blob: f8e89ca62ce477852fcc4a6cd2e5777144636f74 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <memory>
#include <unordered_map>
#include <vector>
#include "base/gtest_prod_util.h"
#include "base/logging.h"
#include "cc/animation/animation_export.h"
#include "cc/animation/transform_operation.h"
#include "ui/gfx/transform.h"
namespace gfx {
class BoxF;
struct DecomposedTransform;
namespace cc {
// Transform operations are a decomposed transformation matrix. It can be
// applied to obtain a gfx::Transform at any time, and can be blended
// intelligently with other transform operations, so long as they represent the
// same decomposition. For example, if we have a transform that is made up of
// a rotation followed by skew, it can be blended intelligently with another
// transform made up of a rotation followed by a skew. Blending is possible if
// we have two dissimilar sets of transform operations, but the effect may not
// be what was intended. For more information, see the comments for the blend
// function below.
class CC_ANIMATION_EXPORT TransformOperations {
TransformOperations(const TransformOperations& other);
TransformOperations& operator=(const TransformOperations& other);
// Returns a transformation matrix representing these transform operations.
gfx::Transform Apply() const;
// Returns a transformation matrix representing the set of transform
// operations from index |start| to the end of the list.
gfx::Transform ApplyRemaining(size_t start) const;
// Given another set of transform operations and a progress in the range
// [0, 1], returns a transformation matrix representing the intermediate
// value. If this->MatchesTypes(from), then each of the operations are
// blended separately and then combined. Otherwise, the two sets of
// transforms are baked to matrices (using apply), and the matrices are
// then decomposed and interpolated. For more information, see
// If either of the matrices are non-decomposable for the blend, Blend applies
// discrete interpolation between them based on the progress value.
TransformOperations Blend(const TransformOperations& from,
SkMScalar progress) const;
// Sets |bounds| be the bounding box for the region within which |box| will
// exist when it is transformed by the result of calling Blend on |from| and
// with progress in the range [min_progress, max_progress]. If this region
// cannot be computed, returns false.
bool BlendedBoundsForBox(const gfx::BoxF& box,
const TransformOperations& from,
SkMScalar min_progress,
SkMScalar max_progress,
gfx::BoxF* bounds) const;
// Returns true if these operations are only translations.
bool IsTranslation() const;
// Returns false if the operations affect 2d axis alignment.
bool PreservesAxisAlignment() const;
// Returns true if this operation and its descendants have the same types
// as other and its descendants.
bool MatchesTypes(const TransformOperations& other) const;
// Returns the number of matching transform operations at the start of the
// transform lists. If one list is shorter but pairwise compatible, it will be
// extended with matching identity operators per spec
// (
size_t MatchingPrefixLength(const TransformOperations& other) const;
// Returns true if these operations can be blended. It will only return
// false if we must resort to matrix interpolation, and matrix interpolation
// fails (this can happen if either matrix cannot be decomposed).
bool CanBlendWith(const TransformOperations& other) const;
// If none of these operations have a perspective component, sets |scale| to
// be the product of the scale component of every operation. Otherwise,
// returns false.
bool ScaleComponent(SkMScalar* scale) const;
void AppendTranslate(SkMScalar x, SkMScalar y, SkMScalar z);
void AppendRotate(SkMScalar x, SkMScalar y, SkMScalar z, SkMScalar degrees);
void AppendScale(SkMScalar x, SkMScalar y, SkMScalar z);
void AppendSkew(SkMScalar x, SkMScalar y);
void AppendPerspective(SkMScalar depth);
void AppendMatrix(const gfx::Transform& matrix);
void AppendIdentity();
void Append(const TransformOperation& operation);
bool IsIdentity() const;
size_t size() const { return operations_.size(); }
const TransformOperation& at(size_t index) const {
DCHECK_LT(index, size());
return operations_[index];
TransformOperation& at(size_t index) {
DCHECK_LT(index, size());
return operations_[index];
bool ApproximatelyEqual(const TransformOperations& other,
SkMScalar tolerance) const;
FRIEND_TEST_ALL_PREFIXES(TransformOperationsTest, TestDecompositionCache);
bool BlendInternal(const TransformOperations& from,
SkMScalar progress,
TransformOperations* result) const;
std::vector<TransformOperation> operations_;
bool ComputeDecomposedTransform(size_t start_offset) const;
// For efficiency, we cache the decomposed transforms.
mutable std::unordered_map<size_t, std::unique_ptr<gfx::DecomposedTransform>>
} // namespace cc