Null JNI reference passed to RsaMethodPrivEnc!";
RSAerr(RSA_F_RSA_PRIVATE_ENCRYPT, ERR_R_INTERNAL_ERROR);
return -1;
}
base::StringPiece from_piece(reinterpret_cast<const char*>(from), flen);
std::vector<uint8> result;
// For RSA keys, this function behaves as RSA_private_encrypt with
// PKCS#1 padding.
if (!RawSignDigestWithPrivateKey(private_key, from_piece, &result)) {
LOG(WARNING) << "Could not sign message in RsaMethodPrivEnc!";
RSAerr(RSA_F_RSA_PRIVATE_ENCRYPT, ERR_R_INTERNAL_ERROR);
return -1;
}
size_t expected_size = static_cast<size_t>(RSA_size(rsa));
if (result.size() > expected_size) {
LOG(ERROR) << "RSA Signature size mismatch, actual: "
<< result.size() << ", expected <= " << expected_size;
RSAerr(RSA_F_RSA_PRIVATE_ENCRYPT, ERR_R_INTERNAL_ERROR);
return -1;
}
// Copy result to OpenSSL-provided buffer. RawSignDigestWithPrivateKey
// should pad with leading 0s, but if it doesn't, pad the result.
size_t zero_pad = expected_size - result.size();
memset(to, 0, zero_pad);
memcpy(to + zero_pad, &result[0], result.size());
return expected_size;
}
int RsaMethodPrivDec(int flen,
const unsigned char* from,
unsigned char* to,
RSA* rsa,
int padding) {
NOTIMPLEMENTED();
RSAerr(RSA_F_RSA_PRIVATE_DECRYPT, RSA_R_RSA_OPERATIONS_NOT_SUPPORTED);
return -1;
}
int RsaMethodInit(RSA* rsa) {
return 0;
}
int RsaMethodFinish(RSA* rsa) {
// Ensure the global JNI reference created with this wrapper is
// properly destroyed with it.
jobject key = reinterpret_cast<jobject>(RSA_get_app_data(rsa));
if (key != NULL) {
RSA_set_app_data(rsa, NULL);
ReleaseKey(key);
}
// Actual return value is ignored by OpenSSL. There are no docs
// explaining what this is supposed to be.
return 0;
}
const RSA_METHOD android_rsa_method = {
/* .name = */ "Android signing-only RSA method",
/* .rsa_pub_enc = */ RsaMethodPubEnc,
/* .rsa_pub_dec = */ RsaMethodPubDec,
/* .rsa_priv_enc = */ RsaMethodPrivEnc,
/* .rsa_priv_dec = */ RsaMethodPrivDec,
/* .rsa_mod_exp = */ NULL,
/* .bn_mod_exp = */ NULL,
/* .init = */ RsaMethodInit,
/* .finish = */ RsaMethodFinish,
// This flag is necessary to tell OpenSSL to avoid checking the content
// (i.e. internal fields) of the private key. Otherwise, it will complain
// it's not valid for the certificate.
/* .flags = */ RSA_METHOD_FLAG_NO_CHECK,
/* .app_data = */ NULL,
/* .rsa_sign = */ NULL,
/* .rsa_verify = */ NULL,
/* .rsa_keygen = */ NULL,
};
// Copy the contents of an encoded big integer into an existing BIGNUM.
// This function modifies |*num| in-place.
// |new_bytes| is the byte encoding of the new value.
// |num| points to the BIGNUM which will be assigned with the new value.
// Returns true on success, false otherwise. On failure, |*num| is
// not modified.
bool CopyBigNumFromBytes(const std::vector<uint8>& new_bytes,
BIGNUM* num) {
BIGNUM* ret = BN_bin2bn(
reinterpret_cast<const unsigned char*>(&new_bytes[0]),
static_cast<int>(new_bytes.size()),
num);
return (ret != NULL);
}
// Decode the contents of an encoded big integer and either create a new
// BIGNUM object (if |*num_ptr| is NULL on input) or copy it (if
// |*num_ptr| is not NULL).
// |new_bytes| is the byte encoding of the new value.
// |num_ptr| is the address of a BIGNUM pointer. |*num_ptr| can be NULL.
// Returns true on success, false otherwise. On failure, |*num_ptr| is
// not modified. On success, |*num_ptr| will always be non-NULL and
// point to a valid BIGNUM object.
bool SwapBigNumPtrFromBytes(const std::vector<uint8>& new_bytes,
BIGNUM** num_ptr) {
BIGNUM* old_num = *num_ptr;
BIGNUM* new_num = BN_bin2bn(
reinterpret_cast<const unsigned char*>(&new_bytes[0]),
static_cast<int>(new_bytes.size()),
old_num);
if (new_num == NULL)
return false;
if (old_num == NULL)
*num_ptr = new_num;
return true;
}
// Setup an EVP_PKEY to wrap an existing platform RSA PrivateKey object.
// |private_key| is the JNI reference (local or global) to the object.
// |pkey| is the EVP_PKEY to setup as a wrapper.
// Returns true on success, false otherwise.
// On success, this creates a new global JNI reference to the object
// that is owned by and destroyed with the EVP_PKEY. I.e. caller can
// free |private_key| after the call.
// IMPORTANT: The EVP_PKEY will *only* work on Android >= 4.2. For older
// platforms, use GetRsaLegacyKey() instead.
bool GetRsaPkeyWrapper(jobject private_key, EVP_PKEY* pkey) {
ScopedRSA rsa(RSA_new());
RSA_set_method(rsa.get(), &android_rsa_method);
// HACK: RSA_size() doesn't work with custom RSA_METHODs. To ensure that
// it will return the right value, set the 'n' field of the RSA object
// to match the private key's modulus.
std::vector<uint8> modulus;
if (!GetRSAKeyModulus(private_key, &modulus)) {
LOG(ERROR) << "Failed to get private key modulus";
return false;
}
if (!SwapBigNumPtrFromBytes(modulus, &rsa.get()->n)) {
LOG(ERROR) << "Failed to decode private key modulus";
return false;
}
ScopedJavaGlobalRef<jobject> global_key;
global_key.Reset(NULL, private_key);
if (global_key.is_null()) {
LOG(ERROR) << "Could not create global JNI reference";
return false;
}
RSA_set_app_data(rsa.get(), global_key.Release());
EVP_PKEY_assign_RSA(pkey, rsa.release());
return true;
}
// Setup an EVP_PKEY to wrap an existing platform RSA PrivateKey object
// for Android 4.0 to 4.1.x. Must only be used on Android < 4.2.
// |private_key| is a JNI reference (local or global) to the object.
// |pkey| is the EVP_PKEY to setup as a wrapper.
// Returns true on success, false otherwise.
EVP_PKEY* GetRsaLegacyKey(jobject private_key) {
EVP_PKEY* sys_pkey =
GetOpenSSLSystemHandleForPrivateKey(private_key);
if (sys_pkey != NULL) {
CRYPTO_add(&sys_pkey->references, 1, CRYPTO_LOCK_EVP_PKEY);
} else {
// GetOpenSSLSystemHandleForPrivateKey() will fail on Android
// 4.0.3 and earlier. However, it is possible to get the key
// content with PrivateKey.getEncoded() on these platforms.
// Note that this method may return NULL on 4.0.4 and later.
std::vector<uint8> encoded;
if (!GetPrivateKeyEncodedBytes(private_key, &encoded)) {
LOG(ERROR) << "Can't get private key data!";
return NULL;
}
const unsigned char* p =
reinterpret_cast<const unsigned char*>(&encoded[0]);
int len = static_cast<int>(encoded.size());
sys_pkey = d2i_AutoPrivateKey(NULL, &p, len);
if (sys_pkey == NULL) {
LOG(ERROR) << "Can't convert private key data!";
return NULL;
}
}
return sys_pkey;
}
// Custom DSA_METHOD that uses the platform APIs.
// Note that for now, only signing through DSA_sign() is really supported.
// all other method pointers are either stubs returning errors, or no-ops.
// See <openssl/dsa.h> for exact declaration of DSA_METHOD.
//
// Note: There is no DSA_set_app_data() and DSA_get_app_data() functions,
// but RSA_set_app_data() is defined as a simple macro that calls
// RSA_set_ex_data() with a hard-coded index of 0, so this code
// does the same thing here.
DSA_SIG* DsaMethodDoSign(const unsigned char* dgst,
int dlen,
DSA* dsa) {
// Extract the JNI reference to the PrivateKey object.
jobject private_key = reinterpret_cast<jobject>(DSA_get_ex_data(dsa, 0));
if (private_key == NULL)
return NULL;
// Sign the message with it, calling platform APIs.
std::vector<uint8> signature;
if (!RawSignDigestWithPrivateKey(
private_key,
base::StringPiece(
reinterpret_cast<const char*>(dgst),
static_cast<size_t>(dlen)),
&signature)) {
return NULL;
}
// Note: With DSA, the actual signature might be smaller than DSA_size().
size_t max_expected_size = static_cast<size_t>(DSA_size(dsa));
if (signature.size() > max_expected_size) {
LOG(ERROR) << "DSA Signature size mismatch, actual: "
<< signature.size() << ", expected <= "
<< max_expected_size;
return NULL;
}
// Convert the signature into a DSA_SIG object.
const unsigned char* sigbuf =
reinterpret_cast<const unsigned char*>(&signature[0]);
int siglen = static_cast<size_t>(signature.size());
DSA_SIG* dsa_sig = d2i_DSA_SIG(NULL, &sigbuf, siglen);
return dsa_sig;
}
int DsaMethodSignSetup(DSA* dsa,
BN_CTX* ctx_in,
BIGNUM** kinvp,
BIGNUM** rp) {
NOTIMPLEMENTED();
DSAerr(DSA_F_DSA_SIGN_SETUP, DSA_R_INVALID_DIGEST_TYPE);
return -1;
}
int DsaMethodDoVerify(const unsigned char* dgst,
int dgst_len,
DSA_SIG* sig,
DSA* dsa) {
NOTIMPLEMENTED();
DSAerr(DSA_F_DSA_DO_VERIFY, DSA_R_INVALID_DIGEST_TYPE);
return -1;
}
int DsaMethodFinish(DSA* dsa) {
// Free the global JNI reference that was created with this
// wrapper key.
jobject key = reinterpret_cast<jobject>(DSA_get_ex_data(dsa,0));
if (key != NULL) {
DSA_set_ex_data(dsa, 0, NULL);
ReleaseKey(key);
}
// Actual return value is ignored by OpenSSL. There are no docs
// explaining what this is supposed to be.
return 0;
}
const DSA_METHOD android_dsa_method = {
/* .name = */ "Android signing-only DSA method",
/* .dsa_do_sign = */ DsaMethodDoSign,
/* .dsa_sign_setup = */ DsaMethodSignSetup,
/* .dsa_do_verify = */ DsaMethodDoVerify,
/* .dsa_mod_exp = */ NULL,
/* .bn_mod_exp = */ NULL,
/* .init = */ NULL, // nothing to do here.
/* .finish = */ DsaMethodFinish,
/* .flags = */ 0,
/* .app_data = */ NULL,
/* .dsa_paramgem = */ NULL,
/* .dsa_keygen = */ NULL
};
// Setup an EVP_PKEY to wrap an existing DSA platform PrivateKey object.
// |private_key| is a JNI reference (local or global) to the object.
// |pkey| is the EVP_PKEY to setup as a wrapper.
// Returns true on success, false otherwise.
// On success, this creates a global JNI reference to the same object
// that will be owned by and destroyed with the EVP_PKEY.
bool GetDsaPkeyWrapper(jobject private_key, EVP_PKEY* pkey) {
ScopedDSA dsa(DSA_new());
DSA_set_method(dsa.get(), &android_dsa_method);
// DSA_size() doesn't work with custom DSA_METHODs. To ensure it
// returns the right value, set the 'q' field in the DSA object to
// match the parameter from the platform key.
std::vector<uint8> q;
if (!GetDSAKeyParamQ(private_key, &q)) {
LOG(ERROR) << "Can't extract Q parameter from DSA private key";
return false;
}
if (!SwapBigNumPtrFromBytes(q, &dsa.get()->q)) {
LOG(ERROR) << "Can't decode Q parameter from DSA private key";
return false;
}
ScopedJavaGlobalRef<jobject> global_key;
global_key.Reset(NULL, private_key);
if (global_key.is_null()) {
LOG(ERROR) << "Could not create global JNI reference";
return false;
}
DSA_set_ex_data(dsa.get(), 0, global_key.Release());
EVP_PKEY_assign_DSA(pkey, dsa.release());
return true;
}
// Custom ECDSA_METHOD that uses the platform APIs.
// Note that for now, only signing through ECDSA_sign() is really supported.
// all other method pointers are either stubs returning errors, or no-ops.
//
// Note: The ECDSA_METHOD structure doesn't have init/finish
// methods. As such, the only way to to ensure the global
// JNI reference is properly released when the EVP_PKEY is
// destroyed is to use a custom EX_DATA type.
// Used to ensure that the global JNI reference associated with a custom
// EC_KEY + ECDSA_METHOD wrapper is released when its EX_DATA is destroyed
// (this function is called when EVP_PKEY_free() is called on the wrapper).
void ExDataFree(void* parent,
void* ptr,
CRYPTO_EX_DATA* ad,
int idx,
long argl,
void* argp) {
jobject private_key = reinterpret_cast<jobject>(ptr);
if (private_key == NULL)
return;
CRYPTO_set_ex_data(ad, idx, NULL);
ReleaseKey(private_key);
}
int ExDataDup(CRYPTO_EX_DATA* to,
CRYPTO_EX_DATA* from,
void* from_d,
int idx,
long argl,
void* argp) {
// This callback shall never be called with the current OpenSSL
// implementation (the library only ever duplicates EX_DATA items
// for SSL and BIO objects). But provide this to catch regressions
// in the future.
CHECK(false) << "ExDataDup was called for ECDSA custom key !?";
// Return value is currently ignored by OpenSSL.
return 0;
}
class EcdsaExDataIndex {
public:
int ex_data_index() { return ex_data_index_; }
EcdsaExDataIndex() {
ex_data_index_ = ECDSA_get_ex_new_index(0, // argl
NULL, // argp
NULL, // new_func
ExDataDup, // dup_func
ExDataFree); // free_func
}
private:
int ex_data_index_;
};
// Returns the index of the custom EX_DATA used to store the JNI reference.
int EcdsaGetExDataIndex(void) {
// Use a LazyInstance to perform thread-safe lazy initialization.
// Use a leaky one, since OpenSSL doesn't provide a way to release
// allocated EX_DATA indices.
static base::LazyInstance<EcdsaExDataIndex>::Leaky s_instance =
LAZY_INSTANCE_INITIALIZER;
return s_instance.Get().ex_data_index();
}
ECDSA_SIG* EcdsaMethodDoSign(const unsigned char* dgst,
int dgst_len,
const BIGNUM* inv,
const BIGNUM* rp,
EC_KEY* eckey) {
// Retrieve private key JNI reference.
jobject private_key = reinterpret_cast<jobject>(
ECDSA_get_ex_data(eckey, EcdsaGetExDataIndex()));
if (!private_key) {
LOG(WARNING) << "Null JNI reference passed to EcdsaMethodDoSign!";
return NULL;
}
// Sign message with it through JNI.
std::vector<uint8> signature;
base::StringPiece digest(
reinterpret_cast<const char*>(dgst),
static_cast<size_t>(dgst_len));
if (!RawSignDigestWithPrivateKey(
private_key, digest, &signature)) {
LOG(WARNING) << "Could not sign message in EcdsaMethodDoSign!";
return NULL;
}
// Note: With ECDSA, the actual signature may be smaller than
// ECDSA_size().
size_t max_expected_size = static_cast<size_t>(ECDSA_size(eckey));
if (signature.size() > max_expected_size) {
LOG(ERROR) << "ECDSA Signature size mismatch, actual: "
<< signature.size() << ", expected <= "
<< max_expected_size;
return NULL;
}
// Convert signature to ECDSA_SIG object
const unsigned char* sigbuf =
reinterpret_cast<const unsigned char*>(&signature[0]);
long siglen = static_cast<long>(signature.size());
return d2i_ECDSA_SIG(NULL, &sigbuf, siglen);
}
int EcdsaMethodSignSetup(EC_KEY* eckey,
BN_CTX* ctx,
BIGNUM** kinv,
BIGNUM** r) {
NOTIMPLEMENTED();
ECDSAerr(ECDSA_F_ECDSA_SIGN_SETUP, ECDSA_R_ERR_EC_LIB);
return -1;
}
int EcdsaMethodDoVerify(const unsigned char* dgst,
int dgst_len,
const ECDSA_SIG* sig,
EC_KEY* eckey) {
NOTIMPLEMENTED();
ECDSAerr(ECDSA_F_ECDSA_DO_VERIFY, ECDSA_R_ERR_EC_LIB);
return -1;
}
const ECDSA_METHOD android_ecdsa_method = {
/* .name = */ "Android signing-only ECDSA method",
/* .ecdsa_do_sign = */ EcdsaMethodDoSign,
/* .ecdsa_sign_setup = */ EcdsaMethodSignSetup,
/* .ecdsa_do_verify = */ EcdsaMethodDoVerify,
/* .flags = */ 0,
/* .app_data = */ NULL,
};
// Setup an EVP_PKEY to wrap an existing platform PrivateKey object.
// |private_key| is the JNI reference (local or global) to the object.
// |pkey| is the EVP_PKEY to setup as a wrapper.
// Returns true on success, false otherwise.
// On success, this creates a global JNI reference to the object that
// is owned by and destroyed with the EVP_PKEY. I.e. the caller shall
// always free |private_key| after the call.
bool GetEcdsaPkeyWrapper(jobject private_key, EVP_PKEY* pkey) {
ScopedEC_KEY eckey(EC_KEY_new());
ECDSA_set_method(eckey.get(), &android_ecdsa_method);
// To ensure that ECDSA_size() works properly, craft a custom EC_GROUP
// that has the same order than the private key.
std::vector<uint8> order;
if (!GetECKeyOrder(private_key, &order)) {
LOG(ERROR) << "Can't extract order parameter from EC private key";
return false;
}
ScopedEC_GROUP group(EC_GROUP_new(EC_GFp_nist_method()));
if (!group.get()) {
LOG(ERROR) << "Can't create new EC_GROUP";
return false;
}
if (!CopyBigNumFromBytes(order, &group.get()->order)) {
LOG(ERROR) << "Can't decode order from PrivateKey";
return false;
}
EC_KEY_set_group(eckey.get(), group.release());
ScopedJavaGlobalRef<jobject> global_key;
global_key.Reset(NULL, private_key);
if (global_key.is_null()) {
LOG(ERROR) << "Can't create global JNI reference";
return false;
}
ECDSA_set_ex_data(eckey.get(),
EcdsaGetExDataIndex(),
global_key.Release());
EVP_PKEY_assign_EC_KEY(pkey, eckey.release());
return true;
}
} // namespace
EVP_PKEY* GetOpenSSLPrivateKeyWrapper(jobject private_key) {
// Create new empty EVP_PKEY instance.
ScopedEVP_PKEY pkey(EVP_PKEY_new());
if (!pkey.get())
return NULL;
// Create sub key type, depending on private key's algorithm type.
PrivateKeyType key_type = GetPrivateKeyType(private_key);
switch (key_type) {
case PRIVATE_KEY_TYPE_RSA:
{
// Route around platform bug: if Android < 4.2, then
// base::android::RawSignDigestWithPrivateKey() cannot work, so
// instead, obtain a raw EVP_PKEY* to the system object
// backing this PrivateKey object.
const int kAndroid42ApiLevel = 17;
if (base::android::BuildInfo::GetInstance()->sdk_int() <
kAndroid42ApiLevel) {
EVP_PKEY* legacy_key = GetRsaLegacyKey(private_key);
if (legacy_key == NULL)
return NULL;
pkey.reset(legacy_key);
} else {
// Running on Android 4.2.
if (!GetRsaPkeyWrapper(private_key, pkey.get()))
return NULL;
}
}
break;
case PRIVATE_KEY_TYPE_DSA:
if (!GetDsaPkeyWrapper(private_key, pkey.get()))
return NULL;
break;
case PRIVATE_KEY_TYPE_ECDSA:
if (!GetEcdsaPkeyWrapper(private_key, pkey.get()))
return NULL;
break;
default:
LOG(WARNING)
<< "GetOpenSSLPrivateKeyWrapper() called with invalid key type";
return NULL;
}
return pkey.release();
}
} // namespace android
} // namespace net