blob: 20c71ff4549440b19f1b6b4d489ff76816b6cf19 [file] [log] [blame]
// Copyright 2013 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stdint.h>
#include <string.h>
#include <algorithm>
#include <memory>
#include <string>
#include <vector>
#include "base/memory/ptr_util.h"
#include "base/memory/ref_counted.h"
#include "build/build_config.h"
#include "mojo/core/test/mojo_test_base.h"
#include "mojo/core/test_utils.h"
#include "mojo/public/c/system/core.h"
#include "mojo/public/c/system/types.h"
#include "mojo/public/cpp/system/message_pipe.h"
namespace mojo {
namespace core {
namespace {
const MojoHandleSignals kAllSignals =
MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_WRITABLE |
MOJO_HANDLE_SIGNAL_PEER_CLOSED | MOJO_HANDLE_SIGNAL_PEER_REMOTE |
MOJO_HANDLE_SIGNAL_QUOTA_EXCEEDED;
static const char kHelloWorld[] = "hello world";
class MessagePipeTest : public test::MojoTestBase {
public:
MessagePipeTest() {
CHECK_EQ(MOJO_RESULT_OK, MojoCreateMessagePipe(nullptr, &pipe0_, &pipe1_));
}
~MessagePipeTest() override {
if (pipe0_ != MOJO_HANDLE_INVALID)
CHECK_EQ(MOJO_RESULT_OK, MojoClose(pipe0_));
if (pipe1_ != MOJO_HANDLE_INVALID)
CHECK_EQ(MOJO_RESULT_OK, MojoClose(pipe1_));
}
MojoResult WriteMessage(MojoHandle message_pipe_handle,
const void* bytes,
uint32_t num_bytes) {
return mojo::WriteMessageRaw(MessagePipeHandle(message_pipe_handle), bytes,
num_bytes, nullptr, 0,
MOJO_WRITE_MESSAGE_FLAG_NONE);
}
MojoResult ReadMessage(MojoHandle message_pipe_handle,
void* bytes,
uint32_t* num_bytes,
bool may_discard = false) {
MojoMessageHandle message_handle;
MojoResult rv =
MojoReadMessage(message_pipe_handle, nullptr, &message_handle);
if (rv != MOJO_RESULT_OK)
return rv;
const uint32_t expected_num_bytes = *num_bytes;
void* buffer;
rv = MojoGetMessageData(message_handle, nullptr, &buffer, num_bytes,
nullptr, nullptr);
if (rv == MOJO_RESULT_RESOURCE_EXHAUSTED) {
CHECK(may_discard);
} else if (*num_bytes) {
CHECK_EQ(MOJO_RESULT_OK, rv);
CHECK_GE(expected_num_bytes, *num_bytes);
CHECK(bytes);
memcpy(bytes, buffer, *num_bytes);
}
CHECK_EQ(MOJO_RESULT_OK, MojoDestroyMessage(message_handle));
return rv;
}
MojoHandle pipe0_, pipe1_;
private:
DISALLOW_COPY_AND_ASSIGN(MessagePipeTest);
};
using FuseMessagePipeTest = test::MojoTestBase;
TEST_F(MessagePipeTest, WriteData) {
ASSERT_EQ(MOJO_RESULT_OK,
WriteMessage(pipe0_, kHelloWorld, sizeof(kHelloWorld)));
}
// Tests:
// - only default flags
// - reading messages from a port
// - when there are no/one/two messages available for that port
// - with buffer size 0 (and null buffer) -- should get size
// - with too-small buffer -- should get size
// - also verify that buffers aren't modified when/where they shouldn't be
// - writing messages to a port
// - in the obvious scenarios (as above)
// - to a port that's been closed
// - writing a message to a port, closing the other (would be the source) port,
// and reading it
TEST_F(MessagePipeTest, Basic) {
int32_t buffer[2];
const uint32_t kBufferSize = static_cast<uint32_t>(sizeof(buffer));
uint32_t buffer_size;
// Nothing to read yet on port 0.
buffer[0] = 123;
buffer[1] = 456;
buffer_size = kBufferSize;
ASSERT_EQ(MOJO_RESULT_SHOULD_WAIT, ReadMessage(pipe0_, buffer, &buffer_size));
ASSERT_EQ(kBufferSize, buffer_size);
ASSERT_EQ(123, buffer[0]);
ASSERT_EQ(456, buffer[1]);
// Ditto for port 1.
buffer[0] = 123;
buffer[1] = 456;
buffer_size = kBufferSize;
ASSERT_EQ(MOJO_RESULT_SHOULD_WAIT, ReadMessage(pipe1_, buffer, &buffer_size));
// Write from port 1 (to port 0).
buffer[0] = 789012345;
buffer[1] = 0;
ASSERT_EQ(MOJO_RESULT_OK, WriteMessage(pipe1_, buffer, sizeof(buffer[0])));
MojoHandleSignalsState state;
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(pipe0_, MOJO_HANDLE_SIGNAL_READABLE, &state));
// Read from port 0.
buffer[0] = 123;
buffer[1] = 456;
buffer_size = kBufferSize;
ASSERT_EQ(MOJO_RESULT_OK, ReadMessage(pipe0_, buffer, &buffer_size));
ASSERT_EQ(static_cast<uint32_t>(sizeof(buffer[0])), buffer_size);
ASSERT_EQ(789012345, buffer[0]);
ASSERT_EQ(456, buffer[1]);
// Read again from port 0 -- it should be empty.
buffer_size = kBufferSize;
ASSERT_EQ(MOJO_RESULT_SHOULD_WAIT, ReadMessage(pipe0_, buffer, &buffer_size));
// Write two messages from port 0 (to port 1).
buffer[0] = 123456789;
buffer[1] = 0;
ASSERT_EQ(MOJO_RESULT_OK, WriteMessage(pipe0_, buffer, sizeof(buffer[0])));
buffer[0] = 234567890;
buffer[1] = 0;
ASSERT_EQ(MOJO_RESULT_OK, WriteMessage(pipe0_, buffer, sizeof(buffer[0])));
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(pipe1_, MOJO_HANDLE_SIGNAL_READABLE, &state));
// Read from port 1.
buffer[0] = 123;
buffer[1] = 456;
buffer_size = kBufferSize;
ASSERT_EQ(MOJO_RESULT_OK, ReadMessage(pipe1_, buffer, &buffer_size));
ASSERT_EQ(static_cast<uint32_t>(sizeof(buffer[0])), buffer_size);
ASSERT_EQ(123456789, buffer[0]);
ASSERT_EQ(456, buffer[1]);
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(pipe1_, MOJO_HANDLE_SIGNAL_READABLE, &state));
// Read again from port 1.
buffer[0] = 123;
buffer[1] = 456;
buffer_size = kBufferSize;
ASSERT_EQ(MOJO_RESULT_OK, ReadMessage(pipe1_, buffer, &buffer_size));
ASSERT_EQ(static_cast<uint32_t>(sizeof(buffer[0])), buffer_size);
ASSERT_EQ(234567890, buffer[0]);
ASSERT_EQ(456, buffer[1]);
// Read again from port 1 -- it should be empty.
buffer_size = kBufferSize;
ASSERT_EQ(MOJO_RESULT_SHOULD_WAIT, ReadMessage(pipe1_, buffer, &buffer_size));
// Write from port 0 (to port 1).
buffer[0] = 345678901;
buffer[1] = 0;
ASSERT_EQ(MOJO_RESULT_OK, WriteMessage(pipe0_, buffer, sizeof(buffer[0])));
// Close port 0.
MojoClose(pipe0_);
pipe0_ = MOJO_HANDLE_INVALID;
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(pipe1_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, &state));
// Try to write from port 1 (to port 0).
buffer[0] = 456789012;
buffer[1] = 0;
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
WriteMessage(pipe1_, buffer, sizeof(buffer[0])));
// Read from port 1; should still get message (even though port 0 was closed).
buffer[0] = 123;
buffer[1] = 456;
buffer_size = kBufferSize;
ASSERT_EQ(MOJO_RESULT_OK, ReadMessage(pipe1_, buffer, &buffer_size));
ASSERT_EQ(static_cast<uint32_t>(sizeof(buffer[0])), buffer_size);
ASSERT_EQ(345678901, buffer[0]);
ASSERT_EQ(456, buffer[1]);
// Read again from port 1 -- it should be empty (and port 0 is closed).
buffer_size = kBufferSize;
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
ReadMessage(pipe1_, buffer, &buffer_size));
}
TEST_F(MessagePipeTest, CloseWithQueuedIncomingMessages) {
int32_t buffer[1];
const uint32_t kBufferSize = static_cast<uint32_t>(sizeof(buffer));
uint32_t buffer_size;
// Write some messages from port 1 (to port 0).
for (int32_t i = 0; i < 5; i++) {
buffer[0] = i;
ASSERT_EQ(MOJO_RESULT_OK, WriteMessage(pipe1_, buffer, kBufferSize));
}
MojoHandleSignalsState state;
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(pipe0_, MOJO_HANDLE_SIGNAL_READABLE, &state));
// Port 0 shouldn't be empty.
buffer_size = kBufferSize;
ASSERT_EQ(MOJO_RESULT_OK, ReadMessage(pipe0_, buffer, &buffer_size));
ASSERT_EQ(kBufferSize, buffer_size);
// Close port 0 first, which should have outstanding (incoming) messages.
MojoClose(pipe0_);
MojoClose(pipe1_);
pipe0_ = pipe1_ = MOJO_HANDLE_INVALID;
}
TEST_F(MessagePipeTest, BasicWaiting) {
MojoHandleSignalsState hss;
int32_t buffer[1];
const uint32_t kBufferSize = static_cast<uint32_t>(sizeof(buffer));
uint32_t buffer_size;
// Always writable (until the other port is closed). Not yet readable. Peer
// not closed.
hss = GetSignalsState(pipe0_);
ASSERT_EQ(MOJO_HANDLE_SIGNAL_WRITABLE, hss.satisfied_signals);
ASSERT_EQ(kAllSignals, hss.satisfiable_signals);
hss = MojoHandleSignalsState();
// Write from port 0 (to port 1), to make port 1 readable.
buffer[0] = 123456789;
ASSERT_EQ(MOJO_RESULT_OK, WriteMessage(pipe0_, buffer, kBufferSize));
// Port 1 should already be readable now.
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(pipe1_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_WRITABLE,
hss.satisfied_signals);
ASSERT_EQ(kAllSignals, hss.satisfiable_signals);
// ... and still writable.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(pipe1_, MOJO_HANDLE_SIGNAL_WRITABLE, &hss));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_READABLE | MOJO_HANDLE_SIGNAL_WRITABLE,
hss.satisfied_signals);
ASSERT_EQ(kAllSignals, hss.satisfiable_signals);
// Close port 0.
MojoClose(pipe0_);
pipe0_ = MOJO_HANDLE_INVALID;
// Port 1 should be signaled with peer closed.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(pipe1_, MOJO_HANDLE_SIGNAL_PEER_CLOSED, &hss));
ASSERT_TRUE(hss.satisfied_signals & MOJO_HANDLE_SIGNAL_PEER_CLOSED);
ASSERT_TRUE(hss.satisfiable_signals & MOJO_HANDLE_SIGNAL_PEER_CLOSED);
// Port 1 should not be writable now or ever again.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
WaitForSignals(pipe1_, MOJO_HANDLE_SIGNAL_WRITABLE, &hss));
ASSERT_FALSE(hss.satisfied_signals & MOJO_HANDLE_SIGNAL_WRITABLE);
ASSERT_FALSE(hss.satisfiable_signals & MOJO_HANDLE_SIGNAL_WRITABLE);
// But it should still be readable.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_OK,
WaitForSignals(pipe1_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
ASSERT_TRUE(hss.satisfied_signals & MOJO_HANDLE_SIGNAL_READABLE);
ASSERT_TRUE(hss.satisfiable_signals & MOJO_HANDLE_SIGNAL_READABLE);
// Read from port 1.
buffer[0] = 0;
buffer_size = kBufferSize;
ASSERT_EQ(MOJO_RESULT_OK, ReadMessage(pipe1_, buffer, &buffer_size));
ASSERT_EQ(123456789, buffer[0]);
// Now port 1 should no longer be readable.
hss = MojoHandleSignalsState();
ASSERT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
WaitForSignals(pipe1_, MOJO_HANDLE_SIGNAL_READABLE, &hss));
ASSERT_EQ(MOJO_HANDLE_SIGNAL_PEER_CLOSED, hss.satisfied_signals);
ASSERT_FALSE(hss.satisfiable_signals & MOJO_HANDLE_SIGNAL_READABLE);
ASSERT_FALSE(hss.satisfiable_signals & MOJO_HANDLE_SIGNAL_WRITABLE);
}
#if !defined(OS_IOS)
const size_t kPingPongHandlesPerIteration = 30;
const size_t kPingPongIterations = 500;
DEFINE_TEST_CLIENT_TEST_WITH_PIPE(HandlePingPong, MessagePipeTest, h) {
// Waits for a handle to become readable and writes it back to the sender.
for (size_t i = 0; i < kPingPongIterations; i++) {
MojoHandle handles[kPingPongHandlesPerIteration];
ReadMessageWithHandles(h, handles, kPingPongHandlesPerIteration);
WriteMessageWithHandles(h, "", handles, kPingPongHandlesPerIteration);
}
EXPECT_EQ(MOJO_RESULT_OK, WaitForSignals(h, MOJO_HANDLE_SIGNAL_READABLE));
char msg[4];
uint32_t num_bytes = 4;
EXPECT_EQ(MOJO_RESULT_OK, ReadMessage(h, msg, &num_bytes));
}
// This test is flaky: http://crbug.com/585784
TEST_F(MessagePipeTest, DISABLED_DataPipeConsumerHandlePingPong) {
MojoHandle p, c[kPingPongHandlesPerIteration];
for (size_t i = 0; i < kPingPongHandlesPerIteration; ++i) {
EXPECT_EQ(MOJO_RESULT_OK, MojoCreateDataPipe(nullptr, &p, &c[i]));
MojoClose(p);
}
RunTestClient("HandlePingPong", [&](MojoHandle h) {
for (size_t i = 0; i < kPingPongIterations; i++) {
WriteMessageWithHandles(h, "", c, kPingPongHandlesPerIteration);
ReadMessageWithHandles(h, c, kPingPongHandlesPerIteration);
}
WriteMessage(h, "quit", 4);
});
for (size_t i = 0; i < kPingPongHandlesPerIteration; ++i)
MojoClose(c[i]);
}
// This test is flaky: http://crbug.com/585784
TEST_F(MessagePipeTest, DISABLED_DataPipeProducerHandlePingPong) {
MojoHandle p[kPingPongHandlesPerIteration], c;
for (size_t i = 0; i < kPingPongHandlesPerIteration; ++i) {
EXPECT_EQ(MOJO_RESULT_OK, MojoCreateDataPipe(nullptr, &p[i], &c));
MojoClose(c);
}
RunTestClient("HandlePingPong", [&](MojoHandle h) {
for (size_t i = 0; i < kPingPongIterations; i++) {
WriteMessageWithHandles(h, "", p, kPingPongHandlesPerIteration);
ReadMessageWithHandles(h, p, kPingPongHandlesPerIteration);
}
WriteMessage(h, "quit", 4);
});
for (size_t i = 0; i < kPingPongHandlesPerIteration; ++i)
MojoClose(p[i]);
}
TEST_F(MessagePipeTest, SharedBufferHandlePingPong) {
MojoHandle buffers[kPingPongHandlesPerIteration];
for (size_t i = 0; i < kPingPongHandlesPerIteration; ++i)
EXPECT_EQ(MOJO_RESULT_OK, MojoCreateSharedBuffer(1, nullptr, &buffers[i]));
RunTestClient("HandlePingPong", [&](MojoHandle h) {
for (size_t i = 0; i < kPingPongIterations; i++) {
WriteMessageWithHandles(h, "", buffers, kPingPongHandlesPerIteration);
ReadMessageWithHandles(h, buffers, kPingPongHandlesPerIteration);
}
WriteMessage(h, "quit", 4);
});
for (size_t i = 0; i < kPingPongHandlesPerIteration; ++i)
MojoClose(buffers[i]);
}
#endif // !defined(OS_IOS)
TEST_F(FuseMessagePipeTest, Basic) {
// Test that we can fuse pipes and they still work.
MojoHandle a, b, c, d;
CreateMessagePipe(&a, &b);
CreateMessagePipe(&c, &d);
EXPECT_EQ(MOJO_RESULT_OK, MojoFuseMessagePipes(b, c, nullptr));
// Handles b and c should be closed.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(b));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(c));
const std::string kTestMessage1 = "Hello, world!";
const std::string kTestMessage2 = "Goodbye, world!";
WriteMessage(a, kTestMessage1);
EXPECT_EQ(kTestMessage1, ReadMessage(d));
WriteMessage(d, kTestMessage2);
EXPECT_EQ(kTestMessage2, ReadMessage(a));
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(a));
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(d));
}
TEST_F(FuseMessagePipeTest, FuseAfterPeerWrite) {
// Test that messages written before fusion are eventually delivered.
MojoHandle a, b, c, d;
CreateMessagePipe(&a, &b);
CreateMessagePipe(&c, &d);
const std::string kTestMessage1 = "Hello, world!";
const std::string kTestMessage2 = "Goodbye, world!";
WriteMessage(a, kTestMessage1);
WriteMessage(d, kTestMessage2);
EXPECT_EQ(MOJO_RESULT_OK, MojoFuseMessagePipes(b, c, nullptr));
// Handles b and c should be closed.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(b));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(c));
EXPECT_EQ(kTestMessage1, ReadMessage(d));
EXPECT_EQ(kTestMessage2, ReadMessage(a));
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(a));
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(d));
}
TEST_F(FuseMessagePipeTest, NoFuseAfterWrite) {
// Test that a pipe endpoint which has been written to cannot be fused.
MojoHandle a, b, c, d;
CreateMessagePipe(&a, &b);
CreateMessagePipe(&c, &d);
WriteMessage(b, "shouldn't have done that!");
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
MojoFuseMessagePipes(b, c, nullptr));
// Handles b and c should be closed.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(b));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(c));
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(a));
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(d));
}
TEST_F(FuseMessagePipeTest, NoFuseSelf) {
// Test that a pipe's own endpoints can't be fused together.
MojoHandle a, b;
CreateMessagePipe(&a, &b);
EXPECT_EQ(MOJO_RESULT_FAILED_PRECONDITION,
MojoFuseMessagePipes(a, b, nullptr));
// Handles a and b should be closed.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(a));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(b));
}
TEST_F(FuseMessagePipeTest, FuseInvalidArguments) {
MojoHandle a, b, c, d;
CreateMessagePipe(&a, &b);
CreateMessagePipe(&c, &d);
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(b));
// Can't fuse an invalid handle.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoFuseMessagePipes(b, c, nullptr));
// Handle c should be closed.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(c));
// Can't fuse a non-message pipe handle.
MojoHandle e, f;
CreateDataPipe(&e, &f, 16);
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoFuseMessagePipes(e, d, nullptr));
// Handles d and e should be closed.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(d));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(e));
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(a));
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(f));
}
TEST_F(FuseMessagePipeTest, FuseAfterPeerClosure) {
// Test that peer closure prior to fusion can still be detected after fusion.
MojoHandle a, b, c, d;
CreateMessagePipe(&a, &b);
CreateMessagePipe(&c, &d);
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(a));
EXPECT_EQ(MOJO_RESULT_OK, MojoFuseMessagePipes(b, c, nullptr));
// Handles b and c should be closed.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(b));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(c));
EXPECT_EQ(MOJO_RESULT_OK, WaitForSignals(d, MOJO_HANDLE_SIGNAL_PEER_CLOSED));
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(d));
}
TEST_F(FuseMessagePipeTest, FuseAfterPeerWriteAndClosure) {
// Test that peer write and closure prior to fusion still results in the
// both message arrival and awareness of peer closure.
MojoHandle a, b, c, d;
CreateMessagePipe(&a, &b);
CreateMessagePipe(&c, &d);
const std::string kTestMessage = "ayyy lmao";
WriteMessage(a, kTestMessage);
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(a));
EXPECT_EQ(MOJO_RESULT_OK, MojoFuseMessagePipes(b, c, nullptr));
// Handles b and c should be closed.
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(b));
EXPECT_EQ(MOJO_RESULT_INVALID_ARGUMENT, MojoClose(c));
EXPECT_EQ(kTestMessage, ReadMessage(d));
EXPECT_EQ(MOJO_RESULT_OK, WaitForSignals(d, MOJO_HANDLE_SIGNAL_PEER_CLOSED));
EXPECT_EQ(MOJO_RESULT_OK, MojoClose(d));
}
TEST_F(MessagePipeTest, ClosePipesStressTest) {
// Stress test to exercise https://crbug.com/665869.
const size_t kNumPipes = 100000;
for (size_t i = 0; i < kNumPipes; ++i) {
MojoHandle a, b;
CreateMessagePipe(&a, &b);
MojoClose(a);
MojoClose(b);
}
}
} // namespace
} // namespace core
} // namespace mojo