blob: d29204c414f732dfed06339eefa49d9a9fdb0d4f [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "net/socket/ssl_client_socket_impl.h"
#include <errno.h>
#include <string.h>
#include <algorithm>
#include <map>
#include <utility>
#include "base/bind.h"
#include "base/callback_helpers.h"
#include "base/containers/span.h"
#include "base/feature_list.h"
#include "base/lazy_instance.h"
#include "base/location.h"
#include "base/macros.h"
#include "base/memory/singleton.h"
#include "base/metrics/field_trial.h"
#include "base/metrics/field_trial_params.h"
#include "base/metrics/histogram_functions.h"
#include "base/metrics/histogram_macros.h"
#include "base/rand_util.h"
#include "base/stl_util.h"
#include "base/strings/string_piece.h"
#include "base/strings/stringprintf.h"
#include "base/synchronization/lock.h"
#include "base/threading/sequenced_task_runner_handle.h"
#include "base/trace_event/trace_event.h"
#include "base/values.h"
#include "build/build_config.h"
#include "crypto/ec_private_key.h"
#include "crypto/openssl_util.h"
#include "net/base/features.h"
#include "net/base/ip_address.h"
#include "net/base/net_errors.h"
#include "net/base/trace_constants.h"
#include "net/base/url_util.h"
#include "net/cert/cert_verifier.h"
#include "net/cert/ct_policy_enforcer.h"
#include "net/cert/ct_policy_status.h"
#include "net/cert/ct_verifier.h"
#include "net/cert/internal/parse_certificate.h"
#include "net/cert/sct_auditing_delegate.h"
#include "net/cert/sct_status_flags.h"
#include "net/cert/x509_certificate_net_log_param.h"
#include "net/cert/x509_util.h"
#include "net/der/parse_values.h"
#include "net/http/transport_security_state.h"
#include "net/log/net_log_event_type.h"
#include "net/log/net_log_values.h"
#include "net/ssl/ssl_cert_request_info.h"
#include "net/ssl/ssl_cipher_suite_names.h"
#include "net/ssl/ssl_connection_status_flags.h"
#include "net/ssl/ssl_handshake_details.h"
#include "net/ssl/ssl_info.h"
#include "net/ssl/ssl_key_logger.h"
#include "net/ssl/ssl_private_key.h"
#include "net/traffic_annotation/network_traffic_annotation.h"
#include "third_party/boringssl/src/include/openssl/bio.h"
#include "third_party/boringssl/src/include/openssl/bytestring.h"
#include "third_party/boringssl/src/include/openssl/err.h"
#include "third_party/boringssl/src/include/openssl/evp.h"
#include "third_party/boringssl/src/include/openssl/mem.h"
#include "third_party/boringssl/src/include/openssl/ssl.h"
#if !defined(NET_DISABLE_BROTLI)
#include "third_party/brotli/include/brotli/decode.h"
#endif
namespace net {
namespace {
// This constant can be any non-negative/non-zero value (eg: it does not
// overlap with any value of the net::Error range, including net::OK).
const int kSSLClientSocketNoPendingResult = 1;
// This constant can be any non-negative/non-zero value (eg: it does not
// overlap with any value of the net::Error range, including net::OK).
const int kCertVerifyPending = 1;
// Default size of the internal BoringSSL buffers.
const int kDefaultOpenSSLBufferSize = 17 * 1024;
base::Value NetLogPrivateKeyOperationParams(uint16_t algorithm,
SSLPrivateKey* key) {
base::Value value(base::Value::Type::DICTIONARY);
value.SetStringKey("algorithm", SSL_get_signature_algorithm_name(
algorithm, 0 /* exclude curve */));
value.SetStringKey("provider", key->GetProviderName());
return value;
}
base::Value NetLogSSLInfoParams(SSLClientSocketImpl* socket) {
SSLInfo ssl_info;
if (!socket->GetSSLInfo(&ssl_info))
return base::Value();
base::Value dict(base::Value::Type::DICTIONARY);
const char* version_str;
SSLVersionToString(&version_str,
SSLConnectionStatusToVersion(ssl_info.connection_status));
dict.SetStringKey("version", version_str);
dict.SetBoolKey("is_resumed",
ssl_info.handshake_type == SSLInfo::HANDSHAKE_RESUME);
dict.SetIntKey("cipher_suite",
SSLConnectionStatusToCipherSuite(ssl_info.connection_status));
dict.SetIntKey("key_exchange_group", ssl_info.key_exchange_group);
dict.SetIntKey("peer_signature_algorithm", ssl_info.peer_signature_algorithm);
dict.SetStringKey("next_proto",
NextProtoToString(socket->GetNegotiatedProtocol()));
return dict;
}
base::Value NetLogSSLAlertParams(const void* bytes, size_t len) {
base::Value dict(base::Value::Type::DICTIONARY);
dict.SetKey("bytes", NetLogBinaryValue(bytes, len));
return dict;
}
base::Value NetLogSSLMessageParams(bool is_write,
const void* bytes,
size_t len,
NetLogCaptureMode capture_mode) {
base::Value dict(base::Value::Type::DICTIONARY);
if (len == 0) {
NOTREACHED();
return dict;
}
// The handshake message type is the first byte. Include it so elided messages
// still report their type.
uint8_t type = reinterpret_cast<const uint8_t*>(bytes)[0];
dict.SetIntKey("type", type);
// Elide client certificate messages unless logging socket bytes. The client
// certificate does not contain information needed to impersonate the user
// (that's the private key which isn't sent over the wire), but it may contain
// information on the user's identity.
if (!is_write || type != SSL3_MT_CERTIFICATE ||
NetLogCaptureIncludesSocketBytes(capture_mode)) {
dict.SetKey("bytes", NetLogBinaryValue(bytes, len));
}
return dict;
}
// This enum is used in histograms, so values may not be reused.
enum class RSAKeyUsage {
// The TLS cipher suite was not RSA or ECDHE_RSA.
kNotRSA = 0,
// The Key Usage extension is not present, which is consistent with TLS usage.
kOKNoExtension = 1,
// The Key Usage extension has both the digitalSignature and keyEncipherment
// bits, which is consistent with TLS usage.
kOKHaveBoth = 2,
// The Key Usage extension contains only the digitalSignature bit, which is
// consistent with TLS usage.
kOKHaveDigitalSignature = 3,
// The Key Usage extension contains only the keyEncipherment bit, which is
// consistent with TLS usage.
kOKHaveKeyEncipherment = 4,
// The Key Usage extension is missing the digitalSignature bit.
kMissingDigitalSignature = 5,
// The Key Usage extension is missing the keyEncipherment bit.
kMissingKeyEncipherment = 6,
// There was an error processing the certificate.
kError = 7,
kLastValue = kError,
};
RSAKeyUsage CheckRSAKeyUsage(const X509Certificate* cert,
const SSL_CIPHER* cipher) {
bool need_key_encipherment = false;
switch (SSL_CIPHER_get_kx_nid(cipher)) {
case NID_kx_rsa:
need_key_encipherment = true;
break;
case NID_kx_ecdhe:
if (SSL_CIPHER_get_auth_nid(cipher) != NID_auth_rsa) {
return RSAKeyUsage::kNotRSA;
}
break;
default:
return RSAKeyUsage::kNotRSA;
}
const CRYPTO_BUFFER* buffer = cert->cert_buffer();
der::Input tbs_certificate_tlv;
der::Input signature_algorithm_tlv;
der::BitString signature_value;
ParsedTbsCertificate tbs;
if (!ParseCertificate(
der::Input(CRYPTO_BUFFER_data(buffer), CRYPTO_BUFFER_len(buffer)),
&tbs_certificate_tlv, &signature_algorithm_tlv, &signature_value,
nullptr) ||
!ParseTbsCertificate(tbs_certificate_tlv,
x509_util::DefaultParseCertificateOptions(), &tbs,
nullptr)) {
return RSAKeyUsage::kError;
}
if (!tbs.has_extensions) {
return RSAKeyUsage::kOKNoExtension;
}
std::map<der::Input, ParsedExtension> extensions;
if (!ParseExtensions(tbs.extensions_tlv, &extensions)) {
return RSAKeyUsage::kError;
}
ParsedExtension key_usage_ext;
if (!ConsumeExtension(KeyUsageOid(), &extensions, &key_usage_ext)) {
return RSAKeyUsage::kOKNoExtension;
}
der::BitString key_usage;
if (!ParseKeyUsage(key_usage_ext.value, &key_usage)) {
return RSAKeyUsage::kError;
}
bool have_digital_signature =
key_usage.AssertsBit(KEY_USAGE_BIT_DIGITAL_SIGNATURE);
bool have_key_encipherment =
key_usage.AssertsBit(KEY_USAGE_BIT_KEY_ENCIPHERMENT);
if (have_digital_signature && have_key_encipherment) {
return RSAKeyUsage::kOKHaveBoth;
}
if (need_key_encipherment) {
return have_key_encipherment ? RSAKeyUsage::kOKHaveKeyEncipherment
: RSAKeyUsage::kMissingKeyEncipherment;
}
return have_digital_signature ? RSAKeyUsage::kOKHaveDigitalSignature
: RSAKeyUsage::kMissingDigitalSignature;
}
#if !defined(NET_DISABLE_BROTLI)
int DecompressBrotliCert(SSL* ssl,
CRYPTO_BUFFER** out,
size_t uncompressed_len,
const uint8_t* in,
size_t in_len) {
uint8_t* data;
bssl::UniquePtr<CRYPTO_BUFFER> decompressed(
CRYPTO_BUFFER_alloc(&data, uncompressed_len));
if (!decompressed) {
return 0;
}
size_t output_size = uncompressed_len;
if (BrotliDecoderDecompress(in_len, in, &output_size, data) !=
BROTLI_DECODER_RESULT_SUCCESS ||
output_size != uncompressed_len) {
return 0;
}
*out = decompressed.release();
return 1;
}
#endif
} // namespace
class SSLClientSocketImpl::SSLContext {
public:
static SSLContext* GetInstance() {
return base::Singleton<SSLContext,
base::LeakySingletonTraits<SSLContext>>::get();
}
SSL_CTX* ssl_ctx() { return ssl_ctx_.get(); }
SSLClientSocketImpl* GetClientSocketFromSSL(const SSL* ssl) {
DCHECK(ssl);
SSLClientSocketImpl* socket = static_cast<SSLClientSocketImpl*>(
SSL_get_ex_data(ssl, ssl_socket_data_index_));
DCHECK(socket);
return socket;
}
bool SetClientSocketForSSL(SSL* ssl, SSLClientSocketImpl* socket) {
return SSL_set_ex_data(ssl, ssl_socket_data_index_, socket) != 0;
}
void SetSSLKeyLogger(std::unique_ptr<SSLKeyLogger> logger) {
DCHECK(!ssl_key_logger_);
ssl_key_logger_ = std::move(logger);
SSL_CTX_set_keylog_callback(ssl_ctx_.get(), KeyLogCallback);
}
static const SSL_PRIVATE_KEY_METHOD kPrivateKeyMethod;
private:
friend struct base::DefaultSingletonTraits<SSLContext>;
SSLContext() {
crypto::EnsureOpenSSLInit();
ssl_socket_data_index_ =
SSL_get_ex_new_index(0, nullptr, nullptr, nullptr, nullptr);
DCHECK_NE(ssl_socket_data_index_, -1);
ssl_ctx_.reset(SSL_CTX_new(TLS_with_buffers_method()));
SSL_CTX_set_cert_cb(ssl_ctx_.get(), ClientCertRequestCallback, nullptr);
// Verifies the server certificate even on resumed sessions.
SSL_CTX_set_reverify_on_resume(ssl_ctx_.get(), 1);
SSL_CTX_set_custom_verify(ssl_ctx_.get(), SSL_VERIFY_PEER,
VerifyCertCallback);
// Disable the internal session cache. Session caching is handled
// externally (i.e. by SSLClientSessionCache).
SSL_CTX_set_session_cache_mode(
ssl_ctx_.get(), SSL_SESS_CACHE_CLIENT | SSL_SESS_CACHE_NO_INTERNAL);
SSL_CTX_sess_set_new_cb(ssl_ctx_.get(), NewSessionCallback);
SSL_CTX_set_timeout(ssl_ctx_.get(), 1 * 60 * 60 /* one hour */);
SSL_CTX_set_grease_enabled(ssl_ctx_.get(), 1);
// Deduplicate all certificates minted from the SSL_CTX in memory.
SSL_CTX_set0_buffer_pool(ssl_ctx_.get(), x509_util::GetBufferPool());
SSL_CTX_set_msg_callback(ssl_ctx_.get(), MessageCallback);
#if !defined(NET_DISABLE_BROTLI)
SSL_CTX_add_cert_compression_alg(
ssl_ctx_.get(), TLSEXT_cert_compression_brotli,
nullptr /* compression not supported */, DecompressBrotliCert);
#endif
if (base::FeatureList::IsEnabled(features::kPostQuantumCECPQ2)) {
static const int kCurves[] = {NID_CECPQ2, NID_X25519,
NID_X9_62_prime256v1, NID_secp384r1};
SSL_CTX_set1_curves(ssl_ctx_.get(), kCurves, base::size(kCurves));
}
}
static int ClientCertRequestCallback(SSL* ssl, void* arg) {
SSLClientSocketImpl* socket = GetInstance()->GetClientSocketFromSSL(ssl);
DCHECK(socket);
return socket->ClientCertRequestCallback(ssl);
}
static int NewSessionCallback(SSL* ssl, SSL_SESSION* session) {
SSLClientSocketImpl* socket = GetInstance()->GetClientSocketFromSSL(ssl);
return socket->NewSessionCallback(session);
}
static ssl_private_key_result_t PrivateKeySignCallback(SSL* ssl,
uint8_t* out,
size_t* out_len,
size_t max_out,
uint16_t algorithm,
const uint8_t* in,
size_t in_len) {
SSLClientSocketImpl* socket = GetInstance()->GetClientSocketFromSSL(ssl);
return socket->PrivateKeySignCallback(out, out_len, max_out, algorithm, in,
in_len);
}
static ssl_private_key_result_t PrivateKeyCompleteCallback(SSL* ssl,
uint8_t* out,
size_t* out_len,
size_t max_out) {
SSLClientSocketImpl* socket = GetInstance()->GetClientSocketFromSSL(ssl);
return socket->PrivateKeyCompleteCallback(out, out_len, max_out);
}
static void KeyLogCallback(const SSL* ssl, const char* line) {
GetInstance()->ssl_key_logger_->WriteLine(line);
}
static void MessageCallback(int is_write,
int version,
int content_type,
const void* buf,
size_t len,
SSL* ssl,
void* arg) {
SSLClientSocketImpl* socket = GetInstance()->GetClientSocketFromSSL(ssl);
return socket->MessageCallback(is_write, content_type, buf, len);
}
// This is the index used with SSL_get_ex_data to retrieve the owner
// SSLClientSocketImpl object from an SSL instance.
int ssl_socket_data_index_;
bssl::UniquePtr<SSL_CTX> ssl_ctx_;
std::unique_ptr<SSLKeyLogger> ssl_key_logger_;
};
const SSL_PRIVATE_KEY_METHOD
SSLClientSocketImpl::SSLContext::kPrivateKeyMethod = {
&SSLClientSocketImpl::SSLContext::PrivateKeySignCallback,
nullptr /* decrypt */,
&SSLClientSocketImpl::SSLContext::PrivateKeyCompleteCallback,
};
SSLClientSocketImpl::SSLClientSocketImpl(
SSLClientContext* context,
std::unique_ptr<StreamSocket> stream_socket,
const HostPortPair& host_and_port,
const SSLConfig& ssl_config)
: pending_read_error_(kSSLClientSocketNoPendingResult),
pending_read_ssl_error_(SSL_ERROR_NONE),
completed_connect_(false),
was_ever_used_(false),
context_(context),
cert_verification_result_(kCertVerifyPending),
stream_socket_(std::move(stream_socket)),
host_and_port_(host_and_port),
ssl_config_(ssl_config),
next_handshake_state_(STATE_NONE),
in_confirm_handshake_(false),
peek_complete_(false),
disconnected_(false),
negotiated_protocol_(kProtoUnknown),
certificate_requested_(false),
signature_result_(kSSLClientSocketNoPendingResult),
pkp_bypassed_(false),
is_fatal_cert_error_(false),
net_log_(stream_socket_->NetLog()) {
CHECK(context_);
}
SSLClientSocketImpl::~SSLClientSocketImpl() {
Disconnect();
}
void SSLClientSocketImpl::SetSSLKeyLogger(
std::unique_ptr<SSLKeyLogger> logger) {
SSLContext::GetInstance()->SetSSLKeyLogger(std::move(logger));
}
int SSLClientSocketImpl::ExportKeyingMaterial(const base::StringPiece& label,
bool has_context,
const base::StringPiece& context,
unsigned char* out,
unsigned int outlen) {
if (!IsConnected())
return ERR_SOCKET_NOT_CONNECTED;
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
if (!SSL_export_keying_material(
ssl_.get(), out, outlen, label.data(), label.size(),
reinterpret_cast<const unsigned char*>(context.data()),
context.length(), has_context ? 1 : 0)) {
LOG(ERROR) << "Failed to export keying material.";
return ERR_FAILED;
}
return OK;
}
int SSLClientSocketImpl::Connect(CompletionOnceCallback callback) {
// Although StreamSocket does allow calling Connect() after Disconnect(),
// this has never worked for layered sockets. CHECK to detect any consumers
// reconnecting an SSL socket.
//
// TODO(davidben,mmenke): Remove this API feature. See
// https://crbug.com/499289.
CHECK(!disconnected_);
net_log_.BeginEvent(NetLogEventType::SSL_CONNECT);
// Set up new ssl object.
int rv = Init();
if (rv != OK) {
LogConnectEndEvent(rv);
return rv;
}
// Set SSL to client mode. Handshake happens in the loop below.
SSL_set_connect_state(ssl_.get());
next_handshake_state_ = STATE_HANDSHAKE;
rv = DoHandshakeLoop(OK);
if (rv == ERR_IO_PENDING) {
user_connect_callback_ = std::move(callback);
} else {
LogConnectEndEvent(rv);
}
return rv > OK ? OK : rv;
}
void SSLClientSocketImpl::Disconnect() {
disconnected_ = true;
// Shut down anything that may call us back.
cert_verifier_request_.reset();
weak_factory_.InvalidateWeakPtrs();
transport_adapter_.reset();
// Release user callbacks.
user_connect_callback_.Reset();
user_read_callback_.Reset();
user_write_callback_.Reset();
user_read_buf_ = nullptr;
user_read_buf_len_ = 0;
user_write_buf_ = nullptr;
user_write_buf_len_ = 0;
stream_socket_->Disconnect();
}
// ConfirmHandshake may only be called on a connected socket and, like other
// socket methods, there may only be one ConfirmHandshake operation in progress
// at once.
int SSLClientSocketImpl::ConfirmHandshake(CompletionOnceCallback callback) {
CHECK(completed_connect_);
CHECK(!in_confirm_handshake_);
if (!SSL_in_early_data(ssl_.get())) {
return OK;
}
net_log_.BeginEvent(NetLogEventType::SSL_CONFIRM_HANDSHAKE);
next_handshake_state_ = STATE_HANDSHAKE;
in_confirm_handshake_ = true;
int rv = DoHandshakeLoop(OK);
if (rv == ERR_IO_PENDING) {
user_connect_callback_ = std::move(callback);
} else {
net_log_.EndEvent(NetLogEventType::SSL_CONFIRM_HANDSHAKE);
in_confirm_handshake_ = false;
}
return rv > OK ? OK : rv;
}
bool SSLClientSocketImpl::IsConnected() const {
// If the handshake has not yet completed or the socket has been explicitly
// disconnected.
if (!completed_connect_ || disconnected_)
return false;
// If an asynchronous operation is still pending.
if (user_read_buf_.get() || user_write_buf_.get())
return true;
return stream_socket_->IsConnected();
}
bool SSLClientSocketImpl::IsConnectedAndIdle() const {
// If the handshake has not yet completed or the socket has been explicitly
// disconnected.
if (!completed_connect_ || disconnected_)
return false;
// If an asynchronous operation is still pending.
if (user_read_buf_.get() || user_write_buf_.get())
return false;
// If there is data read from the network that has not yet been consumed, do
// not treat the connection as idle.
//
// Note that this does not check whether there is ciphertext that has not yet
// been flushed to the network. |Write| returns early, so this can cause race
// conditions which cause a socket to not be treated reusable when it should
// be. See https://crbug.com/466147.
if (transport_adapter_->HasPendingReadData())
return false;
return stream_socket_->IsConnectedAndIdle();
}
int SSLClientSocketImpl::GetPeerAddress(IPEndPoint* addressList) const {
return stream_socket_->GetPeerAddress(addressList);
}
int SSLClientSocketImpl::GetLocalAddress(IPEndPoint* addressList) const {
return stream_socket_->GetLocalAddress(addressList);
}
const NetLogWithSource& SSLClientSocketImpl::NetLog() const {
return net_log_;
}
bool SSLClientSocketImpl::WasEverUsed() const {
return was_ever_used_;
}
bool SSLClientSocketImpl::WasAlpnNegotiated() const {
return negotiated_protocol_ != kProtoUnknown;
}
NextProto SSLClientSocketImpl::GetNegotiatedProtocol() const {
return negotiated_protocol_;
}
bool SSLClientSocketImpl::GetSSLInfo(SSLInfo* ssl_info) {
ssl_info->Reset();
if (!server_cert_)
return false;
ssl_info->cert = server_cert_verify_result_.verified_cert;
ssl_info->unverified_cert = server_cert_;
ssl_info->cert_status = server_cert_verify_result_.cert_status;
ssl_info->is_issued_by_known_root =
server_cert_verify_result_.is_issued_by_known_root;
ssl_info->pkp_bypassed = pkp_bypassed_;
ssl_info->public_key_hashes = server_cert_verify_result_.public_key_hashes;
ssl_info->client_cert_sent = send_client_cert_ && client_cert_.get();
ssl_info->pinning_failure_log = pinning_failure_log_;
ssl_info->ocsp_result = server_cert_verify_result_.ocsp_result;
ssl_info->is_fatal_cert_error = is_fatal_cert_error_;
ssl_info->signed_certificate_timestamps = server_cert_verify_result_.scts;
ssl_info->ct_policy_compliance = server_cert_verify_result_.policy_compliance;
const SSL_CIPHER* cipher = SSL_get_current_cipher(ssl_.get());
CHECK(cipher);
// Historically, the "group" was known as "curve".
ssl_info->key_exchange_group = SSL_get_curve_id(ssl_.get());
ssl_info->peer_signature_algorithm =
SSL_get_peer_signature_algorithm(ssl_.get());
SSLConnectionStatusSetCipherSuite(
static_cast<uint16_t>(SSL_CIPHER_get_id(cipher)),
&ssl_info->connection_status);
SSLConnectionStatusSetVersion(GetNetSSLVersion(ssl_.get()),
&ssl_info->connection_status);
ssl_info->handshake_type = SSL_session_reused(ssl_.get())
? SSLInfo::HANDSHAKE_RESUME
: SSLInfo::HANDSHAKE_FULL;
return true;
}
void SSLClientSocketImpl::GetConnectionAttempts(ConnectionAttempts* out) const {
out->clear();
}
int64_t SSLClientSocketImpl::GetTotalReceivedBytes() const {
return stream_socket_->GetTotalReceivedBytes();
}
void SSLClientSocketImpl::DumpMemoryStats(SocketMemoryStats* stats) const {
if (transport_adapter_)
stats->buffer_size = transport_adapter_->GetAllocationSize();
const STACK_OF(CRYPTO_BUFFER)* server_cert_chain =
SSL_get0_peer_certificates(ssl_.get());
if (server_cert_chain) {
for (const CRYPTO_BUFFER* cert : server_cert_chain) {
stats->cert_size += CRYPTO_BUFFER_len(cert);
}
stats->cert_count = sk_CRYPTO_BUFFER_num(server_cert_chain);
}
stats->total_size = stats->buffer_size + stats->cert_size;
}
void SSLClientSocketImpl::GetSSLCertRequestInfo(
SSLCertRequestInfo* cert_request_info) const {
if (!ssl_) {
NOTREACHED();
return;
}
cert_request_info->host_and_port = host_and_port_;
cert_request_info->cert_authorities.clear();
const STACK_OF(CRYPTO_BUFFER)* authorities =
SSL_get0_server_requested_CAs(ssl_.get());
for (const CRYPTO_BUFFER* ca_name : authorities) {
cert_request_info->cert_authorities.push_back(
std::string(reinterpret_cast<const char*>(CRYPTO_BUFFER_data(ca_name)),
CRYPTO_BUFFER_len(ca_name)));
}
cert_request_info->cert_key_types.clear();
const uint8_t* client_cert_types;
size_t num_client_cert_types =
SSL_get0_certificate_types(ssl_.get(), &client_cert_types);
for (size_t i = 0; i < num_client_cert_types; i++) {
cert_request_info->cert_key_types.push_back(
static_cast<SSLClientCertType>(client_cert_types[i]));
}
}
void SSLClientSocketImpl::ApplySocketTag(const SocketTag& tag) {
return stream_socket_->ApplySocketTag(tag);
}
int SSLClientSocketImpl::Read(IOBuffer* buf,
int buf_len,
CompletionOnceCallback callback) {
int rv = ReadIfReady(buf, buf_len, std::move(callback));
if (rv == ERR_IO_PENDING) {
user_read_buf_ = buf;
user_read_buf_len_ = buf_len;
}
return rv;
}
int SSLClientSocketImpl::ReadIfReady(IOBuffer* buf,
int buf_len,
CompletionOnceCallback callback) {
int rv = DoPayloadRead(buf, buf_len);
if (rv == ERR_IO_PENDING) {
user_read_callback_ = std::move(callback);
} else {
if (rv > 0)
was_ever_used_ = true;
}
return rv;
}
int SSLClientSocketImpl::CancelReadIfReady() {
int result = stream_socket_->CancelReadIfReady();
// Cancel |user_read_callback_|, because caller does not expect the callback
// to be invoked after they have canceled the ReadIfReady.
user_read_callback_.Reset();
return result;
}
int SSLClientSocketImpl::Write(
IOBuffer* buf,
int buf_len,
CompletionOnceCallback callback,
const NetworkTrafficAnnotationTag& traffic_annotation) {
user_write_buf_ = buf;
user_write_buf_len_ = buf_len;
int rv = DoPayloadWrite();
if (rv == ERR_IO_PENDING) {
user_write_callback_ = std::move(callback);
} else {
if (rv > 0)
was_ever_used_ = true;
user_write_buf_ = nullptr;
user_write_buf_len_ = 0;
}
return rv;
}
int SSLClientSocketImpl::SetReceiveBufferSize(int32_t size) {
return stream_socket_->SetReceiveBufferSize(size);
}
int SSLClientSocketImpl::SetSendBufferSize(int32_t size) {
return stream_socket_->SetSendBufferSize(size);
}
void SSLClientSocketImpl::OnReadReady() {
// During a renegotiation, either Read or Write calls may be blocked on a
// transport read.
RetryAllOperations();
}
void SSLClientSocketImpl::OnWriteReady() {
// During a renegotiation, either Read or Write calls may be blocked on a
// transport read.
RetryAllOperations();
}
int SSLClientSocketImpl::Init() {
DCHECK(!ssl_);
SSLContext* context = SSLContext::GetInstance();
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
ssl_.reset(SSL_new(context->ssl_ctx()));
if (!ssl_ || !context->SetClientSocketForSSL(ssl_.get(), this))
return ERR_UNEXPECTED;
// SNI should only contain valid DNS hostnames, not IP addresses (see RFC
// 6066, Section 3).
//
// TODO(rsleevi): Should this code allow hostnames that violate the LDH rule?
// See https://crbug.com/496472 and https://crbug.com/496468 for discussion.
IPAddress unused;
if (!unused.AssignFromIPLiteral(host_and_port_.host()) &&
!SSL_set_tlsext_host_name(ssl_.get(), host_and_port_.host().c_str())) {
return ERR_UNEXPECTED;
}
if (IsCachingEnabled()) {
bssl::UniquePtr<SSL_SESSION> session =
context_->ssl_client_session_cache()->Lookup(
GetSessionCacheKey(/*dest_ip_addr=*/base::nullopt));
if (!session) {
// If a previous session negotiated an RSA cipher suite then it may have
// been inserted into the cache keyed by both hostname and resolved IP
// address. See https://crbug.com/969684.
IPEndPoint peer_address;
if (stream_socket_->GetPeerAddress(&peer_address) == OK) {
session = context_->ssl_client_session_cache()->Lookup(
GetSessionCacheKey(peer_address.address()));
}
}
if (session)
SSL_set_session(ssl_.get(), session.get());
}
transport_adapter_.reset(
new SocketBIOAdapter(stream_socket_.get(), kDefaultOpenSSLBufferSize,
kDefaultOpenSSLBufferSize, this));
BIO* transport_bio = transport_adapter_->bio();
BIO_up_ref(transport_bio); // SSL_set0_rbio takes ownership.
SSL_set0_rbio(ssl_.get(), transport_bio);
BIO_up_ref(transport_bio); // SSL_set0_wbio takes ownership.
SSL_set0_wbio(ssl_.get(), transport_bio);
uint16_t version_min =
ssl_config_.version_min_override.value_or(context_->config().version_min);
uint16_t version_max =
ssl_config_.version_max_override.value_or(context_->config().version_max);
DCHECK_LT(SSL3_VERSION, version_min);
DCHECK_LT(SSL3_VERSION, version_max);
if (!SSL_set_min_proto_version(ssl_.get(), version_min) ||
!SSL_set_max_proto_version(ssl_.get(), version_max)) {
return ERR_UNEXPECTED;
}
SSL_set_early_data_enabled(ssl_.get(), ssl_config_.early_data_enabled);
// OpenSSL defaults some options to on, others to off. To avoid ambiguity,
// set everything we care about to an absolute value.
SslSetClearMask options;
options.ConfigureFlag(SSL_OP_NO_COMPRESSION, true);
// TODO(joth): Set this conditionally, see http://crbug.com/55410
options.ConfigureFlag(SSL_OP_LEGACY_SERVER_CONNECT, true);
SSL_set_options(ssl_.get(), options.set_mask);
SSL_clear_options(ssl_.get(), options.clear_mask);
// Same as above, this time for the SSL mode.
SslSetClearMask mode;
mode.ConfigureFlag(SSL_MODE_RELEASE_BUFFERS, true);
mode.ConfigureFlag(SSL_MODE_CBC_RECORD_SPLITTING, true);
mode.ConfigureFlag(SSL_MODE_ENABLE_FALSE_START, true);
SSL_set_mode(ssl_.get(), mode.set_mask);
SSL_clear_mode(ssl_.get(), mode.clear_mask);
// Use BoringSSL defaults, but disable HMAC-SHA1 ciphers in ECDSA. These are
// the remaining CBC-mode ECDSA ciphers.
std::string command("ALL::!aPSK:!ECDSA+SHA1");
if (ssl_config_.require_ecdhe)
command.append(":!kRSA");
if (ssl_config_.disable_legacy_crypto)
command.append(":!3DES");
// Remove any disabled ciphers.
for (uint16_t id : context_->config().disabled_cipher_suites) {
const SSL_CIPHER* cipher = SSL_get_cipher_by_value(id);
if (cipher) {
command.append(":!");
command.append(SSL_CIPHER_get_name(cipher));
}
}
if (!SSL_set_strict_cipher_list(ssl_.get(), command.c_str())) {
LOG(ERROR) << "SSL_set_cipher_list('" << command << "') failed";
return ERR_UNEXPECTED;
}
if (ssl_config_.disable_legacy_crypto) {
static const uint16_t kVerifyPrefs[] = {
SSL_SIGN_ECDSA_SECP256R1_SHA256, SSL_SIGN_RSA_PSS_RSAE_SHA256,
SSL_SIGN_RSA_PKCS1_SHA256, SSL_SIGN_ECDSA_SECP384R1_SHA384,
SSL_SIGN_RSA_PSS_RSAE_SHA384, SSL_SIGN_RSA_PKCS1_SHA384,
SSL_SIGN_RSA_PSS_RSAE_SHA512, SSL_SIGN_RSA_PKCS1_SHA512,
};
if (!SSL_set_verify_algorithm_prefs(ssl_.get(), kVerifyPrefs,
base::size(kVerifyPrefs))) {
return ERR_UNEXPECTED;
}
}
if (!ssl_config_.alpn_protos.empty()) {
std::vector<uint8_t> wire_protos =
SerializeNextProtos(ssl_config_.alpn_protos);
SSL_set_alpn_protos(ssl_.get(), wire_protos.data(), wire_protos.size());
}
SSL_enable_signed_cert_timestamps(ssl_.get());
SSL_enable_ocsp_stapling(ssl_.get());
// Configure BoringSSL to allow renegotiations. Once the initial handshake
// completes, if renegotiations are not allowed, the default reject value will
// be restored. This is done in this order to permit a BoringSSL
// optimization. See https://crbug.com/boringssl/123. Use
// ssl_renegotiate_explicit rather than ssl_renegotiate_freely so DoPeek()
// does not trigger renegotiations.
SSL_set_renegotiate_mode(ssl_.get(), ssl_renegotiate_explicit);
SSL_set_shed_handshake_config(ssl_.get(), 1);
// TODO(https://crbug.com/775438), if |ssl_config_.privacy_mode| is enabled,
// this should always continue with no client certificate.
if (ssl_config_.privacy_mode == PRIVACY_MODE_ENABLED_WITHOUT_CLIENT_CERTS) {
send_client_cert_ = true;
} else {
send_client_cert_ = context_->GetClientCertificate(
host_and_port_, &client_cert_, &client_private_key_);
}
return OK;
}
void SSLClientSocketImpl::DoReadCallback(int rv) {
// Since Run may result in Read being called, clear |user_read_callback_|
// up front.
if (rv > 0)
was_ever_used_ = true;
user_read_buf_ = nullptr;
user_read_buf_len_ = 0;
std::move(user_read_callback_).Run(rv);
}
void SSLClientSocketImpl::DoWriteCallback(int rv) {
// Since Run may result in Write being called, clear |user_write_callback_|
// up front.
if (rv > 0)
was_ever_used_ = true;
user_write_buf_ = nullptr;
user_write_buf_len_ = 0;
std::move(user_write_callback_).Run(rv);
}
int SSLClientSocketImpl::DoHandshake() {
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
int rv = SSL_do_handshake(ssl_.get());
int net_error = OK;
if (rv <= 0) {
int ssl_error = SSL_get_error(ssl_.get(), rv);
if (ssl_error == SSL_ERROR_WANT_X509_LOOKUP && !send_client_cert_) {
return ERR_SSL_CLIENT_AUTH_CERT_NEEDED;
}
if (ssl_error == SSL_ERROR_WANT_PRIVATE_KEY_OPERATION) {
DCHECK(client_private_key_);
DCHECK_NE(kSSLClientSocketNoPendingResult, signature_result_);
next_handshake_state_ = STATE_HANDSHAKE;
return ERR_IO_PENDING;
}
if (ssl_error == SSL_ERROR_WANT_CERTIFICATE_VERIFY) {
DCHECK(cert_verifier_request_);
next_handshake_state_ = STATE_HANDSHAKE;
return ERR_IO_PENDING;
}
OpenSSLErrorInfo error_info;
net_error = MapLastOpenSSLError(ssl_error, err_tracer, &error_info);
if (net_error == ERR_IO_PENDING) {
// If not done, stay in this state
next_handshake_state_ = STATE_HANDSHAKE;
return ERR_IO_PENDING;
}
LOG(ERROR) << "handshake failed; returned " << rv << ", SSL error code "
<< ssl_error << ", net_error " << net_error;
NetLogOpenSSLError(net_log_, NetLogEventType::SSL_HANDSHAKE_ERROR,
net_error, ssl_error, error_info);
}
next_handshake_state_ = STATE_HANDSHAKE_COMPLETE;
return net_error;
}
int SSLClientSocketImpl::DoHandshakeComplete(int result) {
if (result < 0)
return result;
if (in_confirm_handshake_) {
next_handshake_state_ = STATE_NONE;
return OK;
}
const uint8_t* alpn_proto = nullptr;
unsigned alpn_len = 0;
SSL_get0_alpn_selected(ssl_.get(), &alpn_proto, &alpn_len);
if (alpn_len > 0) {
base::StringPiece proto(reinterpret_cast<const char*>(alpn_proto),
alpn_len);
negotiated_protocol_ = NextProtoFromString(proto);
}
RecordNegotiatedProtocol();
const uint8_t* ocsp_response_raw;
size_t ocsp_response_len;
SSL_get0_ocsp_response(ssl_.get(), &ocsp_response_raw, &ocsp_response_len);
set_stapled_ocsp_response_received(ocsp_response_len != 0);
const uint8_t* sct_list;
size_t sct_list_len;
SSL_get0_signed_cert_timestamp_list(ssl_.get(), &sct_list, &sct_list_len);
set_signed_cert_timestamps_received(sct_list_len != 0);
if (!IsRenegotiationAllowed())
SSL_set_renegotiate_mode(ssl_.get(), ssl_renegotiate_never);
uint16_t signature_algorithm = SSL_get_peer_signature_algorithm(ssl_.get());
if (signature_algorithm != 0) {
base::UmaHistogramSparse("Net.SSLSignatureAlgorithm", signature_algorithm);
}
SSLInfo ssl_info;
bool ok = GetSSLInfo(&ssl_info);
// Ensure the verify callback was called, and got far enough to fill
// in server_cert_.
CHECK(ok);
// See how feasible enforcing RSA key usage would be. See
// https://crbug.com/795089.
if (!server_cert_verify_result_.is_issued_by_known_root) {
RSAKeyUsage rsa_key_usage = CheckRSAKeyUsage(
server_cert_.get(), SSL_get_current_cipher(ssl_.get()));
if (rsa_key_usage != RSAKeyUsage::kNotRSA) {
UMA_HISTOGRAM_ENUMERATION("Net.SSLRSAKeyUsage.UnknownRoot", rsa_key_usage,
static_cast<int>(RSAKeyUsage::kLastValue) + 1);
}
}
SSLHandshakeDetails details;
if (SSL_version(ssl_.get()) < TLS1_3_VERSION) {
if (SSL_session_reused(ssl_.get())) {
details = SSLHandshakeDetails::kTLS12Resume;
} else if (SSL_in_false_start(ssl_.get())) {
details = SSLHandshakeDetails::kTLS12FalseStart;
} else {
details = SSLHandshakeDetails::kTLS12Full;
}
} else {
bool used_hello_retry_request = SSL_used_hello_retry_request(ssl_.get());
if (SSL_in_early_data(ssl_.get())) {
DCHECK(!used_hello_retry_request);
details = SSLHandshakeDetails::kTLS13Early;
} else if (SSL_session_reused(ssl_.get())) {
details = used_hello_retry_request
? SSLHandshakeDetails::kTLS13ResumeWithHelloRetryRequest
: SSLHandshakeDetails::kTLS13Resume;
} else {
details = used_hello_retry_request
? SSLHandshakeDetails::kTLS13FullWithHelloRetryRequest
: SSLHandshakeDetails::kTLS13Full;
}
}
UMA_HISTOGRAM_ENUMERATION("Net.SSLHandshakeDetails", details);
completed_connect_ = true;
next_handshake_state_ = STATE_NONE;
// Read from the transport immediately after the handshake, whether Read() is
// called immediately or not. This serves several purposes:
//
// First, if this socket is preconnected and negotiates 0-RTT, the ServerHello
// will not be processed. See https://crbug.com/950706
//
// Second, in False Start and TLS 1.3, the tickets arrive after immediately
// after the handshake. This allows preconnected sockets to process the
// tickets sooner. This also avoids a theoretical deadlock if the tickets are
// too large. See
// https://boringssl-review.googlesource.com/c/boringssl/+/34948.
//
// TODO(https://crbug.com/958638): It is also a step in making TLS 1.3 client
// certificate alerts less unreliable.
base::SequencedTaskRunnerHandle::Get()->PostTask(
FROM_HERE,
base::BindOnce(&SSLClientSocketImpl::DoPeek, weak_factory_.GetWeakPtr()));
return OK;
}
ssl_verify_result_t SSLClientSocketImpl::VerifyCertCallback(
SSL* ssl,
uint8_t* out_alert) {
SSLClientSocketImpl* socket =
SSLContext::GetInstance()->GetClientSocketFromSSL(ssl);
DCHECK(socket);
return socket->VerifyCert();
}
// This function is called by BoringSSL, so it has to return an
// ssl_verify_result_t. When specific //net errors need to be
// returned, use OpenSSLPutNetError to add them directly to the
// OpenSSL error queue.
ssl_verify_result_t SSLClientSocketImpl::VerifyCert() {
if (cert_verification_result_ != kCertVerifyPending) {
// The certificate verifier updates cert_verification_result_ when
// it returns asynchronously. If there is a result in
// cert_verification_result_, return it instead of triggering
// another verify.
return HandleVerifyResult();
}
// In this configuration, BoringSSL will perform exactly one certificate
// verification, so there cannot be state from a previous verification.
CHECK(!server_cert_);
server_cert_ = x509_util::CreateX509CertificateFromBuffers(
SSL_get0_peer_certificates(ssl_.get()));
// OpenSSL decoded the certificate, but the X509Certificate implementation
// could not. This is treated as a fatal SSL-level protocol error rather than
// a certificate error. See https://crbug.com/91341.
if (!server_cert_) {
OpenSSLPutNetError(FROM_HERE, ERR_SSL_SERVER_CERT_BAD_FORMAT);
return ssl_verify_invalid;
}
net_log_.AddEvent(NetLogEventType::SSL_CERTIFICATES_RECEIVED, [&] {
base::Value dict(base::Value::Type::DICTIONARY);
dict.SetKey("certificates", NetLogX509CertificateList(server_cert_.get()));
return dict;
});
// If the certificate is bad and has been previously accepted, use
// the previous status and bypass the error.
CertStatus cert_status;
if (ssl_config_.IsAllowedBadCert(server_cert_.get(), &cert_status)) {
server_cert_verify_result_.Reset();
server_cert_verify_result_.cert_status = cert_status;
server_cert_verify_result_.verified_cert = server_cert_;
cert_verification_result_ = OK;
return HandleVerifyResult();
}
start_cert_verification_time_ = base::TimeTicks::Now();
const uint8_t* ocsp_response_raw;
size_t ocsp_response_len;
SSL_get0_ocsp_response(ssl_.get(), &ocsp_response_raw, &ocsp_response_len);
base::StringPiece ocsp_response(
reinterpret_cast<const char*>(ocsp_response_raw), ocsp_response_len);
const uint8_t* sct_list_raw;
size_t sct_list_len;
SSL_get0_signed_cert_timestamp_list(ssl_.get(), &sct_list_raw, &sct_list_len);
base::StringPiece sct_list(reinterpret_cast<const char*>(sct_list_raw),
sct_list_len);
cert_verification_result_ = context_->cert_verifier()->Verify(
CertVerifier::RequestParams(
server_cert_, host_and_port_.host(), ssl_config_.GetCertVerifyFlags(),
ocsp_response.as_string(), sct_list.as_string()),
&server_cert_verify_result_,
base::BindOnce(&SSLClientSocketImpl::OnVerifyComplete,
base::Unretained(this)),
&cert_verifier_request_, net_log_);
return HandleVerifyResult();
}
void SSLClientSocketImpl::OnVerifyComplete(int result) {
cert_verification_result_ = result;
// In handshake phase. The parameter to OnHandshakeIOComplete is unused.
OnHandshakeIOComplete(OK);
}
ssl_verify_result_t SSLClientSocketImpl::HandleVerifyResult() {
// Verification is in progress. Inform BoringSSL it should retry the
// callback later. The next call to VerifyCertCallback will be a
// continuation of the same verification, so leave
// cert_verification_result_ as-is.
if (cert_verification_result_ == ERR_IO_PENDING)
return ssl_verify_retry;
// In BoringSSL's calling convention for asynchronous callbacks,
// after a callback returns a non-retry value, the operation has
// completed. Subsequent calls are of new operations with potentially
// different arguments. Reset cert_verification_result_ to inform
// VerifyCertCallback not to replay the result on subsequent calls.
int result = cert_verification_result_;
cert_verification_result_ = kCertVerifyPending;
cert_verifier_request_.reset();
if (!start_cert_verification_time_.is_null()) {
base::TimeDelta verify_time =
base::TimeTicks::Now() - start_cert_verification_time_;
if (result == OK) {
UMA_HISTOGRAM_TIMES("Net.SSLCertVerificationTime", verify_time);
} else {
UMA_HISTOGRAM_TIMES("Net.SSLCertVerificationTimeError", verify_time);
}
}
// Enforce keyUsage extension for RSA leaf certificates chaining up to known
// roots.
// TODO(crbug.com/795089): Enforce this unconditionally.
if (server_cert_verify_result_.is_issued_by_known_root) {
SSL_set_enforce_rsa_key_usage(ssl_.get(), 1);
}
// If the connection was good, check HPKP and CT status simultaneously,
// but prefer to treat the HPKP error as more serious, if there was one.
if (result == OK) {
int ct_result = VerifyCT();
TransportSecurityState::PKPStatus pin_validity =
context_->transport_security_state()->CheckPublicKeyPins(
host_and_port_, server_cert_verify_result_.is_issued_by_known_root,
server_cert_verify_result_.public_key_hashes, server_cert_.get(),
server_cert_verify_result_.verified_cert.get(),
TransportSecurityState::ENABLE_PIN_REPORTS,
ssl_config_.network_isolation_key, &pinning_failure_log_);
switch (pin_validity) {
case TransportSecurityState::PKPStatus::VIOLATED:
server_cert_verify_result_.cert_status |=
CERT_STATUS_PINNED_KEY_MISSING;
result = ERR_SSL_PINNED_KEY_NOT_IN_CERT_CHAIN;
break;
case TransportSecurityState::PKPStatus::BYPASSED:
pkp_bypassed_ = true;
FALLTHROUGH;
case TransportSecurityState::PKPStatus::OK:
// Do nothing.
break;
}
if (result != ERR_SSL_PINNED_KEY_NOT_IN_CERT_CHAIN && ct_result != OK)
result = ct_result;
}
// If no other errors occurred, check whether the connection used a legacy TLS
// version.
if (result == OK &&
SSL_version(ssl_.get()) < context_->config().version_min_warn &&
base::FeatureList::IsEnabled(features::kLegacyTLSEnforced) &&
!context_->ssl_config_service()->ShouldSuppressLegacyTLSWarning(
host_and_port_.host())) {
server_cert_verify_result_.cert_status |= CERT_STATUS_LEGACY_TLS;
// Only set the resulting net error if it hasn't been previously bypassed.
if (!ssl_config_.IsAllowedBadCert(server_cert_.get(), nullptr))
result = ERR_SSL_OBSOLETE_VERSION;
}
is_fatal_cert_error_ =
IsCertStatusError(server_cert_verify_result_.cert_status) &&
result != ERR_CERT_KNOWN_INTERCEPTION_BLOCKED &&
result != ERR_SSL_OBSOLETE_VERSION &&
context_->transport_security_state()->ShouldSSLErrorsBeFatal(
host_and_port_.host());
if (IsCertificateError(result) && ssl_config_.ignore_certificate_errors) {
result = OK;
}
if (result == OK) {
return ssl_verify_ok;
}
OpenSSLPutNetError(FROM_HERE, result);
return ssl_verify_invalid;
}
void SSLClientSocketImpl::DoConnectCallback(int rv) {
if (!user_connect_callback_.is_null()) {
std::move(user_connect_callback_).Run(rv > OK ? OK : rv);
}
}
void SSLClientSocketImpl::OnHandshakeIOComplete(int result) {
int rv = DoHandshakeLoop(result);
if (rv != ERR_IO_PENDING) {
if (in_confirm_handshake_) {
in_confirm_handshake_ = false;
net_log_.EndEvent(NetLogEventType::SSL_CONFIRM_HANDSHAKE);
} else {
LogConnectEndEvent(rv);
}
DoConnectCallback(rv);
}
}
int SSLClientSocketImpl::DoHandshakeLoop(int last_io_result) {
TRACE_EVENT0(NetTracingCategory(), "SSLClientSocketImpl::DoHandshakeLoop");
int rv = last_io_result;
do {
// Default to STATE_NONE for next state.
// (This is a quirk carried over from the windows
// implementation. It makes reading the logs a bit harder.)
// State handlers can and often do call GotoState just
// to stay in the current state.
State state = next_handshake_state_;
next_handshake_state_ = STATE_NONE;
switch (state) {
case STATE_HANDSHAKE:
rv = DoHandshake();
break;
case STATE_HANDSHAKE_COMPLETE:
rv = DoHandshakeComplete(rv);
break;
case STATE_NONE:
default:
rv = ERR_UNEXPECTED;
NOTREACHED() << "unexpected state" << state;
break;
}
} while (rv != ERR_IO_PENDING && next_handshake_state_ != STATE_NONE);
return rv;
}
int SSLClientSocketImpl::DoPayloadRead(IOBuffer* buf, int buf_len) {
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
DCHECK_LT(0, buf_len);
DCHECK(buf);
int rv;
if (pending_read_error_ != kSSLClientSocketNoPendingResult) {
rv = pending_read_error_;
pending_read_error_ = kSSLClientSocketNoPendingResult;
if (rv == 0) {
net_log_.AddByteTransferEvent(NetLogEventType::SSL_SOCKET_BYTES_RECEIVED,
rv, buf->data());
} else {
NetLogOpenSSLError(net_log_, NetLogEventType::SSL_READ_ERROR, rv,
pending_read_ssl_error_, pending_read_error_info_);
}
pending_read_ssl_error_ = SSL_ERROR_NONE;
pending_read_error_info_ = OpenSSLErrorInfo();
return rv;
}
int total_bytes_read = 0;
int ssl_ret, ssl_err;
do {
ssl_ret = SSL_read(ssl_.get(), buf->data() + total_bytes_read,
buf_len - total_bytes_read);
ssl_err = SSL_get_error(ssl_.get(), ssl_ret);
if (ssl_ret > 0) {
total_bytes_read += ssl_ret;
} else if (ssl_err == SSL_ERROR_WANT_RENEGOTIATE) {
if (!SSL_renegotiate(ssl_.get())) {
ssl_err = SSL_ERROR_SSL;
}
}
// Continue processing records as long as there is more data available
// synchronously.
} while (ssl_err == SSL_ERROR_WANT_RENEGOTIATE ||
(total_bytes_read < buf_len && ssl_ret > 0 &&
transport_adapter_->HasPendingReadData()));
// Although only the final SSL_read call may have failed, the failure needs to
// processed immediately, while the information still available in OpenSSL's
// error queue.
if (ssl_ret <= 0) {
pending_read_ssl_error_ = ssl_err;
if (pending_read_ssl_error_ == SSL_ERROR_ZERO_RETURN) {
pending_read_error_ = 0;
} else if (pending_read_ssl_error_ == SSL_ERROR_WANT_X509_LOOKUP &&
!send_client_cert_) {
pending_read_error_ = ERR_SSL_CLIENT_AUTH_CERT_NEEDED;
} else if (pending_read_ssl_error_ ==
SSL_ERROR_WANT_PRIVATE_KEY_OPERATION) {
DCHECK(client_private_key_);
DCHECK_NE(kSSLClientSocketNoPendingResult, signature_result_);
pending_read_error_ = ERR_IO_PENDING;
} else {
pending_read_error_ = MapLastOpenSSLError(
pending_read_ssl_error_, err_tracer, &pending_read_error_info_);
}
// Many servers do not reliably send a close_notify alert when shutting down
// a connection, and instead terminate the TCP connection. This is reported
// as ERR_CONNECTION_CLOSED. Because of this, map the unclean shutdown to a
// graceful EOF, instead of treating it as an error as it should be.
if (pending_read_error_ == ERR_CONNECTION_CLOSED)
pending_read_error_ = 0;
}
if (total_bytes_read > 0) {
// Return any bytes read to the caller. The error will be deferred to the
// next call of DoPayloadRead.
rv = total_bytes_read;
// Do not treat insufficient data as an error to return in the next call to
// DoPayloadRead() - instead, let the call fall through to check SSL_read()
// again. The transport may have data available by then.
if (pending_read_error_ == ERR_IO_PENDING)
pending_read_error_ = kSSLClientSocketNoPendingResult;
} else {
// No bytes were returned. Return the pending read error immediately.
DCHECK_NE(kSSLClientSocketNoPendingResult, pending_read_error_);
rv = pending_read_error_;
pending_read_error_ = kSSLClientSocketNoPendingResult;
}
if (rv >= 0) {
net_log_.AddByteTransferEvent(NetLogEventType::SSL_SOCKET_BYTES_RECEIVED,
rv, buf->data());
} else if (rv != ERR_IO_PENDING) {
NetLogOpenSSLError(net_log_, NetLogEventType::SSL_READ_ERROR, rv,
pending_read_ssl_error_, pending_read_error_info_);
pending_read_ssl_error_ = SSL_ERROR_NONE;
pending_read_error_info_ = OpenSSLErrorInfo();
}
return rv;
}
int SSLClientSocketImpl::DoPayloadWrite() {
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
int rv = SSL_write(ssl_.get(), user_write_buf_->data(), user_write_buf_len_);
if (rv >= 0) {
net_log_.AddByteTransferEvent(NetLogEventType::SSL_SOCKET_BYTES_SENT, rv,
user_write_buf_->data());
if (first_post_handshake_write_ && SSL_is_init_finished(ssl_.get())) {
if (base::FeatureList::IsEnabled(features::kTLS13KeyUpdate) &&
SSL_version(ssl_.get()) == TLS1_3_VERSION) {
const int ok = SSL_key_update(ssl_.get(), SSL_KEY_UPDATE_REQUESTED);
DCHECK(ok);
}
first_post_handshake_write_ = false;
}
return rv;
}
int ssl_error = SSL_get_error(ssl_.get(), rv);
if (ssl_error == SSL_ERROR_WANT_PRIVATE_KEY_OPERATION)
return ERR_IO_PENDING;
OpenSSLErrorInfo error_info;
int net_error = MapLastOpenSSLError(ssl_error, err_tracer, &error_info);
if (net_error != ERR_IO_PENDING) {
NetLogOpenSSLError(net_log_, NetLogEventType::SSL_WRITE_ERROR, net_error,
ssl_error, error_info);
}
return net_error;
}
void SSLClientSocketImpl::DoPeek() {
if (!completed_connect_) {
return;
}
crypto::OpenSSLErrStackTracer err_tracer(FROM_HERE);
if (ssl_config_.early_data_enabled && !handled_early_data_result_) {
// |SSL_peek| will implicitly run |SSL_do_handshake| if needed, but run it
// manually to pick up the reject reason.
int rv = SSL_do_handshake(ssl_.get());
int ssl_err = SSL_get_error(ssl_.get(), rv);
int err = rv > 0 ? OK : MapOpenSSLError(ssl_err, err_tracer);
if (err == ERR_IO_PENDING) {
return;
}
// Since the two-parameter version of the macro (which asks for a max value)
// requires that the max value sentinel be named |kMaxValue|, transform the
// max-value sentinel into a one-past-the-end ("boundary") sentinel by
// adding 1, in order to be able to use the three-parameter macro.
UMA_HISTOGRAM_ENUMERATION("Net.SSLHandshakeEarlyDataReason",
SSL_get_early_data_reason(ssl_.get()),
ssl_early_data_reason_max_value + 1);
// On early data reject, clear early data on any other sessions in the
// cache, so retries do not get stuck attempting 0-RTT. See
// https://crbug.com/1066623.
if (err == ERR_EARLY_DATA_REJECTED ||
err == ERR_WRONG_VERSION_ON_EARLY_DATA) {
context_->ssl_client_session_cache()->ClearEarlyData(
GetSessionCacheKey(base::nullopt));
}
handled_early_data_result_ = true;
if (err != OK) {
peek_complete_ = true;
return;
}
}
if (ssl_config_.disable_post_handshake_peek_for_testing || peek_complete_) {
return;
}
char byte;
int rv = SSL_peek(ssl_.get(), &byte, 1);
int ssl_err = SSL_get_error(ssl_.get(), rv);
if (ssl_err != SSL_ERROR_WANT_READ && ssl_err != SSL_ERROR_WANT_WRITE) {
peek_complete_ = true;
}
}
void SSLClientSocketImpl::RetryAllOperations() {
// SSL_do_handshake, SSL_read, and SSL_write may all be retried when blocked,
// so retry all operations for simplicity. (Otherwise, SSL_get_error for each
// operation may be remembered to retry only the blocked ones.)
// Performing these callbacks may cause |this| to be deleted. If this
// happens, the other callbacks should not be invoked. Guard against this by
// holding a WeakPtr to |this| and ensuring it's still valid.
base::WeakPtr<SSLClientSocketImpl> guard(weak_factory_.GetWeakPtr());
if (next_handshake_state_ == STATE_HANDSHAKE) {
// In handshake phase. The parameter to OnHandshakeIOComplete is unused.
OnHandshakeIOComplete(OK);
}
if (!guard.get())
return;
DoPeek();
int rv_read = ERR_IO_PENDING;
int rv_write = ERR_IO_PENDING;
if (user_read_buf_) {
rv_read = DoPayloadRead(user_read_buf_.get(), user_read_buf_len_);
} else if (!user_read_callback_.is_null()) {
// ReadIfReady() is called by the user. Skip DoPayloadRead() and just let
// the user know that read can be retried.
rv_read = OK;
}
if (user_write_buf_)
rv_write = DoPayloadWrite();
if (rv_read != ERR_IO_PENDING)
DoReadCallback(rv_read);
if (!guard.get())
return;
if (rv_write != ERR_IO_PENDING)
DoWriteCallback(rv_write);
}
int SSLClientSocketImpl::VerifyCT() {
const uint8_t* sct_list_raw;
size_t sct_list_len;
SSL_get0_signed_cert_timestamp_list(ssl_.get(), &sct_list_raw, &sct_list_len);
base::StringPiece sct_list(reinterpret_cast<const char*>(sct_list_raw),
sct_list_len);
const uint8_t* ocsp_response_raw;
size_t ocsp_response_len;
SSL_get0_ocsp_response(ssl_.get(), &ocsp_response_raw, &ocsp_response_len);
base::StringPiece ocsp_response(
reinterpret_cast<const char*>(ocsp_response_raw), ocsp_response_len);
// Note that this is a completely synchronous operation: The CT Log Verifier
// gets all the data it needs for SCT verification and does not do any
// external communication.
context_->cert_transparency_verifier()->Verify(
host_and_port().host(), server_cert_verify_result_.verified_cert.get(),
ocsp_response, sct_list, &server_cert_verify_result_.scts, net_log_);
ct::SCTList verified_scts;
for (const auto& sct_and_status : server_cert_verify_result_.scts) {
if (sct_and_status.status == ct::SCT_STATUS_OK)
verified_scts.push_back(sct_and_status.sct);
}
server_cert_verify_result_.policy_compliance =
context_->ct_policy_enforcer()->CheckCompliance(
server_cert_verify_result_.verified_cert.get(), verified_scts,
net_log_);
if (server_cert_verify_result_.cert_status & CERT_STATUS_IS_EV) {
if (server_cert_verify_result_.policy_compliance !=
ct::CTPolicyCompliance::CT_POLICY_COMPLIES_VIA_SCTS &&
server_cert_verify_result_.policy_compliance !=
ct::CTPolicyCompliance::CT_POLICY_BUILD_NOT_TIMELY) {
server_cert_verify_result_.cert_status |=
CERT_STATUS_CT_COMPLIANCE_FAILED;
server_cert_verify_result_.cert_status &= ~CERT_STATUS_IS_EV;
}
// Record the CT compliance status for connections with EV certificates, to
// distinguish how often EV status is being dropped due to failing CT
// compliance.
if (server_cert_verify_result_.is_issued_by_known_root) {
UMA_HISTOGRAM_ENUMERATION("Net.CertificateTransparency.EVCompliance2.SSL",
server_cert_verify_result_.policy_compliance,
ct::CTPolicyCompliance::CT_POLICY_COUNT);
}
}
// Record the CT compliance of every connection to get an overall picture of
// how many connections are CT-compliant.
if (server_cert_verify_result_.is_issued_by_known_root) {
UMA_HISTOGRAM_ENUMERATION(
"Net.CertificateTransparency.ConnectionComplianceStatus2.SSL",
server_cert_verify_result_.policy_compliance,
ct::CTPolicyCompliance::CT_POLICY_COUNT);
}
TransportSecurityState::CTRequirementsStatus ct_requirement_status =
context_->transport_security_state()->CheckCTRequirements(
host_and_port_, server_cert_verify_result_.is_issued_by_known_root,
server_cert_verify_result_.public_key_hashes,
server_cert_verify_result_.verified_cert.get(), server_cert_.get(),
server_cert_verify_result_.scts,
TransportSecurityState::ENABLE_EXPECT_CT_REPORTS,
server_cert_verify_result_.policy_compliance,
ssl_config_.network_isolation_key);
if (ct_requirement_status != TransportSecurityState::CT_NOT_REQUIRED) {
if (server_cert_verify_result_.is_issued_by_known_root) {
// Record the CT compliance of connections for which compliance is
// required; this helps answer the question: "Of all connections that are
// supposed to be serving valid CT information, how many fail to do so?"
UMA_HISTOGRAM_ENUMERATION(
"Net.CertificateTransparency.CTRequiredConnectionComplianceStatus2."
"SSL",
server_cert_verify_result_.policy_compliance,
ct::CTPolicyCompliance::CT_POLICY_COUNT);
}
}
if (context_->sct_auditing_delegate() &&
context_->sct_auditing_delegate()->IsSCTAuditingEnabled() &&
server_cert_verify_result_.is_issued_by_known_root) {
context_->sct_auditing_delegate()->MaybeEnqueueReport(
host_and_port_, server_cert_verify_result_.verified_cert.get(),
server_cert_verify_result_.scts);
}
switch (ct_requirement_status) {
case TransportSecurityState::CT_REQUIREMENTS_NOT_MET:
server_cert_verify_result_.cert_status |=
CERT_STATUS_CERTIFICATE_TRANSPARENCY_REQUIRED;
return ERR_CERTIFICATE_TRANSPARENCY_REQUIRED;
case TransportSecurityState::CT_REQUIREMENTS_MET:
case TransportSecurityState::CT_NOT_REQUIRED:
return OK;
}
NOTREACHED();
return OK;
}
int SSLClientSocketImpl::ClientCertRequestCallback(SSL* ssl) {
DCHECK(ssl == ssl_.get());
net_log_.AddEvent(NetLogEventType::SSL_CLIENT_CERT_REQUESTED);
certificate_requested_ = true;
// Clear any currently configured certificates.
SSL_certs_clear(ssl_.get());
#if defined(OS_IOS)
// TODO(droger): Support client auth on iOS. See http://crbug.com/145954).
LOG(WARNING) << "Client auth is not supported";
#else // !defined(OS_IOS)
if (!send_client_cert_) {
// First pass: we know that a client certificate is needed, but we do not
// have one at hand. Suspend the handshake. SSL_get_error will return
// SSL_ERROR_WANT_X509_LOOKUP.
return -1;
}
// Second pass: a client certificate should have been selected.
if (client_cert_.get()) {
if (!client_private_key_) {
// The caller supplied a null private key. Fail the handshake and surface
// an appropriate error to the caller.
LOG(WARNING) << "Client cert found without private key";
OpenSSLPutNetError(FROM_HERE, ERR_SSL_CLIENT_AUTH_CERT_NO_PRIVATE_KEY);
return -1;
}
if (!SetSSLChainAndKey(ssl_.get(), client_cert_.get(), nullptr,
&SSLContext::kPrivateKeyMethod)) {
OpenSSLPutNetError(FROM_HERE, ERR_SSL_CLIENT_AUTH_CERT_BAD_FORMAT);
return -1;
}
std::vector<uint16_t> preferences =
client_private_key_->GetAlgorithmPreferences();
SSL_set_signing_algorithm_prefs(ssl_.get(), preferences.data(),
preferences.size());
net_log_.AddEventWithIntParams(
NetLogEventType::SSL_CLIENT_CERT_PROVIDED, "cert_count",
base::checked_cast<int>(1 +
client_cert_->intermediate_buffers().size()));
return 1;
}
#endif // defined(OS_IOS)
// Send no client certificate.
net_log_.AddEventWithIntParams(NetLogEventType::SSL_CLIENT_CERT_PROVIDED,
"cert_count", 0);
return 1;
}
int SSLClientSocketImpl::NewSessionCallback(SSL_SESSION* session) {
if (!IsCachingEnabled())
return 0;
base::Optional<IPAddress> ip_addr;
if (SSL_CIPHER_get_kx_nid(SSL_SESSION_get0_cipher(session)) == NID_kx_rsa) {
// If RSA key exchange was used, additionally key the cache with the
// destination IP address. Of course, if a proxy is being used, the
// semantics of this are a little complex, but we're doing our best. See
// https://crbug.com/969684
IPEndPoint ip_endpoint;
if (stream_socket_->GetPeerAddress(&ip_endpoint) != OK) {
return 0;
}
ip_addr = ip_endpoint.address();
}
// OpenSSL optionally passes ownership of |session|. Returning one signals
// that this function has claimed it.
context_->ssl_client_session_cache()->Insert(
GetSessionCacheKey(ip_addr), bssl::UniquePtr<SSL_SESSION>(session));
return 1;
}
SSLClientSessionCache::Key SSLClientSocketImpl::GetSessionCacheKey(
base::Optional<IPAddress> dest_ip_addr) const {
SSLClientSessionCache::Key key;
key.server = host_and_port_;
key.dest_ip_addr = dest_ip_addr;
if (base::FeatureList::IsEnabled(
features::kPartitionSSLSessionsByNetworkIsolationKey)) {
key.network_isolation_key = ssl_config_.network_isolation_key;
}
key.privacy_mode = ssl_config_.privacy_mode;
key.disable_legacy_crypto = ssl_config_.disable_legacy_crypto;
return key;
}
bool SSLClientSocketImpl::IsRenegotiationAllowed() const {
if (negotiated_protocol_ == kProtoUnknown)
return ssl_config_.renego_allowed_default;
for (NextProto allowed : ssl_config_.renego_allowed_for_protos) {
if (negotiated_protocol_ == allowed)
return true;
}
return false;
}
bool SSLClientSocketImpl::IsCachingEnabled() const {
return context_->ssl_client_session_cache() != nullptr;
}
ssl_private_key_result_t SSLClientSocketImpl::PrivateKeySignCallback(
uint8_t* out,
size_t* out_len,
size_t max_out,
uint16_t algorithm,
const uint8_t* in,
size_t in_len) {
DCHECK_EQ(kSSLClientSocketNoPendingResult, signature_result_);
DCHECK(signature_.empty());
DCHECK(client_private_key_);
net_log_.BeginEvent(NetLogEventType::SSL_PRIVATE_KEY_OP, [&] {
return NetLogPrivateKeyOperationParams(
algorithm,
// Pass the SSLPrivateKey pointer to avoid making copies of the
// provider name in the common case with logging disabled.
client_private_key_.get());
});
signature_result_ = ERR_IO_PENDING;
client_private_key_->Sign(
algorithm, base::make_span(in, in_len),
base::BindOnce(&SSLClientSocketImpl::OnPrivateKeyComplete,
weak_factory_.GetWeakPtr()));
return ssl_private_key_retry;
}
ssl_private_key_result_t SSLClientSocketImpl::PrivateKeyCompleteCallback(
uint8_t* out,
size_t* out_len,
size_t max_out) {
DCHECK_NE(kSSLClientSocketNoPendingResult, signature_result_);
DCHECK(client_private_key_);
if (signature_result_ == ERR_IO_PENDING)
return ssl_private_key_retry;
if (signature_result_ != OK) {
OpenSSLPutNetError(FROM_HERE, signature_result_);
return ssl_private_key_failure;
}
if (signature_.size() > max_out) {
OpenSSLPutNetError(FROM_HERE, ERR_SSL_CLIENT_AUTH_SIGNATURE_FAILED);
return ssl_private_key_failure;
}
memcpy(out, signature_.data(), signature_.size());
*out_len = signature_.size();
signature_.clear();
return ssl_private_key_success;
}
void SSLClientSocketImpl::OnPrivateKeyComplete(
Error error,
const std::vector<uint8_t>& signature) {
DCHECK_EQ(ERR_IO_PENDING, signature_result_);
DCHECK(signature_.empty());
DCHECK(client_private_key_);
net_log_.EndEventWithNetErrorCode(NetLogEventType::SSL_PRIVATE_KEY_OP, error);
signature_result_ = error;
if (signature_result_ == OK)
signature_ = signature;
// During a renegotiation, either Read or Write calls may be blocked on an
// asynchronous private key operation.
RetryAllOperations();
}
void SSLClientSocketImpl::MessageCallback(int is_write,
int content_type,
const void* buf,
size_t len) {
switch (content_type) {
case SSL3_RT_ALERT:
net_log_.AddEvent(is_write ? NetLogEventType::SSL_ALERT_SENT
: NetLogEventType::SSL_ALERT_RECEIVED,
[&] { return NetLogSSLAlertParams(buf, len); });
break;
case SSL3_RT_HANDSHAKE:
net_log_.AddEvent(
is_write ? NetLogEventType::SSL_HANDSHAKE_MESSAGE_SENT
: NetLogEventType::SSL_HANDSHAKE_MESSAGE_RECEIVED,
[&](NetLogCaptureMode capture_mode) {
return NetLogSSLMessageParams(!!is_write, buf, len, capture_mode);
});
break;
default:
return;
}
}
void SSLClientSocketImpl::LogConnectEndEvent(int rv) {
if (rv != OK) {
net_log_.EndEventWithNetErrorCode(NetLogEventType::SSL_CONNECT, rv);
return;
}
net_log_.EndEvent(NetLogEventType::SSL_CONNECT,
[&] { return NetLogSSLInfoParams(this); });
}
void SSLClientSocketImpl::RecordNegotiatedProtocol() const {
UMA_HISTOGRAM_ENUMERATION("Net.SSLNegotiatedAlpnProtocol",
negotiated_protocol_, kProtoLast + 1);
}
int SSLClientSocketImpl::MapLastOpenSSLError(
int ssl_error,
const crypto::OpenSSLErrStackTracer& tracer,
OpenSSLErrorInfo* info) {
int net_error = MapOpenSSLErrorWithDetails(ssl_error, tracer, info);
if (ssl_error == SSL_ERROR_SSL &&
ERR_GET_LIB(info->error_code) == ERR_LIB_SSL) {
// TLS does not provide an alert for missing client certificates, so most
// servers send a generic handshake_failure alert. Detect this case by
// checking if we have received a CertificateRequest but sent no
// certificate. See https://crbug.com/646567.
if (ERR_GET_REASON(info->error_code) ==
SSL_R_SSLV3_ALERT_HANDSHAKE_FAILURE &&
certificate_requested_ && send_client_cert_ && !client_cert_) {
net_error = ERR_BAD_SSL_CLIENT_AUTH_CERT;
}
// Per spec, access_denied is only for client-certificate-based access
// control, but some buggy firewalls use it when blocking a page. To avoid a
// confusing error, map it to a generic protocol error if no
// CertificateRequest was sent. See https://crbug.com/630883.
if (ERR_GET_REASON(info->error_code) == SSL_R_TLSV1_ALERT_ACCESS_DENIED &&
!certificate_requested_) {
net_error = ERR_SSL_PROTOCOL_ERROR;
}
// This error is specific to the client, so map it here.
if (ERR_GET_REASON(info->error_code) ==
SSL_R_NO_COMMON_SIGNATURE_ALGORITHMS) {
net_error = ERR_SSL_CLIENT_AUTH_NO_COMMON_ALGORITHMS;
}
}
return net_error;
}
} // namespace net