blob: 58b9161c96c87f1683d332a127eab91f6b13269c [file] [log] [blame]
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This code implements SPAKE2, a variant of EKE:
// http://www.di.ens.fr/~pointche/pub.php?reference=AbPo04
#include "crypto/p224_spake.h"
#include <string.h>
#include <algorithm>
#include "base/logging.h"
#include "crypto/random.h"
#include "crypto/secure_util.h"
#include "third_party/boringssl/src/include/openssl/bn.h"
#include "third_party/boringssl/src/include/openssl/ec.h"
#include "third_party/boringssl/src/include/openssl/obj.h"
namespace {
// The following two points (M and N in the protocol) are verifiable random
// points on the curve and can be generated with the following code:
// #include <stdint.h>
// #include <stdio.h>
// #include <string.h>
//
// #include <openssl/ec.h>
// #include <openssl/obj_mac.h>
// #include <openssl/sha.h>
//
// // Silence a presubmit.
// #define PRINTF printf
//
// static const char kSeed1[] = "P224 point generation seed (M)";
// static const char kSeed2[] = "P224 point generation seed (N)";
//
// void find_seed(const char* seed) {
// SHA256_CTX sha256;
// uint8_t digest[SHA256_DIGEST_LENGTH];
//
// SHA256_Init(&sha256);
// SHA256_Update(&sha256, seed, strlen(seed));
// SHA256_Final(digest, &sha256);
//
// BIGNUM x, y;
// EC_GROUP* p224 = EC_GROUP_new_by_curve_name(NID_secp224r1);
// EC_POINT* p = EC_POINT_new(p224);
//
// for (unsigned i = 0;; i++) {
// BN_init(&x);
// BN_bin2bn(digest, 28, &x);
//
// if (EC_POINT_set_compressed_coordinates_GFp(
// p224, p, &x, digest[28] & 1, NULL)) {
// BN_init(&y);
// EC_POINT_get_affine_coordinates_GFp(p224, p, &x, &y, NULL);
// char* x_str = BN_bn2hex(&x);
// char* y_str = BN_bn2hex(&y);
// PRINTF("Found after %u iterations:\n%s\n%s\n", i, x_str, y_str);
// OPENSSL_free(x_str);
// OPENSSL_free(y_str);
// BN_free(&x);
// BN_free(&y);
// break;
// }
//
// SHA256_Init(&sha256);
// SHA256_Update(&sha256, digest, sizeof(digest));
// SHA256_Final(digest, &sha256);
//
// BN_free(&x);
// }
//
// EC_POINT_free(p);
// EC_GROUP_free(p224);
// }
//
// int main() {
// find_seed(kSeed1);
// find_seed(kSeed2);
// return 0;
// }
const uint8_t kM_X962[1 + 28 + 28] = {
0x04, 0x4d, 0x48, 0xc8, 0xea, 0x8d, 0x23, 0x39, 0x2e, 0x07, 0xe8, 0x51,
0xfa, 0x6a, 0xa8, 0x20, 0x48, 0x09, 0x4e, 0x05, 0x13, 0x72, 0x49, 0x9c,
0x6f, 0xba, 0x62, 0xa7, 0x4b, 0x6c, 0x18, 0x5c, 0xab, 0xd5, 0x2e, 0x2e,
0x8a, 0x9e, 0x2d, 0x21, 0xb0, 0xec, 0x4e, 0xe1, 0x41, 0x21, 0x1f, 0xe2,
0x9d, 0x64, 0xea, 0x4d, 0x04, 0x46, 0x3a, 0xe8, 0x33,
};
const uint8_t kN_X962[1 + 28 + 28] = {
0x04, 0x0b, 0x1c, 0xfc, 0x6a, 0x40, 0x7c, 0xdc, 0xb1, 0x5d, 0xc1, 0x70,
0x4c, 0xd1, 0x3e, 0xda, 0xab, 0x8f, 0xde, 0xff, 0x8c, 0xfb, 0xfb, 0x50,
0xd2, 0xc8, 0x1d, 0xe2, 0xc2, 0x3e, 0x14, 0xf6, 0x29, 0x96, 0x08, 0x09,
0x07, 0xb5, 0x6d, 0xd2, 0x82, 0x07, 0x1a, 0xa7, 0xa1, 0x21, 0xc3, 0x99,
0x34, 0xbc, 0x30, 0xda, 0x5b, 0xcb, 0xc6, 0xa3, 0xcc,
};
// ToBignum returns |big_endian_bytes| interpreted as a big-endian number.
bssl::UniquePtr<BIGNUM> ToBignum(base::span<const uint8_t> big_endian_bytes) {
bssl::UniquePtr<BIGNUM> bn(BN_new());
CHECK(BN_bin2bn(big_endian_bytes.data(), big_endian_bytes.size(), bn.get()));
return bn;
}
// GetPoint decodes and returns the given X.962-encoded point. It will crash if
// |x962| is not a valid P-224 point.
bssl::UniquePtr<EC_POINT> GetPoint(
const EC_GROUP* p224,
base::span<const uint8_t, 1 + 28 + 28> x962) {
bssl::UniquePtr<EC_POINT> point(EC_POINT_new(p224));
CHECK(EC_POINT_oct2point(p224, point.get(), x962.data(), x962.size(),
/*ctx=*/nullptr));
return point;
}
// GetMask returns (M|N)**pw, where the choice of M or N is controlled by
// |use_m|.
bssl::UniquePtr<EC_POINT> GetMask(const EC_GROUP* p224,
bool use_m,
base::span<const uint8_t> pw) {
bssl::UniquePtr<EC_POINT> MN(GetPoint(p224, use_m ? kM_X962 : kN_X962));
bssl::UniquePtr<EC_POINT> MNpw(EC_POINT_new(p224));
bssl::UniquePtr<BIGNUM> pw_bn(ToBignum(pw));
CHECK(EC_POINT_mul(p224, MNpw.get(), nullptr, MN.get(), pw_bn.get(),
/*ctx=*/nullptr));
return MNpw;
}
// ToMessage serialises |in| as a 56-byte string that contains the big-endian
// representations of x and y, or is all zeros if |in| is infinity.
std::string ToMessage(const EC_GROUP* p224, const EC_POINT* in) {
if (EC_POINT_is_at_infinity(p224, in)) {
return std::string(28 + 28, 0);
}
uint8_t x962[1 + 28 + 28];
CHECK(EC_POINT_point2oct(p224, in, POINT_CONVERSION_UNCOMPRESSED, x962,
sizeof(x962), /*ctx=*/nullptr) == sizeof(x962));
return std::string(reinterpret_cast<const char*>(&x962[1]), sizeof(x962) - 1);
}
// FromMessage converts a message, as generated by |ToMessage|, into a point. It
// returns |nullptr| if the input is invalid or not on the curve.
bssl::UniquePtr<EC_POINT> FromMessage(const EC_GROUP* p224,
base::StringPiece in) {
if (in.size() != 56) {
return nullptr;
}
uint8_t x962[1 + 56];
x962[0] = 4;
memcpy(&x962[1], in.data(), sizeof(x962) - 1);
bssl::UniquePtr<EC_POINT> ret(EC_POINT_new(p224));
if (!EC_POINT_oct2point(p224, ret.get(), x962, sizeof(x962),
/*ctx=*/nullptr)) {
return nullptr;
}
return ret;
}
} // anonymous namespace
namespace crypto {
P224EncryptedKeyExchange::P224EncryptedKeyExchange(PeerType peer_type,
base::StringPiece password)
: state_(kStateInitial), is_server_(peer_type == kPeerTypeServer) {
memset(&x_, 0, sizeof(x_));
memset(&expected_authenticator_, 0, sizeof(expected_authenticator_));
// x_ is a random scalar.
RandBytes(x_, sizeof(x_));
// Calculate |password| hash to get SPAKE password value.
SHA256HashString(std::string(password.data(), password.length()),
pw_, sizeof(pw_));
Init();
}
void P224EncryptedKeyExchange::Init() {
// X = g**x_
bssl::UniquePtr<EC_GROUP> p224(EC_GROUP_new_by_curve_name(NID_secp224r1));
bssl::UniquePtr<EC_POINT> X(EC_POINT_new(p224.get()));
bssl::UniquePtr<BIGNUM> x_bn(ToBignum(x_));
// x_bn may be >= the order, but |EC_POINT_mul| handles that. It doesn't do so
// in constant-time, but the these values are locally generated and so this
// occurs with negligible probability. (Same with |pw_|, just below.)
CHECK(EC_POINT_mul(p224.get(), X.get(), x_bn.get(), nullptr, nullptr,
/*ctx=*/nullptr));
// The client masks the Diffie-Hellman value, X, by adding M**pw and the
// server uses N**pw.
bssl::UniquePtr<EC_POINT> MNpw(GetMask(p224.get(), !is_server_, pw_));
// X* = X + (N|M)**pw
bssl::UniquePtr<EC_POINT> Xstar(EC_POINT_new(p224.get()));
CHECK(EC_POINT_add(p224.get(), Xstar.get(), X.get(), MNpw.get(),
/*ctx=*/nullptr));
next_message_ = ToMessage(p224.get(), Xstar.get());
}
const std::string& P224EncryptedKeyExchange::GetNextMessage() {
if (state_ == kStateInitial) {
state_ = kStateRecvDH;
return next_message_;
} else if (state_ == kStateSendHash) {
state_ = kStateRecvHash;
return next_message_;
}
LOG(FATAL) << "P224EncryptedKeyExchange::GetNextMessage called in"
" bad state " << state_;
next_message_ = "";
return next_message_;
}
P224EncryptedKeyExchange::Result P224EncryptedKeyExchange::ProcessMessage(
base::StringPiece message) {
if (state_ == kStateRecvHash) {
// This is the final state of the protocol: we are reading the peer's
// authentication hash and checking that it matches the one that we expect.
if (message.size() != sizeof(expected_authenticator_)) {
error_ = "peer's hash had an incorrect size";
return kResultFailed;
}
if (!SecureMemEqual(message.data(), expected_authenticator_,
message.size())) {
error_ = "peer's hash had incorrect value";
return kResultFailed;
}
state_ = kStateDone;
return kResultSuccess;
}
if (state_ != kStateRecvDH) {
LOG(FATAL) << "P224EncryptedKeyExchange::ProcessMessage called in"
" bad state " << state_;
error_ = "internal error";
return kResultFailed;
}
bssl::UniquePtr<EC_GROUP> p224(EC_GROUP_new_by_curve_name(NID_secp224r1));
// Y* is the other party's masked, Diffie-Hellman value.
bssl::UniquePtr<EC_POINT> Ystar(FromMessage(p224.get(), message));
if (!Ystar) {
error_ = "failed to parse peer's masked Diffie-Hellman value";
return kResultFailed;
}
// We calculate the mask value: (N|M)**pw
bssl::UniquePtr<EC_POINT> MNpw(GetMask(p224.get(), is_server_, pw_));
// Y = Y* - (N|M)**pw
CHECK(EC_POINT_invert(p224.get(), MNpw.get(), /*ctx=*/nullptr));
bssl::UniquePtr<EC_POINT> Y(EC_POINT_new(p224.get()));
CHECK(EC_POINT_add(p224.get(), Y.get(), Ystar.get(), MNpw.get(),
/*ctx=*/nullptr));
// K = Y**x_
bssl::UniquePtr<EC_POINT> K(EC_POINT_new(p224.get()));
bssl::UniquePtr<BIGNUM> x_bn(ToBignum(x_));
CHECK(EC_POINT_mul(p224.get(), K.get(), nullptr, Y.get(), x_bn.get(),
/*ctx=*/nullptr));
// If everything worked out, then K is the same for both parties.
key_ = ToMessage(p224.get(), K.get());
std::string client_masked_dh, server_masked_dh;
if (is_server_) {
client_masked_dh = message.as_string();
server_masked_dh = next_message_;
} else {
client_masked_dh = next_message_;
server_masked_dh = message.as_string();
}
// Now we calculate the hashes that each side will use to prove to the other
// that they derived the correct value for K.
uint8_t client_hash[kSHA256Length], server_hash[kSHA256Length];
CalculateHash(kPeerTypeClient, client_masked_dh, server_masked_dh, key_,
client_hash);
CalculateHash(kPeerTypeServer, client_masked_dh, server_masked_dh, key_,
server_hash);
const uint8_t* my_hash = is_server_ ? server_hash : client_hash;
const uint8_t* their_hash = is_server_ ? client_hash : server_hash;
next_message_ =
std::string(reinterpret_cast<const char*>(my_hash), kSHA256Length);
memcpy(expected_authenticator_, their_hash, kSHA256Length);
state_ = kStateSendHash;
return kResultPending;
}
void P224EncryptedKeyExchange::CalculateHash(
PeerType peer_type,
const std::string& client_masked_dh,
const std::string& server_masked_dh,
const std::string& k,
uint8_t* out_digest) {
std::string hash_contents;
if (peer_type == kPeerTypeServer) {
hash_contents = "server";
} else {
hash_contents = "client";
}
hash_contents += client_masked_dh;
hash_contents += server_masked_dh;
hash_contents +=
std::string(reinterpret_cast<const char *>(pw_), sizeof(pw_));
hash_contents += k;
SHA256HashString(hash_contents, out_digest, kSHA256Length);
}
const std::string& P224EncryptedKeyExchange::error() const {
return error_;
}
const std::string& P224EncryptedKeyExchange::GetKey() const {
DCHECK_EQ(state_, kStateDone);
return GetUnverifiedKey();
}
const std::string& P224EncryptedKeyExchange::GetUnverifiedKey() const {
// Key is already final when state is kStateSendHash. Subsequent states are
// used only for verification of the key. Some users may combine verification
// with sending verifiable data instead of |expected_authenticator_|.
DCHECK_GE(state_, kStateSendHash);
return key_;
}
void P224EncryptedKeyExchange::SetXForTesting(const std::string& x) {
memset(&x_, 0, sizeof(x_));
memcpy(&x_, x.data(), std::min(x.size(), sizeof(x_)));
Init();
}
} // namespace crypto