blob: 90e2fb03bdbd87ad9f88953eb687d7d0c1066b49 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "mojo/system/local_data_pipe.h"
#include <string.h>
#include "base/basictypes.h"
#include "base/memory/ref_counted.h"
#include "mojo/system/data_pipe.h"
#include "mojo/system/waiter.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace mojo {
namespace system {
namespace {
const uint32_t kSizeOfOptions =
static_cast<uint32_t>(sizeof(MojoCreateDataPipeOptions));
// Validate options.
TEST(LocalDataPipeTest, Creation) {
// Create using default options.
{
// Get default options.
MojoCreateDataPipeOptions default_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(NULL, &default_options));
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(default_options));
dp->ProducerClose();
dp->ConsumerClose();
}
// Create using non-default options.
{
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
1, // |element_num_bytes|.
1000 // |capacity_num_bytes|.
};
MojoCreateDataPipeOptions validated_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(&options, &validated_options));
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
dp->ProducerClose();
dp->ConsumerClose();
}
{
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
4, // |element_num_bytes|.
4000 // |capacity_num_bytes|.
};
MojoCreateDataPipeOptions validated_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(&options, &validated_options));
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
dp->ProducerClose();
dp->ConsumerClose();
}
{
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_MAY_DISCARD, // |flags|.
7, // |element_num_bytes|.
7000000 // |capacity_num_bytes|.
};
MojoCreateDataPipeOptions validated_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(&options, &validated_options));
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
dp->ProducerClose();
dp->ConsumerClose();
}
// Default capacity.
{
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_MAY_DISCARD, // |flags|.
100, // |element_num_bytes|.
0 // |capacity_num_bytes|.
};
MojoCreateDataPipeOptions validated_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(&options, &validated_options));
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
dp->ProducerClose();
dp->ConsumerClose();
}
}
TEST(LocalDataPipeTest, SimpleReadWrite) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
1000 * sizeof(int32_t) // |capacity_num_bytes|.
};
MojoCreateDataPipeOptions validated_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(&options, &validated_options));
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
int32_t elements[10] = { 0 };
uint32_t num_bytes = 0;
// Try reading; nothing there yet.
num_bytes = static_cast<uint32_t>(arraysize(elements) * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_SHOULD_WAIT,
dp->ConsumerReadData(elements, &num_bytes, false));
// Query; nothing there yet.
num_bytes = 0;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(0u, num_bytes);
// Discard; nothing there yet.
num_bytes = static_cast<uint32_t>(5u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_SHOULD_WAIT,
dp->ConsumerDiscardData(&num_bytes, false));
// Read with invalid |num_bytes|.
num_bytes = sizeof(elements[0]) + 1;
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
dp->ConsumerReadData(elements, &num_bytes, false));
// Write two elements.
elements[0] = 123;
elements[1] = 456;
num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerWriteData(elements, &num_bytes, false));
// It should have written everything (even without "all or none").
EXPECT_EQ(2u * sizeof(elements[0]), num_bytes);
// Query.
num_bytes = 0;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(2 * sizeof(elements[0]), num_bytes);
// Read one element.
elements[0] = -1;
elements[1] = -1;
num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerReadData(elements, &num_bytes, false));
EXPECT_EQ(1u * sizeof(elements[0]), num_bytes);
EXPECT_EQ(123, elements[0]);
EXPECT_EQ(-1, elements[1]);
// Query.
num_bytes = 0;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(1 * sizeof(elements[0]), num_bytes);
// Try to read two elements, with "all or none".
elements[0] = -1;
elements[1] = -1;
num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_OUT_OF_RANGE,
dp->ConsumerReadData(elements, &num_bytes, true));
EXPECT_EQ(-1, elements[0]);
EXPECT_EQ(-1, elements[1]);
// Try to read two elements, without "all or none".
elements[0] = -1;
elements[1] = -1;
num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerReadData(elements, &num_bytes, false));
EXPECT_EQ(456, elements[0]);
EXPECT_EQ(-1, elements[1]);
// Query.
num_bytes = 0;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(0u, num_bytes);
dp->ProducerClose();
dp->ConsumerClose();
}
// Note: The "basic" waiting tests test that the "wait states" are correct in
// various situations; they don't test that waiters are properly awoken on state
// changes. (For that, we need to use multiple threads.)
TEST(LocalDataPipeTest, BasicProducerWaiting) {
// Note: We take advantage of the fact that for |LocalDataPipe|, capacities
// are strict maximums. This is not guaranteed by the API.
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
2 * sizeof(int32_t) // |capacity_num_bytes|.
};
MojoCreateDataPipeOptions validated_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(&options, &validated_options));
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
Waiter waiter;
// Never readable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
dp->ProducerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 12));
// Already writable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ProducerAddWaiter(&waiter, MOJO_WAIT_FLAG_WRITABLE, 34));
// Write two elements.
int32_t elements[2] = { 123, 456 };
uint32_t num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerWriteData(elements, &num_bytes, true));
EXPECT_EQ(static_cast<uint32_t>(2u * sizeof(elements[0])), num_bytes);
// Adding a waiter should now succeed.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerAddWaiter(&waiter, MOJO_WAIT_FLAG_WRITABLE, 56));
// And it shouldn't be writable yet.
EXPECT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED, waiter.Wait(0));
dp->ProducerRemoveWaiter(&waiter);
// Do it again.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerAddWaiter(&waiter, MOJO_WAIT_FLAG_WRITABLE, 78));
// Read one element.
elements[0] = -1;
elements[1] = -1;
num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerReadData(elements, &num_bytes, true));
EXPECT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
EXPECT_EQ(123, elements[0]);
EXPECT_EQ(-1, elements[1]);
// Waiting should now succeed.
EXPECT_EQ(78, waiter.Wait(1000));
dp->ProducerRemoveWaiter(&waiter);
// Try writing, using a two-phase write.
void* buffer = NULL;
num_bytes = static_cast<uint32_t>(3u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerBeginWriteData(&buffer, &num_bytes, false));
EXPECT_TRUE(buffer != NULL);
EXPECT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
static_cast<int32_t*>(buffer)[0] = 789;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerEndWriteData(
static_cast<uint32_t>(1u * sizeof(elements[0]))));
// Add a waiter.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerAddWaiter(&waiter, MOJO_WAIT_FLAG_WRITABLE, 90));
// Read one element, using a two-phase read.
const void* read_buffer = NULL;
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerBeginReadData(&read_buffer, &num_bytes, false));
EXPECT_TRUE(read_buffer != NULL);
// Since we only read one element (after having written three in all), the
// two-phase read should only allow us to read one. This checks an
// implementation detail!
EXPECT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
EXPECT_EQ(456, static_cast<const int32_t*>(read_buffer)[0]);
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerEndReadData(
static_cast<uint32_t>(1u * sizeof(elements[0]))));
// Waiting should succeed.
EXPECT_EQ(90, waiter.Wait(1000));
dp->ProducerRemoveWaiter(&waiter);
// Write one element.
elements[0] = 123;
num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerWriteData(elements, &num_bytes, false));
EXPECT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
// Add a waiter.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerAddWaiter(&waiter, MOJO_WAIT_FLAG_WRITABLE, 12));
// Close the consumer.
dp->ConsumerClose();
// It should now be never-writable.
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION, waiter.Wait(1000));
dp->ProducerRemoveWaiter(&waiter);
dp->ProducerClose();
}
TEST(LocalDataPipeTest, BasicConsumerWaiting) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
1000 * sizeof(int32_t) // |capacity_num_bytes|.
};
MojoCreateDataPipeOptions validated_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(&options, &validated_options));
{
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
Waiter waiter;
// Never writable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_WRITABLE, 12));
// Not yet readable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 34));
EXPECT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED, waiter.Wait(0));
dp->ConsumerRemoveWaiter(&waiter);
// Write two elements.
int32_t elements[2] = { 123, 456 };
uint32_t num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerWriteData(elements, &num_bytes, true));
// Should already be readable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 56));
// Discard one element.
num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerDiscardData(&num_bytes, true));
EXPECT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
// Should still be readable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 78));
// Read one element.
elements[0] = -1;
elements[1] = -1;
num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerReadData(elements, &num_bytes, true));
EXPECT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
EXPECT_EQ(456, elements[0]);
EXPECT_EQ(-1, elements[1]);
// Adding a waiter should now succeed.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 90));
// Write one element.
elements[0] = 789;
elements[1] = -1;
num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerWriteData(elements, &num_bytes, true));
// Waiting should now succeed.
EXPECT_EQ(90, waiter.Wait(1000));
dp->ConsumerRemoveWaiter(&waiter);
// Close the producer.
dp->ProducerClose();
// Should still be readable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 12));
// Read one element.
elements[0] = -1;
elements[1] = -1;
num_bytes = static_cast<uint32_t>(1u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerReadData(elements, &num_bytes, true));
EXPECT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
EXPECT_EQ(789, elements[0]);
EXPECT_EQ(-1, elements[1]);
// Should be never-readable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 34));
dp->ConsumerClose();
}
// Test with two-phase APIs and closing the producer with an active consumer
// waiter.
{
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
Waiter waiter;
// Write two elements.
int32_t* elements = NULL;
void* buffer = NULL;
// Request room for three (but we'll only write two).
uint32_t num_bytes = static_cast<uint32_t>(3u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerBeginWriteData(&buffer, &num_bytes, true));
EXPECT_TRUE(buffer != NULL);
EXPECT_GE(num_bytes, static_cast<uint32_t>(3u * sizeof(elements[0])));
elements = static_cast<int32_t*>(buffer);
elements[0] = 123;
elements[1] = 456;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerEndWriteData(
static_cast<uint32_t>(2u * sizeof(elements[0]))));
// Should already be readable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 12));
// Read one element.
// Request two in all-or-none mode, but only read one.
const void* read_buffer = NULL;
num_bytes = static_cast<uint32_t>(2u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerBeginReadData(&read_buffer, &num_bytes, true));
EXPECT_TRUE(read_buffer != NULL);
EXPECT_EQ(static_cast<uint32_t>(2u * sizeof(elements[0])), num_bytes);
const int32_t* read_elements = static_cast<const int32_t*>(read_buffer);
EXPECT_EQ(123, read_elements[0]);
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerEndReadData(
static_cast<uint32_t>(1u * sizeof(elements[0]))));
// Should still be readable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 34));
// Read one element.
// Request three, but not in all-or-none mode.
read_buffer = NULL;
num_bytes = static_cast<uint32_t>(3u * sizeof(elements[0]));
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerBeginReadData(&read_buffer, &num_bytes, false));
EXPECT_TRUE(read_buffer != NULL);
EXPECT_EQ(static_cast<uint32_t>(1u * sizeof(elements[0])), num_bytes);
read_elements = static_cast<const int32_t*>(read_buffer);
EXPECT_EQ(456, read_elements[0]);
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerEndReadData(
static_cast<uint32_t>(1u * sizeof(elements[0]))));
// Adding a waiter should now succeed.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 56));
// Close the producer.
dp->ProducerClose();
// Should be never-readable.
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION, waiter.Wait(1000));
dp->ConsumerRemoveWaiter(&waiter);
dp->ConsumerClose();
}
}
// Tests that data pipes aren't writable/readable during two-phase writes/reads.
TEST(LocalDataPipeTest, BasicTwoPhaseWaiting) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
1000 * sizeof(int32_t) // |capacity_num_bytes|.
};
MojoCreateDataPipeOptions validated_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(&options, &validated_options));
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
Waiter waiter;
// It should be writable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ProducerAddWaiter(&waiter, MOJO_WAIT_FLAG_WRITABLE, 0));
uint32_t num_bytes = static_cast<uint32_t>(1u * sizeof(int32_t));
void* write_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerBeginWriteData(&write_ptr, &num_bytes, false));
EXPECT_TRUE(write_ptr != NULL);
EXPECT_GE(num_bytes, static_cast<uint32_t>(1u * sizeof(int32_t)));
// At this point, it shouldn't be writable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerAddWaiter(&waiter, MOJO_WAIT_FLAG_WRITABLE, 1));
EXPECT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED, waiter.Wait(0));
dp->ProducerRemoveWaiter(&waiter);
// It shouldn't be readable yet either.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 2));
EXPECT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED, waiter.Wait(0));
dp->ConsumerRemoveWaiter(&waiter);
static_cast<int32_t*>(write_ptr)[0] = 123;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerEndWriteData(
static_cast<uint32_t>(1u * sizeof(int32_t))));
// It should be writable again.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ProducerAddWaiter(&waiter, MOJO_WAIT_FLAG_WRITABLE, 3));
// And readable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 4));
// Start another two-phase write and check that it's readable even in the
// middle of it.
num_bytes = static_cast<uint32_t>(1u * sizeof(int32_t));
write_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerBeginWriteData(&write_ptr, &num_bytes, false));
EXPECT_TRUE(write_ptr != NULL);
EXPECT_GE(num_bytes, static_cast<uint32_t>(1u * sizeof(int32_t)));
// It should be readable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 5));
// End the two-phase write without writing anything.
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerEndWriteData(0u));
// Start a two-phase read.
num_bytes = static_cast<uint32_t>(1u * sizeof(int32_t));
const void* read_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerBeginReadData(&read_ptr, &num_bytes, false));
EXPECT_TRUE(read_ptr != NULL);
EXPECT_EQ(static_cast<uint32_t>(1u * sizeof(int32_t)), num_bytes);
// At this point, it should still be writable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ProducerAddWaiter(&waiter, MOJO_WAIT_FLAG_WRITABLE, 6));
// But not readable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 7));
EXPECT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED, waiter.Wait(0));
dp->ConsumerRemoveWaiter(&waiter);
// End the two-phase read without reading anything.
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerEndReadData(0u));
// It should be readable again.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 8));
dp->ProducerClose();
dp->ConsumerClose();
}
// Test that a "may discard" data pipe is writable even when it's full.
TEST(LocalDataPipeTest, BasicMayDiscardWaiting) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_MAY_DISCARD, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
1 * sizeof(int32_t) // |capacity_num_bytes|.
};
MojoCreateDataPipeOptions validated_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(&options, &validated_options));
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
Waiter waiter;
// Writable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ProducerAddWaiter(&waiter, MOJO_WAIT_FLAG_WRITABLE, 0));
// Not readable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 1));
EXPECT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED, waiter.Wait(0));
dp->ConsumerRemoveWaiter(&waiter);
uint32_t num_bytes = static_cast<uint32_t>(sizeof(int32_t));
int32_t element = 123;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerWriteData(&element, &num_bytes, false));
EXPECT_EQ(static_cast<uint32_t>(sizeof(int32_t)), num_bytes);
// Still writable (even though it's full).
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ProducerAddWaiter(&waiter, MOJO_WAIT_FLAG_WRITABLE, 2));
// Now readable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 3));
// Overwrite that element.
num_bytes = static_cast<uint32_t>(sizeof(int32_t));
element = 456;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerWriteData(&element, &num_bytes, false));
EXPECT_EQ(static_cast<uint32_t>(sizeof(int32_t)), num_bytes);
// Still writable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ProducerAddWaiter(&waiter, MOJO_WAIT_FLAG_WRITABLE, 4));
// And still readable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 5));
// Read that element.
num_bytes = static_cast<uint32_t>(sizeof(int32_t));
element = 0;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerReadData(&element, &num_bytes, false));
EXPECT_EQ(static_cast<uint32_t>(sizeof(int32_t)), num_bytes);
EXPECT_EQ(456, element);
// Still writable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_ALREADY_EXISTS,
dp->ProducerAddWaiter(&waiter, MOJO_WAIT_FLAG_WRITABLE, 6));
// No longer readable.
waiter.Init();
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerAddWaiter(&waiter, MOJO_WAIT_FLAG_READABLE, 7));
EXPECT_EQ(MOJO_RESULT_DEADLINE_EXCEEDED, waiter.Wait(0));
dp->ConsumerRemoveWaiter(&waiter);
dp->ProducerClose();
dp->ConsumerClose();
}
void Seq(int32_t start, size_t count, int32_t* out) {
for (size_t i = 0; i < count; i++)
out[i] = start + static_cast<int32_t>(i);
}
TEST(LocalDataPipeTest, MayDiscard) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_MAY_DISCARD, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
10 * sizeof(int32_t) // |capacity_num_bytes|.
};
MojoCreateDataPipeOptions validated_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(&options, &validated_options));
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
int32_t buffer[100] = { 0 };
uint32_t num_bytes = 0;
num_bytes = 20u * sizeof(int32_t);
Seq(0, arraysize(buffer), buffer);
// Try writing more than capacity. (This test relies on the implementation
// enforcing the capacity strictly.)
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerWriteData(buffer, &num_bytes, false));
EXPECT_EQ(10u * sizeof(int32_t), num_bytes);
// Read half of what we wrote.
num_bytes = 5u * sizeof(int32_t);
memset(buffer, 0xab, sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerReadData(buffer, &num_bytes, false));
EXPECT_EQ(5u * sizeof(int32_t), num_bytes);
int32_t expected_buffer[100];
memset(expected_buffer, 0xab, sizeof(expected_buffer));
Seq(0, 5u, expected_buffer);
EXPECT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
// Internally, a circular buffer would now look like:
// -, -, -, -, -, 5, 6, 7, 8, 9
// Write a bit more than the space that's available.
num_bytes = 8u * sizeof(int32_t);
Seq(100, arraysize(buffer), buffer);
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerWriteData(buffer, &num_bytes, false));
EXPECT_EQ(8u * sizeof(int32_t), num_bytes);
// Internally, a circular buffer would now look like:
// 100, 101, 102, 103, 104, 105, 106, 107, 8, 9
// Read half of what's available.
num_bytes = 5u * sizeof(int32_t);
memset(buffer, 0xab, sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerReadData(buffer, &num_bytes, false));
EXPECT_EQ(5u * sizeof(int32_t), num_bytes);
memset(expected_buffer, 0xab, sizeof(expected_buffer));
expected_buffer[0] = 8;
expected_buffer[1] = 9;
expected_buffer[2] = 100;
expected_buffer[3] = 101;
expected_buffer[4] = 102;
EXPECT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
// Internally, a circular buffer would now look like:
// -, -, -, 103, 104, 105, 106, 107, -, -
// Write one integer.
num_bytes = 1u * sizeof(int32_t);
Seq(200, arraysize(buffer), buffer);
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerWriteData(buffer, &num_bytes, false));
EXPECT_EQ(1u * sizeof(int32_t), num_bytes);
// Internally, a circular buffer would now look like:
// -, -, -, 103, 104, 105, 106, 107, 200, -
// Write five more.
num_bytes = 5u * sizeof(int32_t);
Seq(300, arraysize(buffer), buffer);
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerWriteData(buffer, &num_bytes, false));
EXPECT_EQ(5u * sizeof(int32_t), num_bytes);
// Internally, a circular buffer would now look like:
// 301, 302, 303, 304, 104, 105, 106, 107, 200, 300
// Read it all.
num_bytes = sizeof(buffer);
memset(buffer, 0xab, sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerReadData(buffer, &num_bytes, false));
EXPECT_EQ(10u * sizeof(int32_t), num_bytes);
memset(expected_buffer, 0xab, sizeof(expected_buffer));
expected_buffer[0] = 104;
expected_buffer[1] = 105;
expected_buffer[2] = 106;
expected_buffer[3] = 107;
expected_buffer[4] = 200;
expected_buffer[5] = 300;
expected_buffer[6] = 301;
expected_buffer[7] = 302;
expected_buffer[8] = 303;
expected_buffer[9] = 304;
EXPECT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
// Test two-phase writes, including in all-or-none mode.
// Note: Again, the following depends on an implementation detail -- namely
// that the write pointer will point at the 5th element of the buffer (and the
// buffer has exactly the capacity requested).
num_bytes = 0u;
void* write_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerBeginWriteData(&write_ptr, &num_bytes, false));
EXPECT_TRUE(write_ptr != NULL);
EXPECT_EQ(6u * sizeof(int32_t), num_bytes);
Seq(400, 6, static_cast<int32_t*>(write_ptr));
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerEndWriteData(6u * sizeof(int32_t)));
// Internally, a circular buffer would now look like:
// -, -, -, -, 400, 401, 402, 403, 404, 405
// |ProducerBeginWriteData()| ignores |*num_bytes| except in "all-or-none"
// mode.
num_bytes = 6u * sizeof(int32_t);
write_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerBeginWriteData(&write_ptr, &num_bytes, false));
EXPECT_EQ(4u * sizeof(int32_t), num_bytes);
static_cast<int32_t*>(write_ptr)[0] = 500;
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerEndWriteData(1u * sizeof(int32_t)));
// Internally, a circular buffer would now look like:
// 500, -, -, -, 400, 401, 402, 403, 404, 405
// Requesting a 10-element buffer in all-or-none mode fails at this point.
num_bytes = 10u * sizeof(int32_t);
write_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OUT_OF_RANGE,
dp->ProducerBeginWriteData(&write_ptr, &num_bytes, true));
// But requesting, say, a 5-element (up to 9, really) buffer should be okay.
// It will discard two elements.
num_bytes = 5u * sizeof(int32_t);
write_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerBeginWriteData(&write_ptr, &num_bytes, true));
EXPECT_EQ(5u * sizeof(int32_t), num_bytes);
// Only write 4 elements though.
Seq(600, 4, static_cast<int32_t*>(write_ptr));
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerEndWriteData(4u * sizeof(int32_t)));
// Internally, a circular buffer would now look like:
// 500, 600, 601, 602, 603, -, 402, 403, 404, 405
// Do this again. Make sure we can get a buffer all the way out to the end of
// the internal buffer.
num_bytes = 5u * sizeof(int32_t);
write_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerBeginWriteData(&write_ptr, &num_bytes, true));
EXPECT_EQ(5u * sizeof(int32_t), num_bytes);
// Only write 3 elements though.
Seq(700, 3, static_cast<int32_t*>(write_ptr));
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerEndWriteData(3u * sizeof(int32_t)));
// Internally, a circular buffer would now look like:
// 500, 600, 601, 602, 603, 700, 701, 702, -, -
// Read everything.
num_bytes = sizeof(buffer);
memset(buffer, 0xab, sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerReadData(buffer, &num_bytes, false));
EXPECT_EQ(8u * sizeof(int32_t), num_bytes);
memset(expected_buffer, 0xab, sizeof(expected_buffer));
expected_buffer[0] = 500;
expected_buffer[1] = 600;
expected_buffer[2] = 601;
expected_buffer[3] = 602;
expected_buffer[4] = 603;
expected_buffer[5] = 700;
expected_buffer[6] = 701;
expected_buffer[7] = 702;
EXPECT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
dp->ProducerClose();
dp->ConsumerClose();
}
TEST(LocalDataPipeTest, AllOrNone) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
10 * sizeof(int32_t) // |capacity_num_bytes|.
};
MojoCreateDataPipeOptions validated_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(&options, &validated_options));
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
// Try writing way too much.
uint32_t num_bytes = 20u * sizeof(int32_t);
int32_t buffer[100];
Seq(0, arraysize(buffer), buffer);
EXPECT_EQ(MOJO_RESULT_OUT_OF_RANGE,
dp->ProducerWriteData(buffer, &num_bytes, true));
// Should still be empty.
num_bytes = ~0u;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(0u, num_bytes);
// Write some data.
num_bytes = 5u * sizeof(int32_t);
Seq(100, arraysize(buffer), buffer);
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerWriteData(buffer, &num_bytes, true));
EXPECT_EQ(5u * sizeof(int32_t), num_bytes);
// Half full.
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(5u * sizeof(int32_t), num_bytes);
// Too much.
num_bytes = 6u * sizeof(int32_t);
Seq(200, arraysize(buffer), buffer);
EXPECT_EQ(MOJO_RESULT_OUT_OF_RANGE,
dp->ProducerWriteData(buffer, &num_bytes, true));
// Try reading too much.
num_bytes = 11u * sizeof(int32_t);
memset(buffer, 0xab, sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_OUT_OF_RANGE,
dp->ConsumerReadData(buffer, &num_bytes, true));
int32_t expected_buffer[100];
memset(expected_buffer, 0xab, sizeof(expected_buffer));
EXPECT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
// Try discarding too much.
num_bytes = 11u * sizeof(int32_t);
EXPECT_EQ(MOJO_RESULT_OUT_OF_RANGE,
dp->ConsumerDiscardData(&num_bytes, true));
// Just a little.
num_bytes = 2u * sizeof(int32_t);
Seq(300, arraysize(buffer), buffer);
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerWriteData(buffer, &num_bytes, true));
EXPECT_EQ(2u * sizeof(int32_t), num_bytes);
// Just right.
num_bytes = 3u * sizeof(int32_t);
Seq(400, arraysize(buffer), buffer);
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerWriteData(buffer, &num_bytes, true));
EXPECT_EQ(3u * sizeof(int32_t), num_bytes);
// Exactly full.
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(10u * sizeof(int32_t), num_bytes);
// Read half.
num_bytes = 5u * sizeof(int32_t);
memset(buffer, 0xab, sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerReadData(buffer, &num_bytes, true));
EXPECT_EQ(5u * sizeof(int32_t), num_bytes);
memset(expected_buffer, 0xab, sizeof(expected_buffer));
Seq(100, 5, expected_buffer);
EXPECT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
// Try reading too much again.
num_bytes = 6u * sizeof(int32_t);
memset(buffer, 0xab, sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_OUT_OF_RANGE,
dp->ConsumerReadData(buffer, &num_bytes, true));
memset(expected_buffer, 0xab, sizeof(expected_buffer));
EXPECT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
// Try discarding too much again.
num_bytes = 6u * sizeof(int32_t);
EXPECT_EQ(MOJO_RESULT_OUT_OF_RANGE,
dp->ConsumerDiscardData(&num_bytes, true));
// Discard a little.
num_bytes = 2u * sizeof(int32_t);
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerDiscardData(&num_bytes, true));
EXPECT_EQ(2u * sizeof(int32_t), num_bytes);
// Three left.
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(3u * sizeof(int32_t), num_bytes);
// Close the producer, then test producer-closed cases.
dp->ProducerClose();
// Try reading too much; "failed precondition" since the producer is closed.
num_bytes = 4u * sizeof(int32_t);
memset(buffer, 0xab, sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
dp->ConsumerReadData(buffer, &num_bytes, true));
memset(expected_buffer, 0xab, sizeof(expected_buffer));
EXPECT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
// Try discarding too much; "failed precondition" again.
num_bytes = 4u * sizeof(int32_t);
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
dp->ConsumerDiscardData(&num_bytes, true));
// Read a little.
num_bytes = 2u * sizeof(int32_t);
memset(buffer, 0xab, sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerReadData(buffer, &num_bytes, true));
EXPECT_EQ(2u * sizeof(int32_t), num_bytes);
memset(expected_buffer, 0xab, sizeof(expected_buffer));
Seq(400, 2, expected_buffer);
EXPECT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
// Discard the remaining element.
num_bytes = 1u * sizeof(int32_t);
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerDiscardData(&num_bytes, true));
EXPECT_EQ(1u * sizeof(int32_t), num_bytes);
// Empty again.
num_bytes = ~0u;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(0u, num_bytes);
dp->ConsumerClose();
}
TEST(LocalDataPipeTest, AllOrNoneMayDiscard) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_MAY_DISCARD, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
10 * sizeof(int32_t) // |capacity_num_bytes|.
};
MojoCreateDataPipeOptions validated_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(&options, &validated_options));
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
// Try writing way too much.
uint32_t num_bytes = 20u * sizeof(int32_t);
int32_t buffer[100];
Seq(0, arraysize(buffer), buffer);
EXPECT_EQ(MOJO_RESULT_OUT_OF_RANGE,
dp->ProducerWriteData(buffer, &num_bytes, true));
// Write some stuff.
num_bytes = 5u * sizeof(int32_t);
Seq(100, arraysize(buffer), buffer);
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerWriteData(buffer, &num_bytes, true));
EXPECT_EQ(5u * sizeof(int32_t), num_bytes);
// Write lots of stuff (discarding all but "104").
num_bytes = 9u * sizeof(int32_t);
Seq(200, arraysize(buffer), buffer);
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerWriteData(buffer, &num_bytes, true));
EXPECT_EQ(9u * sizeof(int32_t), num_bytes);
// Read one.
num_bytes = 1u * sizeof(int32_t);
memset(buffer, 0xab, sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerReadData(buffer, &num_bytes, true));
EXPECT_EQ(1u * sizeof(int32_t), num_bytes);
int32_t expected_buffer[100];
memset(expected_buffer, 0xab, sizeof(expected_buffer));
expected_buffer[0] = 104;
EXPECT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
// Try reading too many.
num_bytes = 10u * sizeof(int32_t);
memset(buffer, 0xab, sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_OUT_OF_RANGE,
dp->ConsumerReadData(buffer, &num_bytes, true));
memset(expected_buffer, 0xab, sizeof(expected_buffer));
EXPECT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
// Try discarding too many.
num_bytes = 10u * sizeof(int32_t);
EXPECT_EQ(MOJO_RESULT_OUT_OF_RANGE,
dp->ConsumerDiscardData(&num_bytes, true));
// Discard a bunch.
num_bytes = 4u * sizeof(int32_t);
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerDiscardData(&num_bytes, true));
// Half full.
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(5u * sizeof(int32_t), num_bytes);
// Write as much as possible.
num_bytes = 10u * sizeof(int32_t);
Seq(300, arraysize(buffer), buffer);
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerWriteData(buffer, &num_bytes, true));
EXPECT_EQ(10u * sizeof(int32_t), num_bytes);
// Read everything.
num_bytes = 10u * sizeof(int32_t);
memset(buffer, 0xab, sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerReadData(buffer, &num_bytes, true));
memset(expected_buffer, 0xab, sizeof(expected_buffer));
EXPECT_EQ(10u * sizeof(int32_t), num_bytes);
Seq(300, 10, expected_buffer);
EXPECT_EQ(0, memcmp(buffer, expected_buffer, sizeof(buffer)));
// Note: All-or-none two-phase writes on a "may discard" data pipe are tested
// in LocalDataPipeTest.MayDiscard.
dp->ProducerClose();
dp->ConsumerClose();
}
TEST(LocalDataPipeTest, TwoPhaseAllOrNone) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
10 * sizeof(int32_t) // |capacity_num_bytes|.
};
MojoCreateDataPipeOptions validated_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(&options, &validated_options));
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
// Try writing way too much (two-phase).
uint32_t num_bytes = 20u * sizeof(int32_t);
void* write_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OUT_OF_RANGE,
dp->ProducerBeginWriteData(&write_ptr, &num_bytes, true));
// Try writing an amount which isn't a multiple of the element size
// (two-phase).
COMPILE_ASSERT(sizeof(int32_t) > 1u, wow_int32_ts_have_size_1);
num_bytes = 1u;
write_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
dp->ProducerBeginWriteData(&write_ptr, &num_bytes, true));
// Try reading way too much (two-phase).
num_bytes = 20u * sizeof(int32_t);
const void* read_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OUT_OF_RANGE,
dp->ConsumerBeginReadData(&read_ptr, &num_bytes, true));
// Write half (two-phase).
num_bytes = 5u * sizeof(int32_t);
write_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerBeginWriteData(&write_ptr, &num_bytes, true));
// May provide more space than requested.
EXPECT_GE(num_bytes, 5u * sizeof(int32_t));
EXPECT_TRUE(write_ptr != NULL);
Seq(0, 5, static_cast<int32_t*>(write_ptr));
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerEndWriteData(5u * sizeof(int32_t)));
// Try reading an amount which isn't a multiple of the element size
// (two-phase).
num_bytes = 1u;
read_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
dp->ConsumerBeginReadData(&read_ptr, &num_bytes, true));
// Read one (two-phase).
num_bytes = 1u * sizeof(int32_t);
read_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerBeginReadData(&read_ptr, &num_bytes, true));
EXPECT_GE(num_bytes, 1u * sizeof(int32_t));
EXPECT_EQ(0, static_cast<const int32_t*>(read_ptr)[0]);
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerEndReadData(1u * sizeof(int32_t)));
// We should have four left, leaving room for six.
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(4u * sizeof(int32_t), num_bytes);
// Assuming a tight circular buffer of the specified capacity, we can't do a
// two-phase write of six now.
num_bytes = 6u * sizeof(int32_t);
write_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OUT_OF_RANGE,
dp->ProducerBeginWriteData(&write_ptr, &num_bytes, true));
// Write six elements (simple), filling the buffer.
num_bytes = 6u * sizeof(int32_t);
int32_t buffer[100];
Seq(100, 6, buffer);
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerWriteData(buffer, &num_bytes, true));
EXPECT_EQ(6u * sizeof(int32_t), num_bytes);
// We have ten.
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(10u * sizeof(int32_t), num_bytes);
// But a two-phase read of ten should fail.
num_bytes = 10u * sizeof(int32_t);
read_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OUT_OF_RANGE,
dp->ConsumerBeginReadData(&read_ptr, &num_bytes, true));
// Close the producer.
dp->ProducerClose();
// A two-phase read of nine should work.
num_bytes = 9u * sizeof(int32_t);
read_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerBeginReadData(&read_ptr, &num_bytes, true));
EXPECT_GE(num_bytes, 9u * sizeof(int32_t));
EXPECT_EQ(1, static_cast<const int32_t*>(read_ptr)[0]);
EXPECT_EQ(2, static_cast<const int32_t*>(read_ptr)[1]);
EXPECT_EQ(3, static_cast<const int32_t*>(read_ptr)[2]);
EXPECT_EQ(4, static_cast<const int32_t*>(read_ptr)[3]);
EXPECT_EQ(100, static_cast<const int32_t*>(read_ptr)[4]);
EXPECT_EQ(101, static_cast<const int32_t*>(read_ptr)[5]);
EXPECT_EQ(102, static_cast<const int32_t*>(read_ptr)[6]);
EXPECT_EQ(103, static_cast<const int32_t*>(read_ptr)[7]);
EXPECT_EQ(104, static_cast<const int32_t*>(read_ptr)[8]);
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerEndReadData(9u * sizeof(int32_t)));
// A two-phase read of two should fail, with "failed precondition".
num_bytes = 2u * sizeof(int32_t);
read_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
dp->ConsumerBeginReadData(&read_ptr, &num_bytes, true));
dp->ConsumerClose();
}
// Tests that |ProducerWriteData()| and |ConsumerReadData()| writes and reads,
// respectively, as much as possible, even if it has to "wrap around" the
// internal circular buffer. (Note that the two-phase write and read do not do
// this.)
TEST(LocalDataPipeTest, WrapAround) {
unsigned char test_data[1000];
for (size_t i = 0; i < arraysize(test_data); i++)
test_data[i] = static_cast<unsigned char>(i);
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
1u, // |element_num_bytes|.
100u // |capacity_num_bytes|.
};
MojoCreateDataPipeOptions validated_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(&options, &validated_options));
// This test won't be valid if |ValidateOptions()| decides to give the pipe
// more space.
ASSERT_EQ(100u, validated_options.capacity_num_bytes);
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
// Write 20 bytes.
uint32_t num_bytes = 20u;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerWriteData(&test_data[0], &num_bytes, false));
EXPECT_EQ(20u, num_bytes);
// Read 10 bytes.
unsigned char read_buffer[1000] = { 0 };
num_bytes = 10u;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerReadData(read_buffer, &num_bytes, false));
EXPECT_EQ(10u, num_bytes);
EXPECT_EQ(0, memcmp(read_buffer, &test_data[0], 10u));
// Check that a two-phase write can now only write (at most) 80 bytes. (This
// checks an implementation detail; this behavior is not guaranteed, but we
// need it for this test.)
void* write_buffer_ptr = NULL;
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerBeginWriteData(&write_buffer_ptr, &num_bytes, false));
EXPECT_TRUE(write_buffer_ptr != NULL);
EXPECT_EQ(80u, num_bytes);
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerEndWriteData(0u));
// Write as much data as we can (using |ProducerWriteData()|). We should write
// 90 bytes.
num_bytes = 200u;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerWriteData(&test_data[20], &num_bytes, false));
EXPECT_EQ(90u, num_bytes);
// Check that a two-phase read can now only read (at most) 90 bytes. (This
// checks an implementation detail; this behavior is not guaranteed, but we
// need it for this test.)
const void* read_buffer_ptr = NULL;
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerBeginReadData(&read_buffer_ptr, &num_bytes, false));
EXPECT_TRUE(read_buffer_ptr != NULL);
EXPECT_EQ(90u, num_bytes);
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerEndReadData(0u));
// Read as much as possible (using |ConsumerReadData()|). We should read 100
// bytes.
num_bytes =
static_cast<uint32_t>(arraysize(read_buffer) * sizeof(read_buffer[0]));
memset(read_buffer, 0, num_bytes);
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerReadData(read_buffer, &num_bytes, false));
EXPECT_EQ(100u, num_bytes);
EXPECT_EQ(0, memcmp(read_buffer, &test_data[10], 100u));
dp->ProducerClose();
dp->ConsumerClose();
}
// Tests the behavior of closing the producer or consumer with respect to
// writes and reads (simple and two-phase).
TEST(LocalDataPipeTest, CloseWriteRead) {
const char kTestData[] = "hello world";
const uint32_t kTestDataSize = static_cast<uint32_t>(sizeof(kTestData));
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
1u, // |element_num_bytes|.
1000u // |capacity_num_bytes|.
};
MojoCreateDataPipeOptions validated_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(&options, &validated_options));
// Close producer first, then consumer.
{
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
// Write some data, so we'll have something to read.
uint32_t num_bytes = kTestDataSize;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerWriteData(kTestData, &num_bytes, false));
EXPECT_EQ(kTestDataSize, num_bytes);
// Write it again, so we'll have something left over.
num_bytes = kTestDataSize;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerWriteData(kTestData, &num_bytes, false));
EXPECT_EQ(kTestDataSize, num_bytes);
// Start two-phase write.
void* write_buffer_ptr = NULL;
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerBeginWriteData(&write_buffer_ptr, &num_bytes, false));
EXPECT_TRUE(write_buffer_ptr != NULL);
EXPECT_GT(num_bytes, 0u);
// Start two-phase read.
const void* read_buffer_ptr = NULL;
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerBeginReadData(&read_buffer_ptr, &num_bytes, false));
EXPECT_TRUE(read_buffer_ptr != NULL);
EXPECT_EQ(2u * kTestDataSize, num_bytes);
// Close the producer.
dp->ProducerClose();
// The consumer can finish its two-phase read.
EXPECT_EQ(0, memcmp(read_buffer_ptr, kTestData, kTestDataSize));
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerEndReadData(kTestDataSize));
// And start another.
read_buffer_ptr = NULL;
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerBeginReadData(&read_buffer_ptr, &num_bytes, false));
EXPECT_TRUE(read_buffer_ptr != NULL);
EXPECT_EQ(kTestDataSize, num_bytes);
// Close the consumer, which cancels the two-phase read.
dp->ConsumerClose();
}
// Close consumer first, then producer.
{
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
// Write some data, so we'll have something to read.
uint32_t num_bytes = kTestDataSize;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerWriteData(kTestData, &num_bytes, false));
EXPECT_EQ(kTestDataSize, num_bytes);
// Start two-phase write.
void* write_buffer_ptr = NULL;
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerBeginWriteData(&write_buffer_ptr, &num_bytes, false));
EXPECT_TRUE(write_buffer_ptr != NULL);
ASSERT_GT(num_bytes, kTestDataSize);
// Start two-phase read.
const void* read_buffer_ptr = NULL;
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerBeginReadData(&read_buffer_ptr, &num_bytes, false));
EXPECT_TRUE(read_buffer_ptr != NULL);
EXPECT_EQ(kTestDataSize, num_bytes);
// Close the consumer.
dp->ConsumerClose();
// Actually write some data. (Note: Premature freeing of the buffer would
// probably only be detected under ASAN or similar.)
memcpy(write_buffer_ptr, kTestData, kTestDataSize);
// Note: Even though the consumer has been closed, ending the two-phase
// write will report success.
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerEndWriteData(kTestDataSize));
// But trying to write should result in failure.
num_bytes = kTestDataSize;
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
dp->ProducerWriteData(kTestData, &num_bytes, false));
// As will trying to start another two-phase write.
write_buffer_ptr = NULL;
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
dp->ProducerBeginWriteData(&write_buffer_ptr, &num_bytes, false));
dp->ProducerClose();
}
// Test closing the consumer first, then the producer, with an active
// two-phase write.
{
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
// Start two-phase write.
void* write_buffer_ptr = NULL;
uint32_t num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerBeginWriteData(&write_buffer_ptr, &num_bytes, false));
EXPECT_TRUE(write_buffer_ptr != NULL);
ASSERT_GT(num_bytes, kTestDataSize);
dp->ConsumerClose();
dp->ProducerClose();
}
// Test closing the producer and then trying to read (with no data).
{
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
// Write some data, so we'll have something to read.
uint32_t num_bytes = kTestDataSize;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerWriteData(kTestData, &num_bytes, false));
EXPECT_EQ(kTestDataSize, num_bytes);
// Close the producer.
dp->ProducerClose();
// Read that data.
char buffer[1000];
num_bytes = static_cast<uint32_t>(sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerReadData(buffer, &num_bytes, false));
EXPECT_EQ(kTestDataSize, num_bytes);
EXPECT_EQ(0, memcmp(buffer, kTestData, kTestDataSize));
// A second read should fail.
num_bytes = static_cast<uint32_t>(sizeof(buffer));
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
dp->ConsumerReadData(buffer, &num_bytes, false));
// A two-phase read should also fail.
const void* read_buffer_ptr = NULL;
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
dp->ConsumerBeginReadData(&read_buffer_ptr, &num_bytes, false));
// Ditto for discard.
num_bytes = 10u;
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
dp->ConsumerDiscardData(&num_bytes, false));
dp->ConsumerClose();
}
}
TEST(LocalDataPipeTest, TwoPhaseMoreInvalidArguments) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_NONE, // |flags|.
static_cast<uint32_t>(sizeof(int32_t)), // |element_num_bytes|.
10 * sizeof(int32_t) // |capacity_num_bytes|.
};
MojoCreateDataPipeOptions validated_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(&options, &validated_options));
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
// No data.
uint32_t num_bytes = 1000u;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(0u, num_bytes);
// Try "ending" a two-phase write when one isn't active.
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
dp->ProducerEndWriteData(1u * sizeof(int32_t)));
// Still no data.
num_bytes = 1000u;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(0u, num_bytes);
// Try ending a two-phase write with an invalid amount (too much).
num_bytes = 0u;
void* write_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerBeginWriteData(&write_ptr, &num_bytes, false));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
dp->ProducerEndWriteData(
num_bytes + static_cast<uint32_t>(sizeof(int32_t))));
// But the two-phase write still ended.
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION, dp->ProducerEndWriteData(0u));
// Still no data.
num_bytes = 1000u;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(0u, num_bytes);
// Try ending a two-phase write with an invalid amount (not a multiple of the
// element size).
num_bytes = 0u;
write_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ProducerBeginWriteData(&write_ptr, &num_bytes, false));
EXPECT_GE(num_bytes, 1u);
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, dp->ProducerEndWriteData(1u));
// But the two-phase write still ended.
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION, dp->ProducerEndWriteData(0u));
// Still no data.
num_bytes = 1000u;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(0u, num_bytes);
// Now write some data, so we'll be able to try reading.
int32_t element = 123;
num_bytes = 1u * sizeof(int32_t);
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerWriteData(&element, &num_bytes, false));
// One element available.
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(1u * sizeof(int32_t), num_bytes);
// Try "ending" a two-phase read when one isn't active.
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
dp->ConsumerEndReadData(1u * sizeof(int32_t)));
// Still one element available.
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(1u * sizeof(int32_t), num_bytes);
// Try ending a two-phase read with an invalid amount (too much).
num_bytes = 0u;
const void* read_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerBeginReadData(&read_ptr, &num_bytes, false));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
dp->ConsumerEndReadData(
num_bytes + static_cast<uint32_t>(sizeof(int32_t))));
// Still one element available.
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(1u * sizeof(int32_t), num_bytes);
// Try ending a two-phase read with an invalid amount (not a multiple of the
// element size).
num_bytes = 0u;
read_ptr = NULL;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerBeginReadData(&read_ptr, &num_bytes, false));
EXPECT_EQ(1u * sizeof(int32_t), num_bytes);
EXPECT_EQ(123, static_cast<const int32_t*>(read_ptr)[0]);
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, dp->ConsumerEndReadData(1u));
// Still one element available.
num_bytes = 0u;
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerQueryData(&num_bytes));
EXPECT_EQ(1u * sizeof(int32_t), num_bytes);
dp->ProducerClose();
dp->ConsumerClose();
}
// Tests that even with "may discard", the data won't change under a two-phase
// read.
// TODO(vtl): crbug.com/348644: We currently don't pass this. (There are two
// related issues: First, we don't recognize that the data given to
// |ConsumerBeginReadData()| isn't discardable until |ConsumerEndReadData()|,
// and thus we erroneously allow |ProducerWriteData()| to succeed. Second, the
// |ProducerWriteData()| then changes the data underneath the two-phase read.)
TEST(LocalDataPipeTest, DISABLED_MayDiscardTwoPhaseConsistent) {
const MojoCreateDataPipeOptions options = {
kSizeOfOptions, // |struct_size|.
MOJO_CREATE_DATA_PIPE_OPTIONS_FLAG_MAY_DISCARD, // |flags|.
1, // |element_num_bytes|.
2 // |capacity_num_bytes|.
};
MojoCreateDataPipeOptions validated_options = { 0 };
EXPECT_EQ(MOJO_RESULT_OK,
DataPipe::ValidateOptions(&options, &validated_options));
scoped_refptr<LocalDataPipe> dp(new LocalDataPipe(validated_options));
// Write some elements.
char elements[2] = { 'a', 'b' };
uint32_t num_bytes = 2u;
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerWriteData(elements, &num_bytes, false));
EXPECT_EQ(2u, num_bytes);
// Begin reading.
const void* read_ptr = NULL;
num_bytes = 2u;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerBeginReadData(&read_ptr, &num_bytes, false));
EXPECT_EQ(2u, num_bytes);
EXPECT_EQ('a', static_cast<const char*>(read_ptr)[0]);
EXPECT_EQ('b', static_cast<const char*>(read_ptr)[1]);
// Try to write some more. But nothing should be discardable right now.
elements[0] = 'x';
elements[1] = 'y';
num_bytes = 2u;
// TODO(vtl): This should be:
// EXPECT_EQ(MOJO_RESULT_SHOULD_WAIT,
// dp->ProducerWriteData(elements, &num_bytes, false));
// but we incorrectly think that the bytes being read are discardable. Letting
// this through reveals the significant consequence.
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerWriteData(elements, &num_bytes, false));
// Check that our read buffer hasn't changed underneath us.
EXPECT_EQ('a', static_cast<const char*>(read_ptr)[0]);
EXPECT_EQ('b', static_cast<const char*>(read_ptr)[1]);
// End reading.
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerEndReadData(2u));
// Now writing should succeed.
EXPECT_EQ(MOJO_RESULT_OK, dp->ProducerWriteData(elements, &num_bytes, false));
// And if we read, we should get the new values.
read_ptr = NULL;
num_bytes = 2u;
EXPECT_EQ(MOJO_RESULT_OK,
dp->ConsumerBeginReadData(&read_ptr, &num_bytes, false));
EXPECT_EQ(2u, num_bytes);
EXPECT_EQ('x', static_cast<const char*>(read_ptr)[0]);
EXPECT_EQ('y', static_cast<const char*>(read_ptr)[1]);
// End reading.
EXPECT_EQ(MOJO_RESULT_OK, dp->ConsumerEndReadData(2u));
dp->ProducerClose();
dp->ConsumerClose();
}
} // namespace
} // namespace system
} // namespace mojo