blob: 8846051ad03d27062cd96ad81595b0d5bde51a96 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "mojo/core/core.h"
#include <stdint.h>
#include <limits>
#include "base/bind.h"
#include "build/build_config.h"
#include "mojo/core/core_test_base.h"
#include "mojo/core/test_utils.h"
#include "mojo/public/cpp/system/wait.h"
#if defined(OS_WIN)
#include "base/win/windows_version.h"
#endif
namespace mojo {
namespace core {
namespace {
const MojoHandleSignalsState kEmptyMojoHandleSignalsState = {0u, 0u};
const MojoHandleSignalsState kFullMojoHandleSignalsState = {~0u, ~0u};
const MojoHandleSignals kAllSignals =
MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_WRITABLE |
MOJO_HANDLE_SIGNAL_PEER_CLOSED | MOJO_HANDLE_SIGNAL_PEER_REMOTE |
MOJO_HANDLE_SIGNAL_QUOTA_EXCEEDED;
using CoreTest = test::CoreTestBase;
TEST_F(CoreTest, GetTimeTicksNow) {
const MojoTimeTicks start = core()->GetTimeTicksNow();
ASSERT_NE(static_cast<MojoTimeTicks>(0), start)
<< "GetTimeTicksNow should return nonzero value";
test::Sleep(test::DeadlineFromMilliseconds(15));
const MojoTimeTicks finish = core()->GetTimeTicksNow();
// Allow for some fuzz in sleep.
ASSERT_GE((finish - start), static_cast<MojoTimeTicks>(8000))
<< "Sleeping should result in increasing time ticks";
}
TEST_F(CoreTest, Basic) {
MockHandleInfo info;
ASSERT_EQ(0u, info.GetCtorCallCount());
MojoHandle h = CreateMockHandle(&info);
ASSERT_EQ(1u, info.GetCtorCallCount());
ASSERT_NE(h, MOJO_HANDLE_INVALID);
ASSERT_EQ(0u, info.GetWriteMessageCallCount());
MojoMessageHandle message;
ASSERT_EQ(MOJO_RESULT_OK, core()->CreateMessage(nullptr, &message));
ASSERT_EQ(MOJO_RESULT_OK, core()->WriteMessage(h, message, nullptr));
ASSERT_EQ(1u, info.GetWriteMessageCallCount());
ASSERT_EQ(0u, info.GetReadMessageCallCount());
ASSERT_EQ(MOJO_RESULT_OK, core()->ReadMessage(h, nullptr, &message));
ASSERT_EQ(1u, info.GetReadMessageCallCount());
ASSERT_EQ(MOJO_RESULT_OK, core()->ReadMessage(h, nullptr, &message));
ASSERT_EQ(2u, info.GetReadMessageCallCount());
ASSERT_EQ(0u, info.GetWriteDataCallCount());
ASSERT_EQ(MOJO_RESULT_UNIMPLEMENTED,
core()->WriteData(h, nullptr, nullptr, nullptr));
ASSERT_EQ(1u, info.GetWriteDataCallCount());
ASSERT_EQ(0u, info.GetBeginWriteDataCallCount());
ASSERT_EQ(MOJO_RESULT_UNIMPLEMENTED,
core()->BeginWriteData(h, nullptr, nullptr, nullptr));
ASSERT_EQ(1u, info.GetBeginWriteDataCallCount());
ASSERT_EQ(0u, info.GetEndWriteDataCallCount());
ASSERT_EQ(MOJO_RESULT_UNIMPLEMENTED, core()->EndWriteData(h, 0, nullptr));
ASSERT_EQ(1u, info.GetEndWriteDataCallCount());
ASSERT_EQ(0u, info.GetReadDataCallCount());
ASSERT_EQ(MOJO_RESULT_UNIMPLEMENTED,
core()->ReadData(h, nullptr, nullptr, nullptr));
ASSERT_EQ(1u, info.GetReadDataCallCount());
ASSERT_EQ(0u, info.GetBeginReadDataCallCount());
ASSERT_EQ(MOJO_RESULT_UNIMPLEMENTED,
core()->BeginReadData(h, nullptr, nullptr, nullptr));
ASSERT_EQ(1u, info.GetBeginReadDataCallCount());
ASSERT_EQ(0u, info.GetEndReadDataCallCount());
ASSERT_EQ(MOJO_RESULT_UNIMPLEMENTED, core()->EndReadData(h, 0, nullptr));
ASSERT_EQ(1u, info.GetEndReadDataCallCount());
ASSERT_EQ(0u, info.GetDtorCallCount());
ASSERT_EQ(0u, info.GetCloseCallCount());
ASSERT_EQ(MOJO_RESULT_OK, core()->Close(h));
ASSERT_EQ(1u, info.GetCloseCallCount());
ASSERT_EQ(1u, info.GetDtorCallCount());
}
TEST_F(CoreTest, InvalidArguments) {
// |Close()|:
{
ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT, core()->Close(MOJO_HANDLE_INVALID));
ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT, core()->Close(10));
ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT, core()->Close(1000000000));
// Test a double-close.
MockHandleInfo info;
MojoHandle h = CreateMockHandle(&info);
ASSERT_EQ(MOJO_RESULT_OK, core()->Close(h));
ASSERT_EQ(1u, info.GetCloseCallCount());
ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT, core()->Close(h));
ASSERT_EQ(1u, info.GetCloseCallCount());
}
// |CreateMessagePipe()|: Nothing to check (apart from things that cause
// death).
// |WriteMessageNew()|:
// Only check arguments checked by |Core|, namely |handle|, |handles|, and
// |num_handles|.
ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->WriteMessage(MOJO_HANDLE_INVALID, 0, nullptr));
// |ReadMessageNew()|:
// Only check arguments checked by |Core|, namely |handle|, |handles|, and
// |num_handles|.
{
ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->ReadMessage(MOJO_HANDLE_INVALID, nullptr, nullptr));
MockHandleInfo info;
MojoHandle h = CreateMockHandle(&info);
ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->ReadMessage(h, nullptr, nullptr));
// Checked by |Core|, shouldn't go through to the dispatcher.
ASSERT_EQ(0u, info.GetReadMessageCallCount());
ASSERT_EQ(MOJO_RESULT_OK, core()->Close(h));
}
}
TEST_F(CoreTest, MessagePipe) {
MojoHandle h[2];
MojoHandleSignalsState hss[2];
ASSERT_EQ(MOJO_RESULT_OK, core()->CreateMessagePipe(nullptr, &h[0], &h[1]));
// Should get two distinct, valid handles.
ASSERT_NE(h[0], MOJO_HANDLE_INVALID);
ASSERT_NE(h[1], MOJO_HANDLE_INVALID);
ASSERT_NE(h[0], h[1]);
// Neither should be readable.
hss[0] = kEmptyMojoHandleSignalsState;
hss[1] = kEmptyMojoHandleSignalsState;
EXPECT_EQ(MOJO_RESULT_OK, core()->QueryHandleSignalsState(h[0], &hss[0]));
EXPECT_EQ(MOJO_RESULT_OK, core()->QueryHandleSignalsState(h[1], &hss[1]));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, hss[0].satisfied_signals);
ASSERT_EQ(kAllSignals, hss[0].satisfiable_signals);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, hss[1].satisfied_signals);
ASSERT_EQ(kAllSignals, hss[1].satisfiable_signals);
// Try to read anyway.
MojoMessageHandle message;
ASSERT_EQ(MOJO_RESULT_SHOULD_WAIT,
core()->ReadMessage(h[0], nullptr, &message));
// Write to |h[1]|.
const uintptr_t kTestMessageContext = 123;
ASSERT_EQ(MOJO_RESULT_OK, core()->CreateMessage(nullptr, &message));
ASSERT_EQ(MOJO_RESULT_OK,
core()->SetMessageContext(message, kTestMessageContext, nullptr,
nullptr, nullptr));
ASSERT_EQ(MOJO_RESULT_OK, core()->WriteMessage(h[1], message, nullptr));
// Wait for |h[0]| to become readable.
EXPECT_EQ(MOJO_RESULT_OK, mojo::Wait(mojo::Handle(h[0]),
MOJO_HANDLE_SIGNAL_READABLE, &hss[0]));
// Read from |h[0]|.
ASSERT_EQ(MOJO_RESULT_OK, core()->ReadMessage(h[0], nullptr, &message));
uintptr_t context;
ASSERT_EQ(MOJO_RESULT_OK,
core()->GetMessageContext(message, nullptr, &context));
ASSERT_EQ(MOJO_RESULT_OK,
core()->SetMessageContext(message, 0, nullptr, nullptr, nullptr));
ASSERT_EQ(kTestMessageContext, context);
ASSERT_EQ(MOJO_RESULT_OK, core()->DestroyMessage(message));
// |h[0]| should no longer be readable.
hss[0] = kEmptyMojoHandleSignalsState;
EXPECT_EQ(MOJO_RESULT_OK, core()->QueryHandleSignalsState(h[0], &hss[0]));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, hss[0].satisfied_signals);
ASSERT_EQ(kAllSignals, hss[0].satisfiable_signals);
// Write to |h[0]|.
ASSERT_EQ(MOJO_RESULT_OK, core()->CreateMessage(nullptr, &message));
ASSERT_EQ(MOJO_RESULT_OK,
core()->SetMessageContext(message, kTestMessageContext, nullptr,
nullptr, nullptr));
ASSERT_EQ(MOJO_RESULT_OK, core()->WriteMessage(h[0], message, nullptr));
// Close |h[0]|.
ASSERT_EQ(MOJO_RESULT_OK, core()->Close(h[0]));
// Wait for |h[1]| to learn about the other end's closure.
EXPECT_EQ(
MOJO_RESULT_OK,
mojo::Wait(mojo::Handle(h[1]), MOJO_HANDLE_SIGNAL_PEER_CLOSED, &hss[1]));
// Check that |h[1]| is no longer writable (and will never be).
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
hss[1].satisfied_signals);
EXPECT_FALSE(hss[1].satisfiable_signals & MOJO_HANDLE_SIGNAL_WRITABLE);
// Check that |h[1]| is still readable (for the moment).
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED,
hss[1].satisfied_signals);
EXPECT_TRUE(hss[1].satisfiable_signals & MOJO_HANDLE_SIGNAL_READABLE);
// Discard a message from |h[1]|.
ASSERT_EQ(MOJO_RESULT_OK, core()->ReadMessage(h[1], nullptr, &message));
ASSERT_EQ(MOJO_RESULT_OK, core()->DestroyMessage(message));
// |h[1]| is no longer readable (and will never be).
hss[1] = kFullMojoHandleSignalsState;
EXPECT_EQ(MOJO_RESULT_OK, core()->QueryHandleSignalsState(h[1], &hss[1]));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss[1].satisfied_signals);
EXPECT_FALSE(hss[1].satisfiable_signals & MOJO_HANDLE_SIGNAL_READABLE);
// Try writing to |h[1]|.
ASSERT_EQ(MOJO_RESULT_OK, core()->CreateMessage(nullptr, &message));
ASSERT_EQ(MOJO_RESULT_OK,
core()->SetMessageContext(message, kTestMessageContext, nullptr,
nullptr, nullptr));
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
core()->WriteMessage(h[1], message, nullptr));
ASSERT_EQ(MOJO_RESULT_OK, core()->Close(h[1]));
}
// Tests passing a message pipe handle.
TEST_F(CoreTest, MessagePipeBasicLocalHandlePassing1) {
MojoHandleSignalsState hss;
MojoHandle h_passing[2];
ASSERT_EQ(MOJO_RESULT_OK,
core()->CreateMessagePipe(nullptr, &h_passing[0], &h_passing[1]));
// Make sure that |h_passing[]| work properly.
const uintptr_t kTestMessageContext = 42;
MojoMessageHandle message;
ASSERT_EQ(MOJO_RESULT_OK, core()->CreateMessage(nullptr, &message));
ASSERT_EQ(MOJO_RESULT_OK,
core()->SetMessageContext(message, kTestMessageContext, nullptr,
nullptr, nullptr));
ASSERT_EQ(MOJO_RESULT_OK,
core()->WriteMessage(h_passing[0], message, nullptr));
hss = kEmptyMojoHandleSignalsState;
EXPECT_EQ(MOJO_RESULT_OK, mojo::Wait(mojo::Handle(h_passing[1]),
MOJO_HANDLE_SIGNAL_READABLE, &hss));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_WRITABLE,
hss.satisfied_signals);
ASSERT_EQ(kAllSignals, hss.satisfiable_signals);
MojoMessageHandle message_handle;
ASSERT_EQ(MOJO_RESULT_OK,
core()->ReadMessage(h_passing[1], nullptr, &message_handle));
uintptr_t context;
ASSERT_EQ(MOJO_RESULT_OK,
core()->GetMessageContext(message_handle, nullptr, &context));
ASSERT_EQ(MOJO_RESULT_OK,
core()->SetMessageContext(message, 0, nullptr, nullptr, nullptr));
ASSERT_EQ(kTestMessageContext, context);
ASSERT_EQ(MOJO_RESULT_OK, MojoDestroyMessage(message_handle));
ASSERT_EQ(MOJO_RESULT_OK, core()->Close(h_passing[0]));
ASSERT_EQ(MOJO_RESULT_OK, core()->Close(h_passing[1]));
}
TEST_F(CoreTest, DataPipe) {
MojoHandle ph, ch; // p is for producer and c is for consumer.
MojoHandleSignalsState hss;
ASSERT_EQ(MOJO_RESULT_OK, core()->CreateDataPipe(nullptr, &ph, &ch));
// Should get two distinct, valid handles.
ASSERT_NE(ph, MOJO_HANDLE_INVALID);
ASSERT_NE(ch, MOJO_HANDLE_INVALID);
ASSERT_NE(ph, ch);
// Producer should be never-readable, but already writable.
hss = kEmptyMojoHandleSignalsState;
EXPECT_EQ(MOJO_RESULT_OK, core()->QueryHandleSignalsState(ph, &hss));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, hss.satisfied_signals);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Consumer should be never-writable, and not yet readable.
hss = kFullMojoHandleSignalsState;
EXPECT_EQ(MOJO_RESULT_OK, core()->QueryHandleSignalsState(ch, &hss));
EXPECT_EQ(0u, hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Write.
signed char elements[2] = {'A', 'B'};
uint32_t num_bytes = 2u;
ASSERT_EQ(MOJO_RESULT_OK,
core()->WriteData(ph, elements, &num_bytes, nullptr));
ASSERT_EQ(2u, num_bytes);
// Wait for the data to arrive to the consumer.
EXPECT_EQ(MOJO_RESULT_OK,
mojo::Wait(mojo::Handle(ch), MOJO_HANDLE_SIGNAL_READABLE, &hss));
// Consumer should now be readable.
hss = kEmptyMojoHandleSignalsState;
EXPECT_EQ(MOJO_RESULT_OK, core()->QueryHandleSignalsState(ch, &hss));
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE,
hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// Peek one character.
elements[0] = -1;
elements[1] = -1;
num_bytes = 1u;
MojoReadDataOptions read_options;
read_options.struct_size = sizeof(read_options);
read_options.flags = MOJO_READ_DATA_FLAG_NONE | MOJO_READ_DATA_FLAG_PEEK;
ASSERT_EQ(MOJO_RESULT_OK,
core()->ReadData(ch, &read_options, elements, &num_bytes));
ASSERT_EQ('A', elements[0]);
ASSERT_EQ(-1, elements[1]);
// Read one character.
elements[0] = -1;
elements[1] = -1;
num_bytes = 1u;
read_options.flags = MOJO_READ_DATA_FLAG_NONE;
ASSERT_EQ(MOJO_RESULT_OK,
core()->ReadData(ch, &read_options, elements, &num_bytes));
ASSERT_EQ('A', elements[0]);
ASSERT_EQ(-1, elements[1]);
// Two-phase write.
void* write_ptr = nullptr;
num_bytes = 0u;
ASSERT_EQ(MOJO_RESULT_OK,
core()->BeginWriteData(ph, nullptr, &write_ptr, &num_bytes));
// We count on the default options providing a decent buffer size.
ASSERT_GE(num_bytes, 3u);
// Trying to do a normal write during a two-phase write should fail.
elements[0] = 'X';
num_bytes = 1u;
ASSERT_EQ(MOJO_RESULT_BUSY,
core()->WriteData(ph, elements, &num_bytes, nullptr));
// Actually write the data, and complete it now.
static_cast<char*>(write_ptr)[0] = 'C';
static_cast<char*>(write_ptr)[1] = 'D';
static_cast<char*>(write_ptr)[2] = 'E';
ASSERT_EQ(MOJO_RESULT_OK, core()->EndWriteData(ph, 3u, nullptr));
// Wait for the data to arrive to the consumer.
ASSERT_EQ(MOJO_RESULT_OK,
mojo::Wait(mojo::Handle(ch), MOJO_HANDLE_SIGNAL_READABLE, &hss));
// Query how much data we have.
num_bytes = 0;
read_options.flags = MOJO_READ_DATA_FLAG_QUERY;
ASSERT_EQ(MOJO_RESULT_OK,
core()->ReadData(ch, &read_options, nullptr, &num_bytes));
ASSERT_GE(num_bytes, 1u);
// Try to query with peek. Should fail.
num_bytes = 0;
read_options.flags = MOJO_READ_DATA_FLAG_QUERY | MOJO_READ_DATA_FLAG_PEEK;
ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->ReadData(ch, &read_options, nullptr, &num_bytes));
ASSERT_EQ(0u, num_bytes);
// Try to discard ten characters, in all-or-none mode. Should fail.
num_bytes = 10;
read_options.flags =
MOJO_READ_DATA_FLAG_DISCARD | MOJO_READ_DATA_FLAG_ALL_OR_NONE;
ASSERT_EQ(MOJO_RESULT_OUT_OF_RANGE,
core()->ReadData(ch, &read_options, nullptr, &num_bytes));
// Try to discard two characters, in peek mode. Should fail.
num_bytes = 2;
read_options.flags = MOJO_READ_DATA_FLAG_DISCARD | MOJO_READ_DATA_FLAG_PEEK;
ASSERT_EQ(MOJO_RESULT_INVALID_ARGUMENT,
core()->ReadData(ch, &read_options, nullptr, &num_bytes));
// Discard a character.
num_bytes = 1;
read_options.flags =
MOJO_READ_DATA_FLAG_DISCARD | MOJO_READ_DATA_FLAG_ALL_OR_NONE;
ASSERT_EQ(MOJO_RESULT_OK,
core()->ReadData(ch, &read_options, nullptr, &num_bytes));
// Ensure the 3 bytes were read.
ASSERT_EQ(MOJO_RESULT_OK,
mojo::Wait(mojo::Handle(ch), MOJO_HANDLE_SIGNAL_READABLE, &hss));
// Read the remaining three characters, in two-phase mode.
const void* read_ptr = nullptr;
num_bytes = 3;
ASSERT_EQ(MOJO_RESULT_OK,
core()->BeginReadData(ch, nullptr, &read_ptr, &num_bytes));
// Note: Count on still being able to do the contiguous read here.
ASSERT_EQ(3u, num_bytes);
// Discarding right now should fail.
num_bytes = 1;
read_options.flags = MOJO_READ_DATA_FLAG_DISCARD;
ASSERT_EQ(MOJO_RESULT_BUSY,
core()->ReadData(ch, &read_options, nullptr, &num_bytes));
// Actually check our data and end the two-phase read.
ASSERT_EQ('C', static_cast<const char*>(read_ptr)[0]);
ASSERT_EQ('D', static_cast<const char*>(read_ptr)[1]);
ASSERT_EQ('E', static_cast<const char*>(read_ptr)[2]);
ASSERT_EQ(MOJO_RESULT_OK, core()->EndReadData(ch, 3u, nullptr));
// Consumer should now be no longer readable.
hss = kFullMojoHandleSignalsState;
EXPECT_EQ(MOJO_RESULT_OK, core()->QueryHandleSignalsState(ch, &hss));
EXPECT_EQ(0u, hss.satisfied_signals);
EXPECT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_PEER_CLOSED |
MOJO_HANDLE_SIGNAL_NEW_DATA_READABLE |
MOJO_HANDLE_SIGNAL_PEER_REMOTE,
hss.satisfiable_signals);
// TODO(vtl): More.
// Close the producer.
ASSERT_EQ(MOJO_RESULT_OK, core()->Close(ph));
// Wait for this to get to the consumer.
EXPECT_EQ(MOJO_RESULT_OK,
mojo::Wait(mojo::Handle(ch), MOJO_HANDLE_SIGNAL_PEER_CLOSED, &hss));
// The consumer should now be never-readable.
hss = kFullMojoHandleSignalsState;
EXPECT_EQ(MOJO_RESULT_OK, core()->QueryHandleSignalsState(ch, &hss));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfiable_signals);
ASSERT_EQ(MOJO_RESULT_OK, core()->Close(ch));
}
} // namespace
} // namespace core
} // namespace mojo