blob: fc3c98c4bc8f899aa11aa0b88b16c07da9f79d57 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "courgette/disassembler_elf_32_x86.h"
#include <memory>
#include <utility>
#include <vector>
#include "base/logging.h"
#include "courgette/assembly_program.h"
#include "courgette/courgette.h"
namespace courgette {
CheckBool DisassemblerElf32X86::TypedRVAX86::ComputeRelativeTarget(
const uint8_t* op_pointer) {
set_relative_target(Read32LittleEndian(op_pointer) + 4);
return true;
}
CheckBool DisassemblerElf32X86::TypedRVAX86::EmitInstruction(
AssemblyProgram* program,
Label* label) {
return program->EmitRel32(label);
}
uint16_t DisassemblerElf32X86::TypedRVAX86::op_size() const {
return 4;
}
DisassemblerElf32X86::DisassemblerElf32X86(const uint8_t* start, size_t length)
: DisassemblerElf32(start, length) {}
// Convert an ELF relocation struction into an RVA.
CheckBool DisassemblerElf32X86::RelToRVA(Elf32_Rel rel, RVA* result) const {
// The rightmost byte of r_info is the type.
elf32_rel_386_type_values type =
static_cast<elf32_rel_386_type_values>(rel.r_info & 0xFF);
// The other 3 bytes of r_info are the symbol.
uint32_t symbol = rel.r_info >> 8;
switch (type) {
case R_386_NONE:
case R_386_32:
case R_386_PC32:
case R_386_GOT32:
case R_386_PLT32:
case R_386_COPY:
case R_386_GLOB_DAT:
case R_386_JMP_SLOT:
return false;
case R_386_RELATIVE:
if (symbol != 0)
return false;
// This is a basic ABS32 relocation address.
*result = rel.r_offset;
return true;
case R_386_GOTOFF:
case R_386_GOTPC:
case R_386_TLS_TPOFF:
return false;
}
return false;
}
CheckBool DisassemblerElf32X86::ParseRelocationSection(
const Elf32_Shdr* section_header,
AssemblyProgram* program) {
// We can reproduce the R_386_RELATIVE entries in one of the relocation table
// based on other information in the patch, given these conditions:
//
// All R_386_RELATIVE entries are:
// 1) In the same relocation table
// 2) Are consecutive
// 3) Are sorted in memory address order
//
// Happily, this is normally the case, but it's not required by spec, so we
// check, and just don't do it if we don't match up.
// The expectation is that one relocation section will contain all of our
// R_386_RELATIVE entries in the expected order followed by assorted other
// entries we can't use special handling for.
bool match = true;
// Walk all the bytes in the section, matching relocation table or not.
FileOffset file_offset = section_header->sh_offset;
FileOffset section_end = file_offset + section_header->sh_size;
const Elf32_Rel* section_relocs_iter = reinterpret_cast<const Elf32_Rel*>(
FileOffsetToPointer(section_header->sh_offset));
uint32_t section_relocs_count =
section_header->sh_size / section_header->sh_entsize;
if (abs32_locations_.empty())
match = false;
if (abs32_locations_.size() > section_relocs_count)
match = false;
std::vector<RVA>::iterator reloc_iter = abs32_locations_.begin();
while (match && (reloc_iter != abs32_locations_.end())) {
if (section_relocs_iter->r_info != R_386_RELATIVE ||
section_relocs_iter->r_offset != *reloc_iter) {
match = false;
}
++section_relocs_iter;
++reloc_iter;
}
if (match) {
// Skip over relocation tables.
if (!program->EmitElfRelocationInstruction())
return false;
file_offset += sizeof(Elf32_Rel) * abs32_locations_.size();
}
return ParseSimpleRegion(file_offset, section_end, program);
}
CheckBool DisassemblerElf32X86::ParseRel32RelocsFromSection(
const Elf32_Shdr* section_header) {
FileOffset start_file_offset = section_header->sh_offset;
FileOffset end_file_offset = start_file_offset + section_header->sh_size;
const uint8_t* start_pointer = FileOffsetToPointer(start_file_offset);
const uint8_t* end_pointer = FileOffsetToPointer(end_file_offset);
// Quick way to convert from Pointer to RVA within a single Section is to
// subtract |pointer_to_rva|.
const uint8_t* const adjust_pointer_to_rva =
start_pointer - section_header->sh_addr;
std::vector<RVA>::iterator abs32_pos = abs32_locations_.begin();
// Find the rel32 relocations.
const uint8_t* p = start_pointer;
while (p < end_pointer) {
// Heuristic discovery of rel32 locations in instruction stream: are the
// next few bytes the start of an instruction containing a rel32
// addressing mode?
const uint8_t* rel32 = nullptr;
if (p + 5 <= end_pointer) {
if (*p == 0xE8 || *p == 0xE9) { // jmp rel32 and call rel32
rel32 = p + 1;
}
}
if (p + 6 <= end_pointer) {
if (*p == 0x0F && (p[1] & 0xF0) == 0x80) { // Jcc long form
if (p[1] != 0x8A && p[1] != 0x8B) // JPE/JPO unlikely
rel32 = p + 2;
}
}
if (rel32) {
RVA rel32_rva = static_cast<RVA>(rel32 - adjust_pointer_to_rva);
// Is there an abs32 reloc overlapping the candidate?
while (abs32_pos != abs32_locations_.end() && *abs32_pos < rel32_rva - 3)
++abs32_pos;
// Now: (*abs32_pos > rel32_rva - 4) i.e. the lowest addressed 4-byte
// region that could overlap rel32_rva.
if (abs32_pos != abs32_locations_.end()) {
if (*abs32_pos < rel32_rva + 4) {
// Beginning of abs32 reloc is before end of rel32 reloc so they
// overlap. Skip four bytes past the abs32 reloc.
RVA current_rva = static_cast<RVA>(p - adjust_pointer_to_rva);
p += (*abs32_pos + 4) - current_rva;
continue;
}
}
std::unique_ptr<TypedRVAX86> typed_rel32_rva(new TypedRVAX86(rel32_rva));
if (!typed_rel32_rva->ComputeRelativeTarget(rel32))
return false;
RVA target_rva = typed_rel32_rva->rva() +
typed_rel32_rva->relative_target();
if (IsValidTargetRVA(target_rva)) {
rel32_locations_.push_back(std::move(typed_rel32_rva));
#if COURGETTE_HISTOGRAM_TARGETS
++rel32_target_rvas_[target_rva];
#endif
p = rel32 + 4;
continue;
}
}
p += 1;
}
return true;
}
} // namespace courgette