blob: 846bd2753f651d94e7e6093c708b724679a5dd37 [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/audio/win/core_audio_util_win.h"
#include <devicetopology.h>
#include <dxdiag.h>
#include <functiondiscoverykeys_devpkey.h>
#include <stddef.h>
#include "base/command_line.h"
#include "base/logging.h"
#include "base/macros.h"
#include "base/strings/stringprintf.h"
#include "base/strings/utf_string_conversions.h"
#include "base/win/scoped_co_mem.h"
#include "base/win/scoped_handle.h"
#include "base/win/scoped_propvariant.h"
#include "base/win/scoped_variant.h"
#include "base/win/windows_version.h"
#include "media/audio/audio_device_description.h"
#include "media/base/media_switches.h"
using base::win::ScopedCoMem;
using base::win::ScopedHandle;
namespace media {
// See header file for documentation.
// {BE39AF4F-087C-423F-9303-234EC1E5B8EE}
const GUID kCommunicationsSessionId = {
0xbe39af4f, 0x87c, 0x423f, { 0x93, 0x3, 0x23, 0x4e, 0xc1, 0xe5, 0xb8, 0xee }
};
enum { KSAUDIO_SPEAKER_UNSUPPORTED = 0 };
// Converts Microsoft's channel configuration to ChannelLayout.
// This mapping is not perfect but the best we can do given the current
// ChannelLayout enumerator and the Windows-specific speaker configurations
// defined in ksmedia.h. Don't assume that the channel ordering in
// ChannelLayout is exactly the same as the Windows specific configuration.
// As an example: KSAUDIO_SPEAKER_7POINT1_SURROUND is mapped to
// CHANNEL_LAYOUT_7_1 but the positions of Back L, Back R and Side L, Side R
// speakers are different in these two definitions.
static ChannelLayout ChannelConfigToChannelLayout(ChannelConfig config) {
switch (config) {
case KSAUDIO_SPEAKER_MONO:
DVLOG(2) << "KSAUDIO_SPEAKER_MONO=>CHANNEL_LAYOUT_MONO";
return CHANNEL_LAYOUT_MONO;
case KSAUDIO_SPEAKER_STEREO:
DVLOG(2) << "KSAUDIO_SPEAKER_STEREO=>CHANNEL_LAYOUT_STEREO";
return CHANNEL_LAYOUT_STEREO;
case KSAUDIO_SPEAKER_QUAD:
DVLOG(2) << "KSAUDIO_SPEAKER_QUAD=>CHANNEL_LAYOUT_QUAD";
return CHANNEL_LAYOUT_QUAD;
case KSAUDIO_SPEAKER_SURROUND:
DVLOG(2) << "KSAUDIO_SPEAKER_SURROUND=>CHANNEL_LAYOUT_4_0";
return CHANNEL_LAYOUT_4_0;
case KSAUDIO_SPEAKER_5POINT1:
DVLOG(2) << "KSAUDIO_SPEAKER_5POINT1=>CHANNEL_LAYOUT_5_1_BACK";
return CHANNEL_LAYOUT_5_1_BACK;
case KSAUDIO_SPEAKER_5POINT1_SURROUND:
DVLOG(2) << "KSAUDIO_SPEAKER_5POINT1_SURROUND=>CHANNEL_LAYOUT_5_1";
return CHANNEL_LAYOUT_5_1;
case KSAUDIO_SPEAKER_7POINT1:
DVLOG(2) << "KSAUDIO_SPEAKER_7POINT1=>CHANNEL_LAYOUT_7_1_WIDE";
return CHANNEL_LAYOUT_7_1_WIDE;
case KSAUDIO_SPEAKER_7POINT1_SURROUND:
DVLOG(2) << "KSAUDIO_SPEAKER_7POINT1_SURROUND=>CHANNEL_LAYOUT_7_1";
return CHANNEL_LAYOUT_7_1;
default:
DVLOG(2) << "Unsupported channel configuration: " << config;
return CHANNEL_LAYOUT_UNSUPPORTED;
}
}
// TODO(henrika): add mapping for all types in the ChannelLayout enumerator.
static ChannelConfig ChannelLayoutToChannelConfig(ChannelLayout layout) {
switch (layout) {
case CHANNEL_LAYOUT_MONO:
DVLOG(2) << "CHANNEL_LAYOUT_MONO=>KSAUDIO_SPEAKER_MONO";
return KSAUDIO_SPEAKER_MONO;
case CHANNEL_LAYOUT_STEREO:
DVLOG(2) << "CHANNEL_LAYOUT_STEREO=>KSAUDIO_SPEAKER_STEREO";
return KSAUDIO_SPEAKER_STEREO;
case CHANNEL_LAYOUT_QUAD:
DVLOG(2) << "CHANNEL_LAYOUT_QUAD=>KSAUDIO_SPEAKER_QUAD";
return KSAUDIO_SPEAKER_QUAD;
case CHANNEL_LAYOUT_4_0:
DVLOG(2) << "CHANNEL_LAYOUT_4_0=>KSAUDIO_SPEAKER_SURROUND";
return KSAUDIO_SPEAKER_SURROUND;
case CHANNEL_LAYOUT_5_1_BACK:
DVLOG(2) << "CHANNEL_LAYOUT_5_1_BACK=>KSAUDIO_SPEAKER_5POINT1";
return KSAUDIO_SPEAKER_5POINT1;
case CHANNEL_LAYOUT_5_1:
DVLOG(2) << "CHANNEL_LAYOUT_5_1=>KSAUDIO_SPEAKER_5POINT1_SURROUND";
return KSAUDIO_SPEAKER_5POINT1_SURROUND;
case CHANNEL_LAYOUT_7_1_WIDE:
DVLOG(2) << "CHANNEL_LAYOUT_7_1_WIDE=>KSAUDIO_SPEAKER_7POINT1";
return KSAUDIO_SPEAKER_7POINT1;
case CHANNEL_LAYOUT_7_1:
DVLOG(2) << "CHANNEL_LAYOUT_7_1=>KSAUDIO_SPEAKER_7POINT1_SURROUND";
return KSAUDIO_SPEAKER_7POINT1_SURROUND;
default:
DVLOG(2) << "Unsupported channel layout: " << layout;
return KSAUDIO_SPEAKER_UNSUPPORTED;
}
}
static std::ostream& operator<<(std::ostream& os,
const WAVEFORMATPCMEX& format) {
os << "wFormatTag: 0x" << std::hex << format.Format.wFormatTag
<< ", nChannels: " << std::dec << format.Format.nChannels
<< ", nSamplesPerSec: " << format.Format.nSamplesPerSec
<< ", nAvgBytesPerSec: " << format.Format.nAvgBytesPerSec
<< ", nBlockAlign: " << format.Format.nBlockAlign
<< ", wBitsPerSample: " << format.Format.wBitsPerSample
<< ", cbSize: " << format.Format.cbSize
<< ", wValidBitsPerSample: " << format.Samples.wValidBitsPerSample
<< ", dwChannelMask: 0x" << std::hex << format.dwChannelMask;
return os;
}
static bool LoadAudiosesDll() {
static const wchar_t* const kAudiosesDLL =
L"%WINDIR%\\system32\\audioses.dll";
wchar_t path[MAX_PATH] = {0};
ExpandEnvironmentStringsW(kAudiosesDLL, path, arraysize(path));
return (LoadLibraryExW(path, NULL, LOAD_WITH_ALTERED_SEARCH_PATH) != NULL);
}
static std::string GetDeviceID(IMMDevice* device) {
ScopedCoMem<WCHAR> device_id_com;
std::string device_id;
if (SUCCEEDED(device->GetId(&device_id_com)))
base::WideToUTF8(device_id_com, wcslen(device_id_com), &device_id);
return device_id;
}
static bool IsDefaultDeviceId(const std::string& device_id) {
return device_id.empty() ||
device_id == AudioDeviceDescription::kDefaultDeviceId;
}
static bool IsDeviceActive(IMMDevice* device) {
DWORD state = DEVICE_STATE_DISABLED;
return SUCCEEDED(device->GetState(&state)) && (state & DEVICE_STATE_ACTIVE);
}
static HRESULT GetDeviceFriendlyNameInternal(IMMDevice* device,
std::string* friendly_name) {
// Retrieve user-friendly name of endpoint device.
// Example: "Microphone (Realtek High Definition Audio)".
ScopedComPtr<IPropertyStore> properties;
HRESULT hr = device->OpenPropertyStore(STGM_READ, properties.Receive());
if (FAILED(hr))
return hr;
base::win::ScopedPropVariant friendly_name_pv;
hr = properties->GetValue(PKEY_Device_FriendlyName,
friendly_name_pv.Receive());
if (FAILED(hr))
return hr;
if (friendly_name_pv.get().vt == VT_LPWSTR &&
friendly_name_pv.get().pwszVal) {
base::WideToUTF8(friendly_name_pv.get().pwszVal,
wcslen(friendly_name_pv.get().pwszVal), friendly_name);
}
return hr;
}
static ScopedComPtr<IMMDeviceEnumerator> CreateDeviceEnumeratorInternal(
bool allow_reinitialize) {
ScopedComPtr<IMMDeviceEnumerator> device_enumerator;
HRESULT hr = device_enumerator.CreateInstance(__uuidof(MMDeviceEnumerator),
NULL, CLSCTX_INPROC_SERVER);
if (hr == CO_E_NOTINITIALIZED && allow_reinitialize) {
LOG(ERROR) << "CoCreateInstance fails with CO_E_NOTINITIALIZED";
// We have seen crashes which indicates that this method can in fact
// fail with CO_E_NOTINITIALIZED in combination with certain 3rd party
// modules. Calling CoInitializeEx is an attempt to resolve the reported
// issues. See http://crbug.com/378465 for details.
hr = CoInitializeEx(NULL, COINIT_MULTITHREADED);
if (SUCCEEDED(hr)) {
hr = device_enumerator.CreateInstance(__uuidof(MMDeviceEnumerator),
NULL, CLSCTX_INPROC_SERVER);
}
}
return device_enumerator;
}
static bool IsSupportedInternal() {
// It is possible to force usage of WaveXxx APIs by using a command line flag.
const base::CommandLine* cmd_line = base::CommandLine::ForCurrentProcess();
if (cmd_line->HasSwitch(switches::kForceWaveAudio)) {
DVLOG(1) << "Forcing usage of Windows WaveXxx APIs";
return false;
}
// Microsoft does not plan to make the Core Audio APIs available for use
// with earlier versions of Windows, including Microsoft Windows Server 2003,
// Windows XP, Windows Millennium Edition, Windows 2000, and Windows 98.
if (base::win::GetVersion() < base::win::VERSION_VISTA)
return false;
// The audio core APIs are implemented in the Mmdevapi.dll and Audioses.dll
// system components.
// Dependency Walker shows that it is enough to verify possibility to load
// the Audioses DLL since it depends on Mmdevapi.dll.
// See http://crbug.com/166397 why this extra step is required to guarantee
// Core Audio support.
if (!LoadAudiosesDll())
return false;
// Being able to load the Audioses.dll does not seem to be sufficient for
// all devices to guarantee Core Audio support. To be 100%, we also verify
// that it is possible to a create the IMMDeviceEnumerator interface. If this
// works as well we should be home free.
ScopedComPtr<IMMDeviceEnumerator> device_enumerator =
CreateDeviceEnumeratorInternal(false);
if (!device_enumerator) {
LOG(ERROR)
<< "Failed to create Core Audio device enumerator on thread with ID "
<< GetCurrentThreadId();
return false;
}
return true;
}
bool CoreAudioUtil::IsSupported() {
static bool g_is_supported = IsSupportedInternal();
return g_is_supported;
}
base::TimeDelta CoreAudioUtil::RefererenceTimeToTimeDelta(REFERENCE_TIME time) {
// Each unit of reference time is 100 nanoseconds <=> 0.1 microsecond.
return base::TimeDelta::FromMicroseconds(0.1 * time + 0.5);
}
AUDCLNT_SHAREMODE CoreAudioUtil::GetShareMode() {
const base::CommandLine* cmd_line = base::CommandLine::ForCurrentProcess();
if (cmd_line->HasSwitch(switches::kEnableExclusiveAudio))
return AUDCLNT_SHAREMODE_EXCLUSIVE;
return AUDCLNT_SHAREMODE_SHARED;
}
int CoreAudioUtil::NumberOfActiveDevices(EDataFlow data_flow) {
// Create the IMMDeviceEnumerator interface.
ScopedComPtr<IMMDeviceEnumerator> device_enumerator =
CreateDeviceEnumerator();
if (!device_enumerator.get())
return 0;
// Generate a collection of active (present and not disabled) audio endpoint
// devices for the specified data-flow direction.
// This method will succeed even if all devices are disabled.
ScopedComPtr<IMMDeviceCollection> collection;
HRESULT hr = device_enumerator->EnumAudioEndpoints(data_flow,
DEVICE_STATE_ACTIVE,
collection.Receive());
if (FAILED(hr)) {
LOG(ERROR) << "IMMDeviceCollection::EnumAudioEndpoints: " << std::hex << hr;
return 0;
}
// Retrieve the number of active audio devices for the specified direction
UINT number_of_active_devices = 0;
collection->GetCount(&number_of_active_devices);
DVLOG(2) << ((data_flow == eCapture) ? "[in ] " : "[out] ")
<< "number of devices: " << number_of_active_devices;
return static_cast<int>(number_of_active_devices);
}
ScopedComPtr<IMMDeviceEnumerator> CoreAudioUtil::CreateDeviceEnumerator() {
return CreateDeviceEnumeratorInternal(true);
}
ScopedComPtr<IMMDevice> CoreAudioUtil::CreateDefaultDevice(EDataFlow data_flow,
ERole role) {
ScopedComPtr<IMMDevice> endpoint_device;
// Create the IMMDeviceEnumerator interface.
ScopedComPtr<IMMDeviceEnumerator> device_enumerator =
CreateDeviceEnumerator();
if (!device_enumerator.get())
return endpoint_device;
// Retrieve the default audio endpoint for the specified data-flow
// direction and role.
HRESULT hr = device_enumerator->GetDefaultAudioEndpoint(
data_flow, role, endpoint_device.Receive());
if (FAILED(hr)) {
DVLOG(1) << "IMMDeviceEnumerator::GetDefaultAudioEndpoint: "
<< std::hex << hr;
return endpoint_device;
}
// Verify that the audio endpoint device is active, i.e., that the audio
// adapter that connects to the endpoint device is present and enabled.
if (!IsDeviceActive(endpoint_device.get())) {
DVLOG(1) << "Selected endpoint device is not active";
endpoint_device.Release();
}
return endpoint_device;
}
std::string CoreAudioUtil::GetDefaultOutputDeviceID() {
ScopedComPtr<IMMDevice> device(CreateDefaultDevice(eRender, eConsole));
return device.get() ? GetDeviceID(device.get()) : std::string();
}
ScopedComPtr<IMMDevice> CoreAudioUtil::CreateDevice(
const std::string& device_id) {
ScopedComPtr<IMMDevice> endpoint_device;
// Create the IMMDeviceEnumerator interface.
ScopedComPtr<IMMDeviceEnumerator> device_enumerator =
CreateDeviceEnumerator();
if (!device_enumerator.get())
return endpoint_device;
// Retrieve an audio device specified by an endpoint device-identification
// string.
HRESULT hr = device_enumerator->GetDevice(
base::UTF8ToUTF16(device_id).c_str(), endpoint_device.Receive());
DVLOG_IF(1, FAILED(hr)) << "IMMDeviceEnumerator::GetDevice: "
<< std::hex << hr;
if (FAILED(hr)) {
DVLOG(1) << "IMMDeviceEnumerator::GetDevice: " << std::hex << hr;
return endpoint_device;
}
// Verify that the audio endpoint device is active, i.e., that the audio
// adapter that connects to the endpoint device is present and enabled.
if (!IsDeviceActive(endpoint_device.get())) {
DVLOG(1) << "Selected endpoint device is not active";
endpoint_device.Release();
}
return endpoint_device;
}
HRESULT CoreAudioUtil::GetDeviceName(IMMDevice* device, AudioDeviceName* name) {
// Retrieve unique name of endpoint device.
// Example: "{0.0.1.00000000}.{8db6020f-18e3-4f25-b6f5-7726c9122574}".
AudioDeviceName device_name;
device_name.unique_id = GetDeviceID(device);
if (device_name.unique_id.empty())
return E_FAIL;
HRESULT hr = GetDeviceFriendlyNameInternal(device, &device_name.device_name);
if (FAILED(hr))
return hr;
*name = device_name;
DVLOG(2) << "friendly name: " << device_name.device_name;
DVLOG(2) << "unique id : " << device_name.unique_id;
return hr;
}
std::string CoreAudioUtil::GetAudioControllerID(IMMDevice* device,
IMMDeviceEnumerator* enumerator) {
// Fetching the controller device id could be as simple as fetching the value
// of the "{B3F8FA53-0004-438E-9003-51A46E139BFC},2" property in the property
// store of the |device|, but that key isn't defined in any header and
// according to MS should not be relied upon.
// So, instead, we go deeper, look at the device topology and fetch the
// PKEY_Device_InstanceId of the associated physical audio device.
ScopedComPtr<IDeviceTopology> topology;
ScopedComPtr<IConnector> connector;
ScopedCoMem<WCHAR> filter_id;
if (FAILED(device->Activate(__uuidof(IDeviceTopology), CLSCTX_ALL, NULL,
topology.ReceiveVoid())) ||
// For our purposes checking the first connected device should be enough
// and if there are cases where there are more than one device connected
// we're not sure how to handle that anyway. So we pass 0.
FAILED(topology->GetConnector(0, connector.Receive())) ||
FAILED(connector->GetDeviceIdConnectedTo(&filter_id))) {
DLOG(ERROR) << "Failed to get the device identifier of the audio device";
return std::string();
}
// Now look at the properties of the connected device node and fetch the
// instance id (PKEY_Device_InstanceId) of the device node that uniquely
// identifies the controller.
ScopedComPtr<IMMDevice> device_node;
ScopedComPtr<IPropertyStore> properties;
base::win::ScopedPropVariant instance_id;
if (FAILED(enumerator->GetDevice(filter_id, device_node.Receive())) ||
FAILED(device_node->OpenPropertyStore(STGM_READ, properties.Receive())) ||
FAILED(properties->GetValue(PKEY_Device_InstanceId,
instance_id.Receive())) ||
instance_id.get().vt != VT_LPWSTR) {
DLOG(ERROR) << "Failed to get instance id of the audio device node";
return std::string();
}
std::string controller_id;
base::WideToUTF8(instance_id.get().pwszVal,
wcslen(instance_id.get().pwszVal),
&controller_id);
return controller_id;
}
std::string CoreAudioUtil::GetMatchingOutputDeviceID(
const std::string& input_device_id) {
// Special handling for the default communications device.
// We always treat the configured communications devices, as a pair.
// If we didn't do that and the user has e.g. configured a mic of a headset
// as the default comms input device and a different device (not the speakers
// of the headset) as the default comms output device, then we would otherwise
// here pick the headset as the matched output device. That's technically
// correct, but the user experience would be that any audio played out to
// the matched device, would get ducked since it's not the default comms
// device. So here, we go with the user's configuration.
if (input_device_id == AudioDeviceDescription::kCommunicationsDeviceId)
return AudioDeviceDescription::kCommunicationsDeviceId;
ScopedComPtr<IMMDevice> input_device;
if (IsDefaultDeviceId(input_device_id)) {
input_device = CreateDefaultDevice(eCapture, eConsole);
} else {
input_device = CreateDevice(input_device_id);
}
if (!input_device.get())
return std::string();
// See if we can get id of the associated controller.
ScopedComPtr<IMMDeviceEnumerator> enumerator(CreateDeviceEnumerator());
std::string controller_id(
GetAudioControllerID(input_device.get(), enumerator.get()));
if (controller_id.empty())
return std::string();
// Now enumerate the available (and active) output devices and see if any of
// them is associated with the same controller.
ScopedComPtr<IMMDeviceCollection> collection;
enumerator->EnumAudioEndpoints(eRender, DEVICE_STATE_ACTIVE,
collection.Receive());
if (!collection.get())
return std::string();
UINT count = 0;
collection->GetCount(&count);
ScopedComPtr<IMMDevice> output_device;
for (UINT i = 0; i < count; ++i) {
collection->Item(i, output_device.Receive());
std::string output_controller_id(
GetAudioControllerID(output_device.get(), enumerator.get()));
if (output_controller_id == controller_id)
break;
output_device = NULL;
}
return output_device.get() ? GetDeviceID(output_device.get()) : std::string();
}
std::string CoreAudioUtil::GetFriendlyName(const std::string& device_id) {
ScopedComPtr<IMMDevice> audio_device = CreateDevice(device_id);
if (!audio_device.get())
return std::string();
AudioDeviceName device_name;
HRESULT hr = GetDeviceName(audio_device.get(), &device_name);
if (FAILED(hr))
return std::string();
return device_name.device_name;
}
bool CoreAudioUtil::DeviceIsDefault(EDataFlow flow,
ERole role,
const std::string& device_id) {
ScopedComPtr<IMMDevice> device = CreateDefaultDevice(flow, role);
if (!device.get())
return false;
std::string str_default(GetDeviceID(device.get()));
return device_id.compare(str_default) == 0;
}
EDataFlow CoreAudioUtil::GetDataFlow(IMMDevice* device) {
ScopedComPtr<IMMEndpoint> endpoint;
HRESULT hr = device->QueryInterface(endpoint.Receive());
if (FAILED(hr)) {
DVLOG(1) << "IMMDevice::QueryInterface: " << std::hex << hr;
return eAll;
}
EDataFlow data_flow;
hr = endpoint->GetDataFlow(&data_flow);
if (FAILED(hr)) {
DVLOG(1) << "IMMEndpoint::GetDataFlow: " << std::hex << hr;
return eAll;
}
return data_flow;
}
ScopedComPtr<IAudioClient> CoreAudioUtil::CreateClient(
IMMDevice* audio_device) {
// Creates and activates an IAudioClient COM object given the selected
// endpoint device.
ScopedComPtr<IAudioClient> audio_client;
HRESULT hr = audio_device->Activate(__uuidof(IAudioClient),
CLSCTX_INPROC_SERVER,
NULL,
audio_client.ReceiveVoid());
DVLOG_IF(1, FAILED(hr)) << "IMMDevice::Activate: " << std::hex << hr;
return audio_client;
}
ScopedComPtr<IAudioClient> CoreAudioUtil::CreateDefaultClient(
EDataFlow data_flow, ERole role) {
ScopedComPtr<IMMDevice> default_device(CreateDefaultDevice(data_flow, role));
return (default_device.get() ? CreateClient(default_device.get())
: ScopedComPtr<IAudioClient>());
}
ScopedComPtr<IAudioClient> CoreAudioUtil::CreateClient(
const std::string& device_id, EDataFlow data_flow, ERole role) {
if (IsDefaultDeviceId(device_id))
return CreateDefaultClient(data_flow, role);
ScopedComPtr<IMMDevice> device(CreateDevice(device_id));
if (!device.get())
return ScopedComPtr<IAudioClient>();
return CreateClient(device.get());
}
HRESULT CoreAudioUtil::GetSharedModeMixFormat(
IAudioClient* client, WAVEFORMATPCMEX* format) {
ScopedCoMem<WAVEFORMATPCMEX> format_pcmex;
HRESULT hr = client->GetMixFormat(
reinterpret_cast<WAVEFORMATEX**>(&format_pcmex));
if (FAILED(hr))
return hr;
size_t bytes = sizeof(WAVEFORMATEX) + format_pcmex->Format.cbSize;
DCHECK_EQ(bytes, sizeof(WAVEFORMATPCMEX));
memcpy(format, format_pcmex, bytes);
DVLOG(2) << *format;
return hr;
}
bool CoreAudioUtil::IsFormatSupported(IAudioClient* client,
AUDCLNT_SHAREMODE share_mode,
const WAVEFORMATPCMEX* format) {
ScopedCoMem<WAVEFORMATEXTENSIBLE> closest_match;
HRESULT hr = client->IsFormatSupported(
share_mode, reinterpret_cast<const WAVEFORMATEX*>(format),
reinterpret_cast<WAVEFORMATEX**>(&closest_match));
// This log can only be triggered for shared mode.
DLOG_IF(ERROR, hr == S_FALSE) << "Format is not supported "
<< "but a closest match exists.";
// This log can be triggered both for shared and exclusive modes.
DLOG_IF(ERROR, hr == AUDCLNT_E_UNSUPPORTED_FORMAT) << "Unsupported format.";
if (hr == S_FALSE) {
DVLOG(2) << *closest_match;
}
return (hr == S_OK);
}
bool CoreAudioUtil::IsChannelLayoutSupported(const std::string& device_id,
EDataFlow data_flow,
ERole role,
ChannelLayout channel_layout) {
// First, get the preferred mixing format for shared mode streams.
ScopedComPtr<IAudioClient> client(CreateClient(device_id, data_flow, role));
if (!client.get())
return false;
WAVEFORMATPCMEX format;
HRESULT hr = GetSharedModeMixFormat(client.get(), &format);
if (FAILED(hr))
return false;
// Next, check if it is possible to use an alternative format where the
// channel layout (and possibly number of channels) is modified.
// Convert generic channel layout into Windows-specific channel configuration.
ChannelConfig new_config = ChannelLayoutToChannelConfig(channel_layout);
if (new_config == KSAUDIO_SPEAKER_UNSUPPORTED) {
return false;
}
format.dwChannelMask = new_config;
// Modify the format if the new channel layout has changed the number of
// utilized channels.
const int channels = ChannelLayoutToChannelCount(channel_layout);
if (channels != format.Format.nChannels) {
format.Format.nChannels = channels;
format.Format.nBlockAlign = (format.Format.wBitsPerSample / 8) * channels;
format.Format.nAvgBytesPerSec = format.Format.nSamplesPerSec *
format.Format.nBlockAlign;
}
DVLOG(2) << format;
// Some devices can initialize a shared-mode stream with a format that is
// not identical to the mix format obtained from the GetMixFormat() method.
// However, chances of succeeding increases if we use the same number of
// channels and the same sample rate as the mix format. I.e, this call will
// return true only in those cases where the audio engine is able to support
// an even wider range of shared-mode formats where the installation package
// for the audio device includes a local effects (LFX) audio processing
// object (APO) that can handle format conversions.
return CoreAudioUtil::IsFormatSupported(client.get(),
AUDCLNT_SHAREMODE_SHARED, &format);
}
HRESULT CoreAudioUtil::GetDevicePeriod(IAudioClient* client,
AUDCLNT_SHAREMODE share_mode,
REFERENCE_TIME* device_period) {
// Get the period of the engine thread.
REFERENCE_TIME default_period = 0;
REFERENCE_TIME minimum_period = 0;
HRESULT hr = client->GetDevicePeriod(&default_period, &minimum_period);
if (FAILED(hr))
return hr;
*device_period = (share_mode == AUDCLNT_SHAREMODE_SHARED) ? default_period :
minimum_period;
DVLOG(2) << "device_period: "
<< RefererenceTimeToTimeDelta(*device_period).InMillisecondsF()
<< " [ms]";
return hr;
}
HRESULT CoreAudioUtil::GetPreferredAudioParameters(
IAudioClient* client, AudioParameters* params) {
WAVEFORMATPCMEX mix_format;
HRESULT hr = GetSharedModeMixFormat(client, &mix_format);
if (FAILED(hr))
return hr;
REFERENCE_TIME default_period = 0;
hr = GetDevicePeriod(client, AUDCLNT_SHAREMODE_SHARED, &default_period);
if (FAILED(hr))
return hr;
// Get the integer mask which corresponds to the channel layout the
// audio engine uses for its internal processing/mixing of shared-mode
// streams. This mask indicates which channels are present in the multi-
// channel stream. The least significant bit corresponds with the Front Left
// speaker, the next least significant bit corresponds to the Front Right
// speaker, and so on, continuing in the order defined in KsMedia.h.
// See http://msdn.microsoft.com/en-us/library/windows/hardware/ff537083.aspx
// for more details.
ChannelConfig channel_config = mix_format.dwChannelMask;
// Convert Microsoft's channel configuration to genric ChannelLayout.
ChannelLayout channel_layout = ChannelConfigToChannelLayout(channel_config);
// Some devices don't appear to set a valid channel layout, so guess based on
// the number of channels. See http://crbug.com/311906.
if (channel_layout == CHANNEL_LAYOUT_UNSUPPORTED) {
DVLOG(1) << "Unsupported channel config: "
<< std::hex << channel_config
<< ". Guessing layout by channel count: "
<< std::dec << mix_format.Format.nChannels;
channel_layout = GuessChannelLayout(mix_format.Format.nChannels);
}
// Preferred sample rate.
int sample_rate = mix_format.Format.nSamplesPerSec;
// TODO(henrika): possibly use format.Format.wBitsPerSample here instead.
// We use a hard-coded value of 16 bits per sample today even if most audio
// engines does the actual mixing in 32 bits per sample.
int bits_per_sample = 16;
// We are using the native device period to derive the smallest possible
// buffer size in shared mode. Note that the actual endpoint buffer will be
// larger than this size but it will be possible to fill it up in two calls.
// TODO(henrika): ensure that this scheme works for capturing as well.
int frames_per_buffer = static_cast<int>(sample_rate *
RefererenceTimeToTimeDelta(default_period).InSecondsF() + 0.5);
DVLOG(1) << "channel_layout : " << channel_layout;
DVLOG(1) << "sample_rate : " << sample_rate;
DVLOG(1) << "bits_per_sample : " << bits_per_sample;
DVLOG(1) << "frames_per_buffer: " << frames_per_buffer;
AudioParameters audio_params(AudioParameters::AUDIO_PCM_LOW_LATENCY,
channel_layout,
sample_rate,
bits_per_sample,
frames_per_buffer);
*params = audio_params;
return hr;
}
HRESULT CoreAudioUtil::GetPreferredAudioParameters(const std::string& device_id,
bool is_output_device,
AudioParameters* params) {
ScopedComPtr<IMMDevice> device;
if (device_id == AudioDeviceDescription::kDefaultDeviceId) {
device = CoreAudioUtil::CreateDefaultDevice(
is_output_device ? eRender : eCapture, eConsole);
} else if (device_id == AudioDeviceDescription::kLoopbackInputDeviceId ||
device_id == AudioDeviceDescription::kLoopbackWithMuteDeviceId) {
DCHECK(!is_output_device);
device = CoreAudioUtil::CreateDefaultDevice(eRender, eConsole);
} else if (device_id == AudioDeviceDescription::kCommunicationsDeviceId) {
device = CoreAudioUtil::CreateDefaultDevice(
is_output_device ? eRender : eCapture, eCommunications);
} else {
device = CreateDevice(device_id);
}
if (!device.get()) {
// Map NULL-pointer to new error code which can be different from the
// actual error code. The exact value is not important here.
return AUDCLNT_E_DEVICE_INVALIDATED;
}
ScopedComPtr<IAudioClient> client(CreateClient(device.get()));
if (!client.get()) {
// Map NULL-pointer to new error code which can be different from the
// actual error code. The exact value is not important here.
return AUDCLNT_E_ENDPOINT_CREATE_FAILED;
}
HRESULT hr = GetPreferredAudioParameters(client.get(), params);
if (FAILED(hr) || is_output_device || !params->IsValid())
return hr;
// The following functionality is only for input devices.
DCHECK(!is_output_device);
// TODO(dalecurtis): Old code rewrote != 1 channels to stereo, do we still
// need to do the same thing?
if (params->channels() != 1) {
params->Reset(params->format(), CHANNEL_LAYOUT_STEREO,
params->sample_rate(), params->bits_per_sample(),
params->frames_per_buffer());
}
return hr;
}
ChannelConfig CoreAudioUtil::GetChannelConfig(const std::string& device_id,
EDataFlow data_flow) {
ScopedComPtr<IAudioClient> client(
CreateClient(device_id, data_flow, eConsole));
WAVEFORMATPCMEX format = {};
if (!client.get() || FAILED(GetSharedModeMixFormat(client.get(), &format)))
return 0;
return static_cast<ChannelConfig>(format.dwChannelMask);
}
HRESULT CoreAudioUtil::SharedModeInitialize(IAudioClient* client,
const WAVEFORMATPCMEX* format,
HANDLE event_handle,
uint32_t* endpoint_buffer_size,
const GUID* session_guid) {
// Use default flags (i.e, dont set AUDCLNT_STREAMFLAGS_NOPERSIST) to
// ensure that the volume level and muting state for a rendering session
// are persistent across system restarts. The volume level and muting
// state for a capture session are never persistent.
DWORD stream_flags = 0;
// Enable event-driven streaming if a valid event handle is provided.
// After the stream starts, the audio engine will signal the event handle
// to notify the client each time a buffer becomes ready to process.
// Event-driven buffering is supported for both rendering and capturing.
// Both shared-mode and exclusive-mode streams can use event-driven buffering.
bool use_event = (event_handle != NULL &&
event_handle != INVALID_HANDLE_VALUE);
if (use_event)
stream_flags |= AUDCLNT_STREAMFLAGS_EVENTCALLBACK;
DVLOG(2) << "stream_flags: 0x" << std::hex << stream_flags;
// Initialize the shared mode client for minimal delay.
HRESULT hr = client->Initialize(AUDCLNT_SHAREMODE_SHARED,
stream_flags,
0,
0,
reinterpret_cast<const WAVEFORMATEX*>(format),
session_guid);
if (FAILED(hr)) {
DVLOG(1) << "IAudioClient::Initialize: " << std::hex << hr;
return hr;
}
if (use_event) {
hr = client->SetEventHandle(event_handle);
if (FAILED(hr)) {
DVLOG(1) << "IAudioClient::SetEventHandle: " << std::hex << hr;
return hr;
}
}
UINT32 buffer_size_in_frames = 0;
hr = client->GetBufferSize(&buffer_size_in_frames);
if (FAILED(hr)) {
DVLOG(1) << "IAudioClient::GetBufferSize: " << std::hex << hr;
return hr;
}
*endpoint_buffer_size = buffer_size_in_frames;
DVLOG(2) << "endpoint buffer size: " << buffer_size_in_frames;
// TODO(henrika): utilize when delay measurements are added.
REFERENCE_TIME latency = 0;
hr = client->GetStreamLatency(&latency);
DVLOG(2) << "stream latency: "
<< RefererenceTimeToTimeDelta(latency).InMillisecondsF() << " [ms]";
return hr;
}
ScopedComPtr<IAudioRenderClient> CoreAudioUtil::CreateRenderClient(
IAudioClient* client) {
// Get access to the IAudioRenderClient interface. This interface
// enables us to write output data to a rendering endpoint buffer.
ScopedComPtr<IAudioRenderClient> audio_render_client;
HRESULT hr = client->GetService(__uuidof(IAudioRenderClient),
audio_render_client.ReceiveVoid());
if (FAILED(hr)) {
DVLOG(1) << "IAudioClient::GetService: " << std::hex << hr;
return ScopedComPtr<IAudioRenderClient>();
}
return audio_render_client;
}
ScopedComPtr<IAudioCaptureClient> CoreAudioUtil::CreateCaptureClient(
IAudioClient* client) {
// Get access to the IAudioCaptureClient interface. This interface
// enables us to read input data from a capturing endpoint buffer.
ScopedComPtr<IAudioCaptureClient> audio_capture_client;
HRESULT hr = client->GetService(__uuidof(IAudioCaptureClient),
audio_capture_client.ReceiveVoid());
if (FAILED(hr)) {
DVLOG(1) << "IAudioClient::GetService: " << std::hex << hr;
return ScopedComPtr<IAudioCaptureClient>();
}
return audio_capture_client;
}
bool CoreAudioUtil::FillRenderEndpointBufferWithSilence(
IAudioClient* client, IAudioRenderClient* render_client) {
UINT32 endpoint_buffer_size = 0;
if (FAILED(client->GetBufferSize(&endpoint_buffer_size)))
return false;
UINT32 num_queued_frames = 0;
if (FAILED(client->GetCurrentPadding(&num_queued_frames)))
return false;
BYTE* data = NULL;
int num_frames_to_fill = endpoint_buffer_size - num_queued_frames;
if (FAILED(render_client->GetBuffer(num_frames_to_fill, &data)))
return false;
// Using the AUDCLNT_BUFFERFLAGS_SILENT flag eliminates the need to
// explicitly write silence data to the rendering buffer.
DVLOG(2) << "filling up " << num_frames_to_fill << " frames with silence";
return SUCCEEDED(render_client->ReleaseBuffer(num_frames_to_fill,
AUDCLNT_BUFFERFLAGS_SILENT));
}
bool CoreAudioUtil::GetDxDiagDetails(std::string* driver_name,
std::string* driver_version) {
ScopedComPtr<IDxDiagProvider, &IID_IDxDiagProvider> provider;
HRESULT hr =
provider.CreateInstance(CLSID_DxDiagProvider, NULL, CLSCTX_INPROC_SERVER);
if (FAILED(hr))
return false;
DXDIAG_INIT_PARAMS params = {sizeof(params)};
params.dwDxDiagHeaderVersion = DXDIAG_DX9_SDK_VERSION;
params.bAllowWHQLChecks = FALSE;
params.pReserved = NULL;
hr = provider->Initialize(&params);
if (FAILED(hr))
return false;
ScopedComPtr<IDxDiagContainer, &IID_IDxDiagContainer> root;
hr = provider->GetRootContainer(root.Receive());
if (FAILED(hr))
return false;
// Limit to the SoundDevices subtree. The tree in its entirity is
// enormous and only this branch contains useful information.
ScopedComPtr<IDxDiagContainer, &IID_IDxDiagContainer> sound_devices;
hr = root->GetChildContainer(L"DxDiag_DirectSound.DxDiag_SoundDevices.0",
sound_devices.Receive());
if (FAILED(hr))
return false;
base::win::ScopedVariant variant;
hr = sound_devices->GetProp(L"szDriverName", variant.Receive());
if (FAILED(hr))
return false;
if (variant.type() == VT_BSTR && variant.ptr()->bstrVal) {
base::WideToUTF8(variant.ptr()->bstrVal, wcslen(variant.ptr()->bstrVal),
driver_name);
}
variant.Reset();
hr = sound_devices->GetProp(L"szDriverVersion", variant.Receive());
if (FAILED(hr))
return false;
if (variant.type() == VT_BSTR && variant.ptr()->bstrVal) {
base::WideToUTF8(variant.ptr()->bstrVal, wcslen(variant.ptr()->bstrVal),
driver_version);
}
return true;
}
} // namespace media