blob: 46a5029bf4b0eb82d64738fd1f0c9ca3c9adb166 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/quic/quic_sent_packet_manager.h"
#include <algorithm>
#include "base/logging.h"
#include "base/stl_util.h"
#include "net/quic/congestion_control/general_loss_algorithm.h"
#include "net/quic/congestion_control/pacing_sender.h"
#include "net/quic/crypto/crypto_protocol.h"
#include "net/quic/proto/cached_network_parameters.pb.h"
#include "net/quic/quic_bug_tracker.h"
#include "net/quic/quic_connection_stats.h"
#include "net/quic/quic_flags.h"
#include "net/quic/quic_utils_chromium.h"
using std::max;
using std::min;
using std::pair;
namespace net {
namespace {
static const int64_t kDefaultRetransmissionTimeMs = 500;
static const int64_t kMaxRetransmissionTimeMs = 60000;
// Maximum number of exponential backoffs used for RTO timeouts.
static const size_t kMaxRetransmissions = 10;
// Maximum number of packets retransmitted upon an RTO.
static const size_t kMaxRetransmissionsOnTimeout = 2;
// Minimum number of consecutive RTOs before path is considered to be degrading.
const size_t kMinTimeoutsBeforePathDegrading = 2;
// Ensure the handshake timer isnt't faster than 10ms.
// This limits the tenth retransmitted packet to 10s after the initial CHLO.
static const int64_t kMinHandshakeTimeoutMs = 10;
// Sends up to two tail loss probes before firing an RTO,
// per draft RFC draft-dukkipati-tcpm-tcp-loss-probe.
static const size_t kDefaultMaxTailLossProbes = 2;
// Number of unpaced packets to send after quiescence.
static const size_t kInitialUnpacedBurst = 10;
bool HasCryptoHandshake(const TransmissionInfo& transmission_info) {
DCHECK(!transmission_info.has_crypto_handshake ||
!transmission_info.retransmittable_frames.empty());
return transmission_info.has_crypto_handshake;
}
} // namespace
#define ENDPOINT \
(perspective_ == Perspective::IS_SERVER ? "Server: " : "Client: ")
QuicSentPacketManager::QuicSentPacketManager(
Perspective perspective,
QuicPathId path_id,
const QuicClock* clock,
QuicConnectionStats* stats,
CongestionControlType congestion_control_type,
LossDetectionType loss_type,
MultipathDelegateInterface* delegate)
: unacked_packets_(),
perspective_(perspective),
path_id_(path_id),
clock_(clock),
stats_(stats),
delegate_(delegate),
debug_delegate_(nullptr),
network_change_visitor_(nullptr),
initial_congestion_window_(kInitialCongestionWindow),
send_algorithm_(
SendAlgorithmInterface::Create(clock,
&rtt_stats_,
congestion_control_type,
stats,
initial_congestion_window_)),
loss_algorithm_(new GeneralLossAlgorithm(loss_type)),
n_connection_simulation_(false),
receive_buffer_bytes_(kDefaultSocketReceiveBuffer),
least_packet_awaited_by_peer_(1),
first_rto_transmission_(0),
consecutive_rto_count_(0),
consecutive_tlp_count_(0),
consecutive_crypto_retransmission_count_(0),
pending_timer_transmission_count_(0),
max_tail_loss_probes_(kDefaultMaxTailLossProbes),
enable_half_rtt_tail_loss_probe_(false),
using_pacing_(false),
use_new_rto_(false),
undo_pending_retransmits_(false),
largest_newly_acked_(0),
handshake_confirmed_(false) {}
QuicSentPacketManager::~QuicSentPacketManager() {}
void QuicSentPacketManager::SetFromConfig(const QuicConfig& config) {
if (config.HasReceivedInitialRoundTripTimeUs() &&
config.ReceivedInitialRoundTripTimeUs() > 0) {
rtt_stats_.set_initial_rtt_us(
max(kMinInitialRoundTripTimeUs,
min(kMaxInitialRoundTripTimeUs,
config.ReceivedInitialRoundTripTimeUs())));
} else if (config.HasInitialRoundTripTimeUsToSend() &&
config.GetInitialRoundTripTimeUsToSend() > 0) {
rtt_stats_.set_initial_rtt_us(
max(kMinInitialRoundTripTimeUs,
min(kMaxInitialRoundTripTimeUs,
config.GetInitialRoundTripTimeUsToSend())));
}
// TODO(ianswett): BBR is currently a server only feature.
if (FLAGS_quic_allow_bbr && config.HasReceivedConnectionOptions() &&
ContainsQuicTag(config.ReceivedConnectionOptions(), kTBBR)) {
send_algorithm_.reset(SendAlgorithmInterface::Create(
clock_, &rtt_stats_, kBBR, stats_, initial_congestion_window_));
}
if (config.HasReceivedConnectionOptions() &&
ContainsQuicTag(config.ReceivedConnectionOptions(), kRENO)) {
if (ContainsQuicTag(config.ReceivedConnectionOptions(), kBYTE)) {
send_algorithm_.reset(SendAlgorithmInterface::Create(
clock_, &rtt_stats_, kRenoBytes, stats_, initial_congestion_window_));
} else {
send_algorithm_.reset(SendAlgorithmInterface::Create(
clock_, &rtt_stats_, kReno, stats_, initial_congestion_window_));
}
} else if (config.HasReceivedConnectionOptions() &&
ContainsQuicTag(config.ReceivedConnectionOptions(), kBYTE)) {
send_algorithm_.reset(SendAlgorithmInterface::Create(
clock_, &rtt_stats_, kCubicBytes, stats_, initial_congestion_window_));
}
if (!FLAGS_quic_disable_pacing) {
EnablePacing();
}
if (config.HasClientSentConnectionOption(k1CON, perspective_)) {
send_algorithm_->SetNumEmulatedConnections(1);
}
if (config.HasClientSentConnectionOption(kNCON, perspective_)) {
n_connection_simulation_ = true;
}
if (config.HasClientSentConnectionOption(kNTLP, perspective_)) {
max_tail_loss_probes_ = 0;
}
if (config.HasClientSentConnectionOption(kTLPR, perspective_)) {
enable_half_rtt_tail_loss_probe_ = true;
}
if (config.HasClientSentConnectionOption(kNRTO, perspective_)) {
use_new_rto_ = true;
}
if (config.HasReceivedConnectionOptions() &&
ContainsQuicTag(config.ReceivedConnectionOptions(), kTIME)) {
loss_algorithm_.reset(new GeneralLossAlgorithm(kTime));
}
if (FLAGS_quic_adaptive_loss_recovery &&
config.HasReceivedConnectionOptions() &&
ContainsQuicTag(config.ReceivedConnectionOptions(), kATIM)) {
loss_algorithm_.reset(new GeneralLossAlgorithm(kAdaptiveTime));
}
if (FLAGS_quic_loss_recovery_use_largest_acked &&
config.HasClientSentConnectionOption(kUNDO, perspective_)) {
undo_pending_retransmits_ = true;
}
if (!FLAGS_quic_ignore_srbf && config.HasReceivedSocketReceiveBuffer()) {
receive_buffer_bytes_ =
max(kMinSocketReceiveBuffer,
static_cast<QuicByteCount>(config.ReceivedSocketReceiveBuffer()));
QuicByteCount max_cwnd_bytes = static_cast<QuicByteCount>(
receive_buffer_bytes_ * kConservativeReceiveBufferFraction);
send_algorithm_->SetMaxCongestionWindow(max_cwnd_bytes);
}
send_algorithm_->SetFromConfig(config, perspective_);
if (network_change_visitor_ != nullptr) {
network_change_visitor_->OnCongestionChange();
}
}
void QuicSentPacketManager::ResumeConnectionState(
const CachedNetworkParameters& cached_network_params,
bool max_bandwidth_resumption) {
if (cached_network_params.has_min_rtt_ms()) {
uint32_t initial_rtt_us =
kNumMicrosPerMilli * cached_network_params.min_rtt_ms();
rtt_stats_.set_initial_rtt_us(
max(kMinInitialRoundTripTimeUs,
min(kMaxInitialRoundTripTimeUs, initial_rtt_us)));
}
send_algorithm_->ResumeConnectionState(cached_network_params,
max_bandwidth_resumption);
}
void QuicSentPacketManager::SetNumOpenStreams(size_t num_streams) {
if (n_connection_simulation_) {
// Ensure the number of connections is between 1 and 5.
send_algorithm_->SetNumEmulatedConnections(
min<size_t>(5, max<size_t>(1, num_streams)));
}
}
void QuicSentPacketManager::SetMaxPacingRate(QuicBandwidth max_pacing_rate) {
if (using_pacing_) {
static_cast<PacingSender*>(send_algorithm_.get())
->SetMaxPacingRate(max_pacing_rate);
}
}
void QuicSentPacketManager::SetHandshakeConfirmed() {
handshake_confirmed_ = true;
}
void QuicSentPacketManager::OnIncomingAck(const QuicAckFrame& ack_frame,
QuicTime ack_receive_time) {
DCHECK_LE(ack_frame.largest_observed, unacked_packets_.largest_sent_packet());
QuicByteCount bytes_in_flight = unacked_packets_.bytes_in_flight();
UpdatePacketInformationReceivedByPeer(ack_frame);
bool rtt_updated = MaybeUpdateRTT(ack_frame, ack_receive_time);
DCHECK_GE(ack_frame.largest_observed, unacked_packets_.largest_observed());
unacked_packets_.IncreaseLargestObserved(ack_frame.largest_observed);
HandleAckForSentPackets(ack_frame);
InvokeLossDetection(ack_receive_time);
// Ignore losses in RTO mode.
if (consecutive_rto_count_ > 0 && !use_new_rto_) {
packets_lost_.clear();
}
MaybeInvokeCongestionEvent(rtt_updated, bytes_in_flight);
unacked_packets_.RemoveObsoletePackets();
sustained_bandwidth_recorder_.RecordEstimate(
send_algorithm_->InRecovery(), send_algorithm_->InSlowStart(),
send_algorithm_->BandwidthEstimate(), ack_receive_time, clock_->WallNow(),
rtt_stats_.smoothed_rtt());
// Anytime we are making forward progress and have a new RTT estimate, reset
// the backoff counters.
if (rtt_updated) {
if (consecutive_rto_count_ > 0) {
// If the ack acknowledges data sent prior to the RTO,
// the RTO was spurious.
if (ack_frame.largest_observed < first_rto_transmission_) {
// Replace SRTT with latest_rtt and increase the variance to prevent
// a spurious RTO from happening again.
rtt_stats_.ExpireSmoothedMetrics();
} else {
if (!use_new_rto_) {
send_algorithm_->OnRetransmissionTimeout(true);
}
}
}
// Reset all retransmit counters any time a new packet is acked.
consecutive_rto_count_ = 0;
consecutive_tlp_count_ = 0;
consecutive_crypto_retransmission_count_ = 0;
}
// TODO(ianswett): Consider replacing the pending_retransmissions_ with a
// fast way to retrieve the next pending retransmission, if there are any.
// A single packet number indicating all packets below that are lost should
// be all the state that is necessary.
while (undo_pending_retransmits_ && !pending_retransmissions_.empty() &&
pending_retransmissions_.front().first > largest_newly_acked_ &&
pending_retransmissions_.front().second == LOSS_RETRANSMISSION) {
// Cancel any pending retransmissions larger than largest_newly_acked_.
unacked_packets_.RestoreToInFlight(pending_retransmissions_.front().first);
pending_retransmissions_.erase(pending_retransmissions_.begin());
}
if (debug_delegate_ != nullptr) {
debug_delegate_->OnIncomingAck(ack_frame, ack_receive_time,
unacked_packets_.largest_observed(),
rtt_updated, GetLeastUnacked(path_id_));
}
}
void QuicSentPacketManager::UpdatePacketInformationReceivedByPeer(
const QuicAckFrame& ack_frame) {
if (ack_frame.packets.Empty()) {
least_packet_awaited_by_peer_ = ack_frame.largest_observed + 1;
} else {
least_packet_awaited_by_peer_ = ack_frame.packets.Min();
}
}
void QuicSentPacketManager::MaybeInvokeCongestionEvent(
bool rtt_updated,
QuicByteCount bytes_in_flight) {
if (!rtt_updated && packets_acked_.empty() && packets_lost_.empty()) {
return;
}
send_algorithm_->OnCongestionEvent(rtt_updated, bytes_in_flight,
packets_acked_, packets_lost_);
packets_acked_.clear();
packets_lost_.clear();
if (network_change_visitor_ != nullptr) {
network_change_visitor_->OnCongestionChange();
}
}
void QuicSentPacketManager::HandleAckForSentPackets(
const QuicAckFrame& ack_frame) {
// Go through the packets we have not received an ack for and see if this
// incoming_ack shows they've been seen by the peer.
QuicTime::Delta ack_delay_time = ack_frame.ack_delay_time;
QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
for (QuicUnackedPacketMap::iterator it = unacked_packets_.begin();
it != unacked_packets_.end(); ++it, ++packet_number) {
if (packet_number > ack_frame.largest_observed) {
// These packets are still in flight.
break;
}
if ((ack_frame.missing && ack_frame.packets.Contains(packet_number)) ||
(!ack_frame.missing && !ack_frame.packets.Contains(packet_number))) {
// Packet is still missing.
continue;
}
// Packet was acked, so remove it from our unacked packet list.
DVLOG(1) << ENDPOINT << "Got an ack for packet " << packet_number;
// If data is associated with the most recent transmission of this
// packet, then inform the caller.
if (it->in_flight) {
packets_acked_.push_back(std::make_pair(packet_number, it->bytes_sent));
} else if (FLAGS_quic_loss_recovery_use_largest_acked &&
!it->is_unackable) {
largest_newly_acked_ = packet_number;
}
MarkPacketHandled(packet_number, &(*it), ack_delay_time);
}
}
bool QuicSentPacketManager::HasRetransmittableFrames(
QuicPathId,
QuicPacketNumber packet_number) const {
return unacked_packets_.HasRetransmittableFrames(packet_number);
}
void QuicSentPacketManager::RetransmitUnackedPackets(
TransmissionType retransmission_type) {
DCHECK(retransmission_type == ALL_UNACKED_RETRANSMISSION ||
retransmission_type == ALL_INITIAL_RETRANSMISSION);
QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
it != unacked_packets_.end(); ++it, ++packet_number) {
if (!it->retransmittable_frames.empty() &&
(retransmission_type == ALL_UNACKED_RETRANSMISSION ||
it->encryption_level == ENCRYPTION_INITIAL)) {
MarkForRetransmission(packet_number, retransmission_type);
}
}
}
void QuicSentPacketManager::NeuterUnencryptedPackets() {
QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
it != unacked_packets_.end(); ++it, ++packet_number) {
if (!it->retransmittable_frames.empty() &&
it->encryption_level == ENCRYPTION_NONE) {
// Once you're forward secure, no unencrypted packets will be sent, crypto
// or otherwise. Unencrypted packets are neutered and abandoned, to ensure
// they are not retransmitted or considered lost from a congestion control
// perspective.
if (delegate_ != nullptr) {
delegate_->OnUnencryptedPacketsNeutered(path_id_, packet_number);
} else {
pending_retransmissions_.erase(packet_number);
}
unacked_packets_.RemoveFromInFlight(packet_number);
unacked_packets_.RemoveRetransmittability(packet_number);
}
}
}
void QuicSentPacketManager::MarkForRetransmission(
QuicPacketNumber packet_number,
TransmissionType transmission_type) {
const TransmissionInfo& transmission_info =
unacked_packets_.GetTransmissionInfo(packet_number);
QUIC_BUG_IF(transmission_info.retransmittable_frames.empty());
// Both TLP and the new RTO leave the packets in flight and let the loss
// detection decide if packets are lost.
if (transmission_type != TLP_RETRANSMISSION &&
transmission_type != RTO_RETRANSMISSION) {
unacked_packets_.RemoveFromInFlight(packet_number);
}
if (delegate_ != nullptr) {
delegate_->OnRetransmissionMarked(path_id_, packet_number,
transmission_type);
} else {
// TODO(ianswett): Currently the RTO can fire while there are pending NACK
// retransmissions for the same data, which is not ideal.
if (ContainsKey(pending_retransmissions_, packet_number)) {
return;
}
pending_retransmissions_[packet_number] = transmission_type;
}
}
void QuicSentPacketManager::RecordOneSpuriousRetransmission(
const TransmissionInfo& info) {
stats_->bytes_spuriously_retransmitted += info.bytes_sent;
++stats_->packets_spuriously_retransmitted;
if (debug_delegate_ != nullptr) {
debug_delegate_->OnSpuriousPacketRetransmission(info.transmission_type,
info.bytes_sent);
}
}
void QuicSentPacketManager::RecordSpuriousRetransmissions(
const TransmissionInfo& info,
QuicPacketNumber acked_packet_number) {
QuicPacketNumber retransmission = info.retransmission;
while (retransmission != 0) {
const TransmissionInfo& retransmit_info =
unacked_packets_.GetTransmissionInfo(retransmission);
retransmission = retransmit_info.retransmission;
RecordOneSpuriousRetransmission(retransmit_info);
}
// Only inform the loss detection of spurious retransmits it caused.
if (FLAGS_quic_adaptive_loss_recovery &&
unacked_packets_.GetTransmissionInfo(info.retransmission)
.transmission_type == LOSS_RETRANSMISSION) {
loss_algorithm_->SpuriousRetransmitDetected(
unacked_packets_, clock_->Now(), rtt_stats_, info.retransmission);
}
}
bool QuicSentPacketManager::HasPendingRetransmissions() const {
return !pending_retransmissions_.empty();
}
PendingRetransmission QuicSentPacketManager::NextPendingRetransmission() {
QUIC_BUG_IF(pending_retransmissions_.empty())
<< "Unexpected call to PendingRetransmissions() with empty pending "
<< "retransmission list. Corrupted memory usage imminent.";
QuicPacketNumber packet_number = pending_retransmissions_.begin()->first;
TransmissionType transmission_type = pending_retransmissions_.begin()->second;
if (unacked_packets_.HasPendingCryptoPackets()) {
// Ensure crypto packets are retransmitted before other packets.
for (const auto& pair : pending_retransmissions_) {
if (HasCryptoHandshake(
unacked_packets_.GetTransmissionInfo(pair.first))) {
packet_number = pair.first;
transmission_type = pair.second;
break;
}
}
}
DCHECK(unacked_packets_.IsUnacked(packet_number)) << packet_number;
const TransmissionInfo& transmission_info =
unacked_packets_.GetTransmissionInfo(packet_number);
DCHECK(!transmission_info.retransmittable_frames.empty());
return PendingRetransmission(path_id_, packet_number, transmission_type,
transmission_info.retransmittable_frames,
transmission_info.has_crypto_handshake,
transmission_info.num_padding_bytes,
transmission_info.encryption_level,
transmission_info.packet_number_length);
}
QuicPacketNumber QuicSentPacketManager::GetNewestRetransmission(
QuicPacketNumber packet_number,
const TransmissionInfo& transmission_info) const {
QuicPacketNumber retransmission = transmission_info.retransmission;
while (retransmission != 0) {
packet_number = retransmission;
retransmission =
unacked_packets_.GetTransmissionInfo(retransmission).retransmission;
}
return packet_number;
}
void QuicSentPacketManager::MarkPacketNotRetransmittable(
QuicPacketNumber packet_number,
QuicTime::Delta ack_delay_time) {
if (!unacked_packets_.IsUnacked(packet_number)) {
return;
}
const TransmissionInfo& transmission_info =
unacked_packets_.GetTransmissionInfo(packet_number);
QuicPacketNumber newest_transmission =
GetNewestRetransmission(packet_number, transmission_info);
// We do not need to retransmit this packet anymore.
if (delegate_ != nullptr) {
delegate_->OnPacketMarkedNotRetransmittable(path_id_, newest_transmission,
ack_delay_time);
} else {
pending_retransmissions_.erase(newest_transmission);
}
unacked_packets_.NotifyAndClearListeners(newest_transmission, ack_delay_time);
unacked_packets_.RemoveRetransmittability(packet_number);
}
void QuicSentPacketManager::MarkPacketHandled(QuicPacketNumber packet_number,
TransmissionInfo* info,
QuicTime::Delta ack_delay_time) {
QuicPacketNumber newest_transmission =
GetNewestRetransmission(packet_number, *info);
// Remove the most recent packet, if it is pending retransmission.
if (delegate_ != nullptr) {
delegate_->OnPacketMarkedHandled(path_id_, newest_transmission,
ack_delay_time);
} else {
pending_retransmissions_.erase(newest_transmission);
}
// The AckListener needs to be notified about the most recent
// transmission, since that's the one only one it tracks.
if (newest_transmission == packet_number) {
unacked_packets_.NotifyAndClearListeners(&info->ack_listeners,
ack_delay_time);
} else {
unacked_packets_.NotifyAndClearListeners(newest_transmission,
ack_delay_time);
RecordSpuriousRetransmissions(*info, packet_number);
// Remove the most recent packet from flight if it's a crypto handshake
// packet, since they won't be acked now that one has been processed.
// Other crypto handshake packets won't be in flight, only the newest
// transmission of a crypto packet is in flight at once.
// TODO(ianswett): Instead of handling all crypto packets special,
// only handle nullptr encrypted packets in a special way.
const TransmissionInfo& newest_transmission_info =
unacked_packets_.GetTransmissionInfo(newest_transmission);
if (HasCryptoHandshake(newest_transmission_info)) {
unacked_packets_.RemoveFromInFlight(newest_transmission);
}
}
unacked_packets_.RemoveFromInFlight(info);
unacked_packets_.RemoveRetransmittability(info);
if (FLAGS_quic_loss_recovery_use_largest_acked) {
info->is_unackable = true;
}
}
bool QuicSentPacketManager::IsUnacked(QuicPathId,
QuicPacketNumber packet_number) const {
return unacked_packets_.IsUnacked(packet_number);
}
bool QuicSentPacketManager::HasUnackedPackets() const {
return unacked_packets_.HasUnackedPackets();
}
QuicPacketNumber QuicSentPacketManager::GetLeastUnacked(QuicPathId) const {
return unacked_packets_.GetLeastUnacked();
}
bool QuicSentPacketManager::OnPacketSent(
SerializedPacket* serialized_packet,
QuicPathId /*original_path_id*/,
QuicPacketNumber original_packet_number,
QuicTime sent_time,
TransmissionType transmission_type,
HasRetransmittableData has_retransmittable_data) {
QuicPacketNumber packet_number = serialized_packet->packet_number;
DCHECK_LT(0u, packet_number);
DCHECK(!unacked_packets_.IsUnacked(packet_number));
QUIC_BUG_IF(serialized_packet->encrypted_length == 0)
<< "Cannot send empty packets.";
if (delegate_ == nullptr && original_packet_number != 0) {
if (!pending_retransmissions_.erase(original_packet_number)) {
QUIC_BUG << "Expected packet number to be in "
<< "pending_retransmissions_. packet_number: "
<< original_packet_number;
}
}
if (pending_timer_transmission_count_ > 0) {
--pending_timer_transmission_count_;
}
// TODO(ianswett): Remove sent_time, because it's unused.
const bool in_flight = send_algorithm_->OnPacketSent(
sent_time, unacked_packets_.bytes_in_flight(), packet_number,
serialized_packet->encrypted_length, has_retransmittable_data);
unacked_packets_.AddSentPacket(serialized_packet, original_packet_number,
transmission_type, sent_time, in_flight);
// Reset the retransmission timer anytime a pending packet is sent.
return in_flight;
}
void QuicSentPacketManager::OnRetransmissionTimeout() {
DCHECK(unacked_packets_.HasInFlightPackets());
DCHECK_EQ(0u, pending_timer_transmission_count_);
// Handshake retransmission, timer based loss detection, TLP, and RTO are
// implemented with a single alarm. The handshake alarm is set when the
// handshake has not completed, the loss alarm is set when the loss detection
// algorithm says to, and the TLP and RTO alarms are set after that.
// The TLP alarm is always set to run for under an RTO.
switch (GetRetransmissionMode()) {
case HANDSHAKE_MODE:
++stats_->crypto_retransmit_count;
RetransmitCryptoPackets();
return;
case LOSS_MODE: {
++stats_->loss_timeout_count;
QuicByteCount bytes_in_flight = unacked_packets_.bytes_in_flight();
InvokeLossDetection(clock_->Now());
MaybeInvokeCongestionEvent(false, bytes_in_flight);
return;
}
case TLP_MODE:
// If no tail loss probe can be sent, because there are no retransmittable
// packets, execute a conventional RTO to abandon old packets.
++stats_->tlp_count;
++consecutive_tlp_count_;
pending_timer_transmission_count_ = 1;
// TLPs prefer sending new data instead of retransmitting data, so
// give the connection a chance to write before completing the TLP.
return;
case RTO_MODE:
++stats_->rto_count;
RetransmitRtoPackets();
if (network_change_visitor_ != nullptr &&
consecutive_rto_count_ == kMinTimeoutsBeforePathDegrading) {
network_change_visitor_->OnPathDegrading();
}
return;
}
}
void QuicSentPacketManager::RetransmitCryptoPackets() {
DCHECK_EQ(HANDSHAKE_MODE, GetRetransmissionMode());
++consecutive_crypto_retransmission_count_;
bool packet_retransmitted = false;
QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
it != unacked_packets_.end(); ++it, ++packet_number) {
// Only retransmit frames which are in flight, and therefore have been sent.
if (!it->in_flight || it->retransmittable_frames.empty() ||
!it->has_crypto_handshake) {
continue;
}
packet_retransmitted = true;
MarkForRetransmission(packet_number, HANDSHAKE_RETRANSMISSION);
++pending_timer_transmission_count_;
}
DCHECK(packet_retransmitted) << "No crypto packets found to retransmit.";
}
bool QuicSentPacketManager::MaybeRetransmitTailLossProbe() {
if (pending_timer_transmission_count_ == 0) {
return false;
}
QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
it != unacked_packets_.end(); ++it, ++packet_number) {
// Only retransmit frames which are in flight, and therefore have been sent.
if (!it->in_flight || it->retransmittable_frames.empty()) {
continue;
}
if (!handshake_confirmed_) {
DCHECK(!it->has_crypto_handshake);
}
MarkForRetransmission(packet_number, TLP_RETRANSMISSION);
return true;
}
DLOG(ERROR)
<< "No retransmittable packets, so RetransmitOldestPacket failed.";
return false;
}
void QuicSentPacketManager::RetransmitRtoPackets() {
QUIC_BUG_IF(pending_timer_transmission_count_ > 0)
<< "Retransmissions already queued:" << pending_timer_transmission_count_;
// Mark two packets for retransmission.
QuicPacketNumber packet_number = unacked_packets_.GetLeastUnacked();
for (QuicUnackedPacketMap::const_iterator it = unacked_packets_.begin();
it != unacked_packets_.end(); ++it, ++packet_number) {
if (!it->retransmittable_frames.empty() &&
pending_timer_transmission_count_ < kMaxRetransmissionsOnTimeout) {
MarkForRetransmission(packet_number, RTO_RETRANSMISSION);
++pending_timer_transmission_count_;
}
// Abandon non-retransmittable data that's in flight to ensure it doesn't
// fill up the congestion window.
const bool has_retransmissions = it->retransmission != 0;
if (it->retransmittable_frames.empty() && it->in_flight &&
!has_retransmissions) {
// Log only for non-retransmittable data.
// Retransmittable data is marked as lost during loss detection, and will
// be logged later.
unacked_packets_.RemoveFromInFlight(packet_number);
if (debug_delegate_ != nullptr) {
debug_delegate_->OnPacketLoss(packet_number, RTO_RETRANSMISSION,
clock_->Now());
}
}
}
if (pending_timer_transmission_count_ > 0) {
if (consecutive_rto_count_ == 0) {
first_rto_transmission_ = unacked_packets_.largest_sent_packet() + 1;
}
++consecutive_rto_count_;
}
}
QuicSentPacketManager::RetransmissionTimeoutMode
QuicSentPacketManager::GetRetransmissionMode() const {
DCHECK(unacked_packets_.HasInFlightPackets());
if (!handshake_confirmed_ && unacked_packets_.HasPendingCryptoPackets()) {
return HANDSHAKE_MODE;
}
if (loss_algorithm_->GetLossTimeout() != QuicTime::Zero()) {
return LOSS_MODE;
}
if (consecutive_tlp_count_ < max_tail_loss_probes_) {
if (unacked_packets_.HasUnackedRetransmittableFrames()) {
return TLP_MODE;
}
}
return RTO_MODE;
}
void QuicSentPacketManager::InvokeLossDetection(QuicTime time) {
if (FLAGS_quic_loss_recovery_use_largest_acked && !packets_acked_.empty()) {
DCHECK_LE(packets_acked_.front().first, packets_acked_.back().first);
largest_newly_acked_ = packets_acked_.back().first;
}
loss_algorithm_->DetectLosses(unacked_packets_, time, rtt_stats_,
largest_newly_acked_, &packets_lost_);
for (const pair<QuicPacketNumber, QuicByteCount>& pair : packets_lost_) {
++stats_->packets_lost;
if (debug_delegate_ != nullptr) {
debug_delegate_->OnPacketLoss(pair.first, LOSS_RETRANSMISSION, time);
}
// TODO(ianswett): This could be optimized.
if (unacked_packets_.HasRetransmittableFrames(pair.first)) {
MarkForRetransmission(pair.first, LOSS_RETRANSMISSION);
} else {
// Since we will not retransmit this, we need to remove it from
// unacked_packets_. This is either the current transmission of
// a packet whose previous transmission has been acked or a packet that
// has been TLP retransmitted.
unacked_packets_.RemoveFromInFlight(pair.first);
}
}
}
bool QuicSentPacketManager::MaybeUpdateRTT(const QuicAckFrame& ack_frame,
QuicTime ack_receive_time) {
// We rely on ack_delay_time to compute an RTT estimate, so we
// only update rtt when the largest observed gets acked.
// NOTE: If ack is a truncated ack, then the largest observed is in fact
// unacked, and may cause an RTT sample to be taken.
if (!unacked_packets_.IsUnacked(ack_frame.largest_observed)) {
return false;
}
// We calculate the RTT based on the highest ACKed packet number, the lower
// packet numbers will include the ACK aggregation delay.
const TransmissionInfo& transmission_info =
unacked_packets_.GetTransmissionInfo(ack_frame.largest_observed);
// Ensure the packet has a valid sent time.
if (transmission_info.sent_time == QuicTime::Zero()) {
QUIC_BUG << "Acked packet has zero sent time, largest_observed:"
<< ack_frame.largest_observed;
return false;
}
QuicTime::Delta send_delta =
ack_receive_time.Subtract(transmission_info.sent_time);
rtt_stats_.UpdateRtt(send_delta, ack_frame.ack_delay_time, ack_receive_time);
return true;
}
QuicTime::Delta QuicSentPacketManager::TimeUntilSend(
QuicTime now,
HasRetransmittableData retransmittable,
QuicPathId* path_id) {
QuicTime::Delta delay = QuicTime::Delta::Infinite();
// The TLP logic is entirely contained within QuicSentPacketManager, so the
// send algorithm does not need to be consulted.
if (pending_timer_transmission_count_ > 0) {
delay = QuicTime::Delta::Zero();
} else {
delay =
send_algorithm_->TimeUntilSend(now, unacked_packets_.bytes_in_flight());
}
if (!delay.IsInfinite()) {
*path_id = path_id_;
}
return delay;
}
const QuicTime QuicSentPacketManager::GetRetransmissionTime() const {
// Don't set the timer if there are no packets in flight or we've already
// queued a tlp transmission and it hasn't been sent yet.
if (!unacked_packets_.HasInFlightPackets() ||
pending_timer_transmission_count_ > 0) {
return QuicTime::Zero();
}
switch (GetRetransmissionMode()) {
case HANDSHAKE_MODE:
return clock_->ApproximateNow().Add(GetCryptoRetransmissionDelay());
case LOSS_MODE:
return loss_algorithm_->GetLossTimeout();
case TLP_MODE: {
// TODO(ianswett): When CWND is available, it would be preferable to
// set the timer based on the earliest retransmittable packet.
// Base the updated timer on the send time of the last packet.
const QuicTime sent_time = unacked_packets_.GetLastPacketSentTime();
const QuicTime tlp_time = sent_time.Add(GetTailLossProbeDelay());
// Ensure the TLP timer never gets set to a time in the past.
return QuicTime::Max(clock_->ApproximateNow(), tlp_time);
}
case RTO_MODE: {
// The RTO is based on the first outstanding packet.
const QuicTime sent_time = unacked_packets_.GetLastPacketSentTime();
QuicTime rto_time = sent_time.Add(GetRetransmissionDelay());
// Wait for TLP packets to be acked before an RTO fires.
QuicTime tlp_time =
unacked_packets_.GetLastPacketSentTime().Add(GetTailLossProbeDelay());
return QuicTime::Max(tlp_time, rto_time);
}
}
DCHECK(false);
return QuicTime::Zero();
}
const QuicTime::Delta QuicSentPacketManager::GetCryptoRetransmissionDelay()
const {
// This is equivalent to the TailLossProbeDelay, but slightly more aggressive
// because crypto handshake messages don't incur a delayed ack time.
QuicTime::Delta srtt = rtt_stats_.smoothed_rtt();
if (srtt.IsZero()) {
srtt = QuicTime::Delta::FromMicroseconds(rtt_stats_.initial_rtt_us());
}
int64_t delay_ms = max(kMinHandshakeTimeoutMs,
static_cast<int64_t>(1.5 * srtt.ToMilliseconds()));
return QuicTime::Delta::FromMilliseconds(
delay_ms << consecutive_crypto_retransmission_count_);
}
const QuicTime::Delta QuicSentPacketManager::GetTailLossProbeDelay() const {
QuicTime::Delta srtt = rtt_stats_.smoothed_rtt();
if (srtt.IsZero()) {
srtt = QuicTime::Delta::FromMicroseconds(rtt_stats_.initial_rtt_us());
}
if (enable_half_rtt_tail_loss_probe_ && consecutive_tlp_count_ == 0u) {
return QuicTime::Delta::FromMilliseconds(
max(kMinTailLossProbeTimeoutMs,
static_cast<int64_t>(0.5 * srtt.ToMilliseconds())));
}
if (!unacked_packets_.HasMultipleInFlightPackets()) {
return QuicTime::Delta::Max(
srtt.Multiply(2),
srtt.Multiply(1.5).Add(
QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs / 2)));
}
return QuicTime::Delta::FromMilliseconds(
max(kMinTailLossProbeTimeoutMs,
static_cast<int64_t>(2 * srtt.ToMilliseconds())));
}
const QuicTime::Delta QuicSentPacketManager::GetRetransmissionDelay() const {
QuicTime::Delta retransmission_delay = send_algorithm_->RetransmissionDelay();
if (retransmission_delay.IsZero()) {
// We are in the initial state, use default timeout values.
retransmission_delay =
QuicTime::Delta::FromMilliseconds(kDefaultRetransmissionTimeMs);
} else if (retransmission_delay.ToMilliseconds() < kMinRetransmissionTimeMs) {
retransmission_delay =
QuicTime::Delta::FromMilliseconds(kMinRetransmissionTimeMs);
}
// Calculate exponential back off.
retransmission_delay = retransmission_delay.Multiply(
1 << min<size_t>(consecutive_rto_count_, kMaxRetransmissions));
if (retransmission_delay.ToMilliseconds() > kMaxRetransmissionTimeMs) {
return QuicTime::Delta::FromMilliseconds(kMaxRetransmissionTimeMs);
}
return retransmission_delay;
}
const RttStats* QuicSentPacketManager::GetRttStats() const {
return &rtt_stats_;
}
QuicBandwidth QuicSentPacketManager::BandwidthEstimate() const {
// TODO(ianswett): Remove BandwidthEstimate from SendAlgorithmInterface
// and implement the logic here.
return send_algorithm_->BandwidthEstimate();
}
const QuicSustainedBandwidthRecorder&
QuicSentPacketManager::SustainedBandwidthRecorder() const {
return sustained_bandwidth_recorder_;
}
QuicPacketCount QuicSentPacketManager::EstimateMaxPacketsInFlight(
QuicByteCount max_packet_length) const {
return send_algorithm_->GetCongestionWindow() / max_packet_length;
}
QuicPacketCount QuicSentPacketManager::GetCongestionWindowInTcpMss() const {
return send_algorithm_->GetCongestionWindow() / kDefaultTCPMSS;
}
QuicByteCount QuicSentPacketManager::GetCongestionWindowInBytes() const {
return send_algorithm_->GetCongestionWindow();
}
QuicPacketCount QuicSentPacketManager::GetSlowStartThresholdInTcpMss() const {
return send_algorithm_->GetSlowStartThreshold() / kDefaultTCPMSS;
}
void QuicSentPacketManager::CancelRetransmissionsForStream(
QuicStreamId stream_id) {
unacked_packets_.CancelRetransmissionsForStream(stream_id);
if (delegate_ != nullptr) {
return;
}
PendingRetransmissionMap::iterator it = pending_retransmissions_.begin();
while (it != pending_retransmissions_.end()) {
if (HasRetransmittableFrames(path_id_, it->first)) {
++it;
continue;
}
it = pending_retransmissions_.erase(it);
}
}
void QuicSentPacketManager::EnablePacing() {
// TODO(ianswett): Replace with a method which wraps the send algorithm in a
// pacer every time a new algorithm is set.
if (using_pacing_) {
return;
}
// Set up a pacing sender with a 1 millisecond alarm granularity, the same as
// the default granularity of the Linux kernel's FQ qdisc.
using_pacing_ = true;
send_algorithm_.reset(new PacingSender(send_algorithm_.release(),
QuicTime::Delta::FromMilliseconds(1),
kInitialUnpacedBurst));
}
void QuicSentPacketManager::OnConnectionMigration(QuicPathId,
PeerAddressChangeType type) {
if (type == PORT_CHANGE || type == IPV4_SUBNET_CHANGE) {
// Rtt and cwnd do not need to be reset when the peer address change is
// considered to be caused by NATs.
return;
}
consecutive_rto_count_ = 0;
consecutive_tlp_count_ = 0;
rtt_stats_.OnConnectionMigration();
send_algorithm_->OnConnectionMigration();
}
bool QuicSentPacketManager::IsHandshakeConfirmed() const {
return handshake_confirmed_;
}
void QuicSentPacketManager::SetDebugDelegate(DebugDelegate* debug_delegate) {
debug_delegate_ = debug_delegate;
}
QuicPacketNumber QuicSentPacketManager::GetLargestObserved(QuicPathId) const {
return unacked_packets_.largest_observed();
}
QuicPacketNumber QuicSentPacketManager::GetLargestSentPacket(QuicPathId) const {
return unacked_packets_.largest_sent_packet();
}
QuicPacketNumber QuicSentPacketManager::GetLeastPacketAwaitedByPeer(
QuicPathId) const {
return least_packet_awaited_by_peer_;
}
void QuicSentPacketManager::SetNetworkChangeVisitor(
NetworkChangeVisitor* visitor) {
DCHECK(!network_change_visitor_);
DCHECK(visitor);
network_change_visitor_ = visitor;
}
bool QuicSentPacketManager::InSlowStart() const {
return send_algorithm_->InSlowStart();
}
size_t QuicSentPacketManager::GetConsecutiveRtoCount() const {
return consecutive_rto_count_;
}
size_t QuicSentPacketManager::GetConsecutiveTlpCount() const {
return consecutive_tlp_count_;
}
TransmissionInfo* QuicSentPacketManager::GetMutableTransmissionInfo(
QuicPacketNumber packet_number) {
return unacked_packets_.GetMutableTransmissionInfo(packet_number);
}
void QuicSentPacketManager::RemoveObsoletePackets() {
unacked_packets_.RemoveObsoletePackets();
}
} // namespace net